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Abstract 

This paper proposes a novel method to 
analyze syntactic dependencies and label 
semantic dependencies around both the 
verbal predicates and the nouns. In this 
method, a probabilistic model is designed 
to obtain a global optimal result. More-
over, a predicate identification model and 
a disambiguation model are proposed to 
label predicates and their senses. The ex-
perimental results obtained on the wsj 
and brown test sets show that our system 
obtains 77% of labeled macro F1 score 
for the whole task, 84.47% of labeled at-
tachment score for syntactic dependency 
task, and 69.45% of labeled F1 score for 
semantic dependency task. 

1 Introduction 

There are two difficulties in the CoNLL 2008 
shared task. One is how to label semantic role on 
a dependency-based representation and how to 
label verbal predicates and nouns. The other one 
is how to combine the syntactic task with the 
semantic task together. 

On the basis of statistical analysis of labeling 
results, we optimize the traditional approaches of 
syntactic dependency parsing and semantic role 
labeling. Moreover, we design a predicate 
identification model and a disambiguation model, 
which will be described in section 2.3, for 
labeling predicates and their senses. In the 
disambiguation model, an exhaustion method is 
used to find the best sense which is 
corresponding to a frame of predicate. In order to 
obtain a global optimization result for every 
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sentence, a probabilistic model is designed to 
combine all subtasks. 

The rest of this paper is organized as follows:   
our system is described in section 2; and section 
3 reports our results on development and test sets; 
at last we conclude the paper in section 4. 

2 A Probabilistic Model for Syntactic 
and Semantic Dependency Labeling 

Compared with previous tasks, this shared task is 
more complex. It aims to merge both syntactic 
and semantic dependencies under a unified 
representation. Obviously, it can be divided into 
two subtasks: syntactic dependency parsing and 
semantic dependency labeling. For the second 
subtask, predicates and their senses should be 
labeled before semantic arguments for predicates 
are labeled. Since many predicates have only one 
sense, it is inefficient to build a multi-label 
classifier to classify each predicate. When a 
classification approach is used, it is mandatory to 
consider multiple senses for those predicates 
with only one or two senses. To prevent 
assigning irrelevant senses to predicates, we do 
not adopt classification approach. Instead, two 
more subtasks, i.e., predicate identification and 
predicate sense labeling, are introduced in this 
paper. The predicate sense labeling and semantic 
dependency labeling are performed together with 
a disambiguation model. 

To ensure that we can get an optimal overall 
syntactic and semantic dependency results 
through integrating the above steps, a probability 
model is proposed. The probabilistic model is 
described in Equation (1), where the score P  
of a sentence labeling is the combined 
conditional probability of its all subtasks,  is 
the probability of syntactic dependency parsing, 
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semantic dependency labeling for the ith-
predicate, and n is the number of predicates. 

∏
=

=
n
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sempredsynsent )(** iPPPP            (1) 

For each sentence, its top-N candidates using 
syntactic dependency parsing are obtained. Then 
for each candidate, predicates and semantic ar-
guments are labeled. At last, the best one with 
the highest  is chosen as final labeling result. sentP

2.1 Syntactic Dependency Parsing 

There are several approaches for syntactic de-
pendency parsing, as demonstrated in the CoNLL 
2007 shared task. A commonly used LR algo-
rithm is applied to this task. Unlike the best-first 
probabilistic shift-reduce LR algorithm used by 
(Kenji and Jun, 2007), here a combined probabil-
ity of all parsing steps is used to evaluate parsing 
results, and the best one is obtained as the final 
result. The probability of syntactic dependency 
parsing is defined in Equation (2). 

∏=
j

actsyn iPP )(
=i 1

act

                      (2)  

where  is the probability of every LR ac-
tion act at step i, and j is the number of all steps. 

)(iP

As the search space of LR parser is exponen-
tial growth with the word number, the maximum 
size of candidate states is limited to 50. 

The features that we use are similar to (Kenji 
and Jun, 2007). Hence we do not describe them 
in this paper. 

2.2 Predicate Identification 

In this subtask, a MaxEnt model is adopted for 
classification. The features we used are as follow: 

• Base info: FORM, LEMMA, POS (GPOS 
if available, or is PPOS), SPLIT_FORM, 
SPLIT_LEMMA, PPOSS. 

• Base syntactic dependency info:  
o Number of modifiers; 
o Number of modifiers of the previous word; 
o Number of modifiers of the next word; 
o PPOSS of left-most modifier; 
o Deprel of left-most modifier; 
o PPOSS of right-most modifier; 
o Deprel of right-most modifier. 

• Modifiers info 
o POS list of all modifiers: if GPOS is avail-

able, POS is GPOS. Otherwise it is PPOS. 
o DEPREL list of all modifiers; 
o SPLIT_LEMMA list of all modifiers; 
o PPOSS list of all modifiers. 

• Head’s base info 

• Head’s base syntactic dependency info 
• Head’s modifiers info 
• Deprel:  the syntactic dependency relation 

to head. 
• Word stem 
• Stem of right-most modifier 
• PPOSS of right-most modifier 
• Suffix: The suffix of the word. We use the 

last 3 characters as this feature. 
• Voice: Check if the word is a verb and is 

passive voice. 
• Previous word info: Check if the previous 

word is a predicate. 
• Pos path to ROOT: PPOSS list from 

word to ROOT through the syntactic de-
pendency path. 

• Deprel path to ROOT: DEPREL list from 
word to ROOT through the syntactic de-
pendency path. 

Through statistical analysis, we find that 
PPOSS of nearly all predicates are in a particular 
category which contains NN, NNP, NNS, VB, 
VBD, VBG, VBN, VBP, VBZ, and JJ. Hence we 
ignore the words without these PPOSS to reduce 
the number of samples and speed up the process 
of training and recognition. Meanwhile, we also 
ignore the words having no relational frame in 
PropBank or NomBank. 

2.3 Predicate Sense Labeling 

In this subtask, we label the sense of each predi-
cate. Different predicates are usually unrelated 
even if they have the same sense number, which 
makes us hardly use a classifier to label them. 
Hence, we design a disambiguation model to 
solve this problem.  

Firstly, for each word which has been identi-
fied to be a predicate, we find out all of its prob-
able sense forms (corresponding to the field of 
“PRED”). According to statistical analysis, only 
about 0.05% PREDs are not described in 
PropBank frames or NomBank frames. So it is 
reasonable to assume that all PREDs could be 
found in PropBank or NomBank. Moreover, we 
find that about 96% PREDs are formed as 
“SPLIT_LEMMA + .sense” or “LEMMA 
+ .sense”. As a result, when a word is identified 
to be a predicate, we use its LEMMA and 
SPLIT_LEMMA to find all possible PREDs 
from PropBank and NomBank. Furthermore, if 
some special words are unsuitable for these two 
forms, we should convert them into their original 
forms first and then find their possible PREDs. 
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For the rest anomalistic words, we build a map-
ping dictionary from training data. 

Secondly, for each possible sense form, we la-
bel semantic argument for all words. If a word is 
not a semantic argument, it would be labeled as 
“_”. The score of the current possible sense form 
is calculated as the combination of all probability 
of each labeling. More details about semantic 
dependency labeling will be described in section 
2.4. 

Thirdly, we choose the sense form and its se-
mantic arguments with the highest score. The 
above steps will be repeated until all predicates 
have definite senses. 

2.4 Semantic Dependency Labeling 

Unlike CoNLL-2005 shared task, this shared 
task performing Semantic Role Labeling on a 
dependency-based representation (DSRL). It is a 
novel way for SRL and the traditional SRL 
methods can not directly be used here. 
Constituent-based SRL model needs to find out 
all probable constituents, while DSRL only 
considers the semantic dependency between 
word and predicate. Moreover, DSRL uses 
syntactic dependency parsing tree instead of 
traditional full syntactic parsing tree. As a result, 
the traditional features need to be amended 
accordingly. The features we used are as follows: 

• Deprel 
• Word stem 
• POS: if GPOS is available, POS is GPOS. 

Otherwise it is PPOS. 
• Stem of right-most modifier 
• PPOSS of right-most modifier 
• Predicate: the FORM of predicate. 
• PPOSS of predicate 
• Suffix of predicate 
• Voice: voice of predicate 
• Position: The position of the word with re-

spect to its predicate. It has three values, 
“before”, “is” and “after”, for the predicate.  

• Deprel path to predicate: DEPREL list 
from word to its predicate through the syn-
tactic dependency path. 

• Length of syntactic dependency path to 
predicate 

• Sense: the sense of predicate 
Moreover, we try to find more features with 

frames. Since the PropBank and NomBank are 
available and all predicates with senses are avail-
able for this subtask. Statistical analysis shows 
that nearly all core semantic arguments (AA, A0, 
A1, A2 …) of a predicate are described in the 

frame of predicate. But it is incorrect contrarily. 
Based on these observations, we design features 
the following features for five frequently used 
core arguments: 

• A0 is in predicate’s frame: Have two 
values: “YES” and “NO”. 

• A1 is in predicate’s frame 
• A2 is in predicate’s frame 
• A3 is in predicate’s frame 
• A4 is in predicate’s frame 

Because the other core semantic arguments are 
rare, we do not need to design features for them. 
With this method, the labeling efficiency is im-
proved while the precision almost keeps un-
changed. 

As the frame information has been used in fea-
tures, we do not add any valency check on the 
labeling result. 

3 Experiments and Analysis 

3.1 Data and Environment 

The data provided for this Closed Challenge of 
shared task is part of TreeBank and Brown cor-
pus. Training set covers sections 02-21 of Tree-
Bank. Development set covers section 24 of 
TreeBank. Wsj test set covers section 23 of 
TreeBank. Brown test set covers sections ck01, 
ck02, and ck03 of the Brown corpus. 

The maximum entropy classier (Berger et al, 
1996) used is Le Zhang's Maximum Entropy 
Modeling Toolkit and the L-BFGS parameter 
estimation algorithm with gaussian prior smooth-
ing (Chen and Rosenfeld, 1999). The gaussian 
prior is set to 2 and the iteration count is set to 
500. All results we list here are post-evaluated 
because there are some small modifications. 

The experiments are performed on a PC with 
AMD Athlon™ 64 x2 4400+ CPU and 2GB 
main memory running Microsoft Windows XP 
with sp2.  Our system is developed using C++. 

In our experimental analysis, the abbreviations 
used are listed as follows: 

• LAS1: Labeled attachment score 
• UAS: Unlabeled attachment score 
• LAS2: Label accuracy score 
• LP: Labeled precision 
• LR: Labeled recall 
• LF1: Labeled F1 
• UP: Unlabeled precision 
• UR: Unlabeled recall 
• UF1: Unlabeled F1 
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3.2 Syntactic Dependency Parsing 

We trained two LR models for syntactic depend-
ency parsing. The first LR model uses MaxEnt 
classification to determine possible parser actions 
and their probabilities. The second LR model 
also uses MaxEnt classification, but parsing is 
performed backwards simply by reversing the 
sentence before parsing starts.  

For a sentence, each model can label top-N 
candidates and calculate the probability for every 
result. We join these two models by finding the 
candidate with the highest probability from all 
candidates as the final result for the sentence. 
Table 1 shows the results of each model and joint 
model. We can see that the two LR models ob-
tain similar results. The joint model can obtain 
better result and increase almost one percentage. 
The processing time of joint model is twice more 
than that of the two other models. 

 
 LR 

Model 
LR-back 
Model 

Joint 
Model

LAS1 83.05 83.38 84.43 
UAS 86.36 86.74 87.74 dev 
LAS2 89.15 89.63 90.08 
LAS1 84.84 84.06 85.48 
UAS 87.60 86.74 88.13 wsj 
LAS2 90.70 90.47 91.21 
LAS1 77.29 76.95 78.91 
UAS 82.75 82.61 84.38 brown 
LAS2 85.00 84.82 85.76 
LAS1 84.00 83.27 84.75 
UAS 87.06 86.28 87.71 

wsj + 
brown LAS2 90.07 89.84 90.6 

Speed (sec/sent) 0.49 0.42 0.92 
Table 1:  Syntactic dependency parsing results 

3.3 Predicate Identification 

Our predicate identification approach is de-
scribed in section 2.2. We use the gold HEAD 
and DEPREL fields to test our approach. The 
results are shown in Table 2. The labeling for 
each sentence spends about 14ms.  
 

 dev wsj brown 
Precision 93.56 93.61 87.51 

Recall 93.24 93.39 89.04 
F1 93.40 93.50 88.27 

Table 2:  Predicate identification results 

3.4 Semantic Dependency Labeling 

Semantic dependency labeling is the last sub-
task. Our DSRL model uses MaxEnt classifica-
tion to determine the semantic dependency be-
tween each word and its corresponding predicate. 

The gold HEAD and DEPREL and PRED fields 
is used to test the model. 

Statistical analysis shows that, for about 99% 
semantic argument labels, the length of syntactic 
dependency path from word to predicate is less 
than 7. So we ignore the words with the length of 
7 or more. 

The final results of semantic dependency la-
beling are shown in Table 3. The labeling for 
each sentence spends about 10ms. 

Brown set is an out-of-domain set and wsj set 
is an in-domain set. Usually, the results on wsj 
are much better than those on brown. But here 
we found that the unlabeled scores are nearly the 
same between wsj and brown. It shows that our 
model performs well at unlabeled labeling on 
out-of-domain set, and should be improved at 
labeled labeling. 

 
 dev wsj brown 

LP 80.50 82.47 77.29 
LR 70.73 73.58 67.16 
LF1 75.30 77.77 71.87 
UP 92.10 92.65 92.87 
UR 80.92 82.65 80.69 
UF1 86.15 87.36 86.35 

Table 3:  Semantic dependency labeling results 

3.5 Overall Result 

As described in section 2, we use a probabilistic 
model to integrate all subtasks. In the probabilis-
tic model, syntactic dependency parsing should 
parse top-N candidate results. We do the rest 
parsing for each candidate result and get N inte-
grated results. Then, for each integrated result, its 

 is calculated and the best one is chose as 
the final result. 

sentP

The DSRL results around verbal predicates 
and nouns on wsj set are shown in Table 4. It 
shows that verbal predicates are labeled much 
better than nouns. 

 
 Unlabeled 

Predicate
Labeled 
Predicate 

Labeled Semantic 
Arguments 

NN* 87.79 79.52 58.09 
VB* 96.85 80.25 73.77 

Table 4:  The F1 values of DSRL around verbal 
predicates and nouns on wsj  

 
Table 5 shows the overall results with differ-

ent N.  The results are improved when N changes 
from 1 to 2. However, there is nearly no im-
provement by increasing N from 2 to 3. So N is 
set to be 2 in our system. Meanwhile, the effect 
of this approach is not obvious. We find that 
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there are nearly only one or two different points 
between the top-2 candidate dependency parsing 
results. This leads to that the DSRL results with 
these top-2 candidate results are almost the same. 
This is the probable reason that the approach is 
not much improved with the increase of N. In the 
future it would be necessary for us to consider 
the number of different points when finding the 
top-N dependency results. 

 
 N=1 N=2 N=3 

LP 78.58 78.93 79.01 
LR 75.58 75.52 75.33 
LF1 77.05 77.19 77.13 
UP 86.56 86.95 87.07 
UR 83.04 82.94 82.75 

dev 

UF1 84.76 84.90 84.85 
LP 79.41 79.76 79.96 
LR 76.67 76.59 76.49 
LF1 78.02 78.15 78.19 
UP 86.59 86.92 87.11 
UR 83.40 83.25 83.10 

wsj 

UF1 84.97 85.04 85.06 
LP 70.52 70.95 70.79 
LR 68 67.88 67.54 
LF1 69.24 69.38 69.13 
UP 81.87 82.39 82.28 
UR 78.65 78.47 78.14 

brown 

UF1 80.23 80.39 80.16 
LP 78.45 78.8 78.96 
LR 75.72 75.64 75.5 
LF1 77.06 77.18 77.19 
UP 86.08 86.43 86.59 
UR 82.89 82.73 82.56 

wsj + 
brown 

UF1 84.45 84.54 84.53 
Speed (sec/sent) 0.93 0.94 0.95 
Table 5: Overall macro scores (Wsem = 0.50) 

4 Conclusion 

We divide this shared task into four subtasks: 
syntactic dependency parsing, predicate identifi-
cation, predicate sense labeling and semantic 
dependency labeling. Then, we design a prob-
abilistic model to combine them. The purpose of 
our system is to find a global optimal result for 
every sentence. If a syntactic dependency parsing 
result has the highest probability but it is unrea-
sonable, it would be difficult to get a semantic 
parsing result with high probability again. Hence, 
a more reasonable result may be found with 
lower syntactic dependency parsing probability. 

In our system, we have not distinguished be-
tween nouns and verbal predicates. The experi-
mental results show that the results of verbal 
predicates are much better than those of nouns. 
In the future, it is necessary for us to deal with 
them separately. 
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