
CoNLL 2008: Proceedings of the 12th Conference on Computational Natural Language Learning, pages 198–202
Manchester, August 2008

Hybrid Learning of Dependency Structures from Heterogeneous
Linguistic Resources

Yi Zhang
Language Technology Lab

DFKI GmbH
yzhang@coli.uni-sb.de

Rui Wang
Computational Linguistics

Saarland University, Germany
rwang@coli.uni-sb.de

Hans Uszkoreit
Language Technology Lab

DFKI GmbH
uszkoreit@dfki.de

Abstract

In this paper we present our syntactic and
semantic dependency parsing system par-
ticipated in both closed and open compe-
titions of the CoNLL 2008 Shared Task.
By combining the outcome of two state-of-
the-art syntactic dependency parsers, we
achieved high accuracy in syntactic de-
pendencies (87.32%). With MRSes from
grammar-based HPSG parsers, we achieved
significant performance improvement on
semantic role labeling (from 71.31% to
71.89%), especially in the out-domain
evaluation (from 60.16% to 62.11%).

1 Introduction

The CoNLL 2008 shared task (Surdeanu et al.,
2008) provides a unique chance of comparing dif-
ferent syntactic and semantic parsing techniques
in one unified open competition. Our contribution
in this joint exercise focuses on the combination
of different algorithms and resources, aiming not
only for state-of-the-art performance in the com-
petition, but also for the dissemination of the learnt
lessons to related sub-fields in computational lin-
guistics.

The so-called hybrid approach we take has two
folds of meaning. For syntactic dependency pars-
ing, we build our system based on state-of-the art
algorithms. Past CoNLL share task results have
shown that transition-based and graph-based algo-
rithms started from radically different ideas, yet
achieved largely comparable results. One of the
question we would like investigate is whether the

c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

combination of the two approach on the output
level leads to even better results.

For the semantic role labeling (SRL) task, we
would like to build a system that allows us to test
the contribution of different linguistic resources.
To our special interest is to examine the deep
linguistic parsing systems based on hand-crafted
grammars. During the past decades, various large
scale linguistic grammars have been built, some
of which achieved both broad coverage and high
precision. In combination with other advances
in deep linguistic processing, e.g. efficient pars-
ing algorithms, statistical disambiguation models
and robust processing techniques, several systems
have reached mature stage to be deployed in ap-
plications. Unfortunately, due to the difficulties
in cross-framework evaluation, fair comparison of
these systems with state-of-the-art data-driven sta-
tistical parsers is still hard to achieve. More impor-
tantly, it is not even clear whether deep linguistic
analysis is necessary at all for tasks such as shallow
semantic parsing (also known as SRL). Drawing
a conclusion on this latter point with experiments
using latest deep parsing techniques is one of our
objective.

The remainder of the paper is structure as fol-
lows. Section 2 introduces the overall system ar-
chitecture. Section 3 explains the voting mecha-
nism used in the syntactic parser. Section 4 de-
scribes in detail the semantic role labeling com-
ponent. Section 5 presents evaluation results and
error analysis. Section 6 concludes the paper.

2 System Architecture

As shown in Figure 1, our system is a two-stage
pipeline. For the syntactic dependencies, we apply
two state-of-the-art dependency parsers and com-
bined their results based on a voting model. For

198

Parse Selector

(MaltParser)
Transition−based DepParser

(MST Parser)
Graph−based DepParser

Deep Linguistic Parser
(ERG/PET)Predicate Identification

Argument Identification

Argument Classification

Predicated Classification

Semantic
Role
Labeling

Syn.Dep.

MRS

Syntactic
Dependency
Parsing

Figure 1: System Architecture

the semantic roles, we extracted features from the
previous stage, combined with deep parsing results
(in MRS), and use statistical classification models
to make predictions. In particular, the second part
can be further divided into four stages: predicate
identification (PI), argument identification (AI), ar-
gument classification (AC), and predicate classi-
fication (PC). Maximum entropy-based machine
learning techniques are used in both components
which we will see in detail in the following sec-
tions.

3 Syntactic Dependency Parsing

For obtaining syntactic dependencies, we have
combined the results of two state-of-the-art depen-
dency parsers: the MST parser (McDonald et al.,
2005) and the MaltParser (Nivre et al., 2007).

The MST parser formalizes dependency parsing
as searching for maximum spanning trees (MSTs)
in directed graphs. A major advantage of their
framework is the ability to naturally and efficiently
model both projective and non-projective parses.
To learn these structures they used online large-
margin learning that empirically provides state-of-
the-art performance.

The MaltParser is a transition-based incremental
dependency parser, which is language-independent
and data-driven. It contains a deterministic algo-
rithm, which can be viewed as a variant of the ba-
sic shift-reduce algorithm. The learning method
they applied is support vector machine and experi-
mental evaluation confirms that the MaltParser can
achieve robust, efficient and accurate parsing for a

wide range of languages.
Since both their parsing algorithms and machine

learning methods are quite different, we decide to
take advantages of them. After a comparison be-
tween the results of the two parsers1, we find that,

1. The MST parser is better at the whole struc-
ture. In several sentences, the MaltParser was
wrong at the root node, but the MST parser is
correct.

2. The MaltParser is better at some dependency
labels (e.g. TMP, LOC, etc.).

These findings motivate us to do a voting based
on both outputs. The features considered in the
voting model are as follows:

• Dependency path: two categories of depen-
dency paths are considered as features: 1)
the POS-Dep-POS style and 2) the Dep-Dep
style. The former consists of part-of-speech
(POS) tags and dependency relations appear-
ing in turns; and the latter only contains de-
pendency relations. The maximum length of
the dependency path is three dependency re-
lations.

• Root attachments: the number of tokens at-
tached to the ROOT node by the parser in one
sentence

• Sentence length: the number of tokens in
each input sentence

• Projectivity: whether the parse is projective
or not

With these features, we apply a statistical model
to predict, for each sentence, we choose the pars-
ing result from which parser. The voted result will
be our syntactic dependency output and be passed
to the later stages.

4 Semantic Role Labeling

4.1 Overview

The semantic role labeling component of our sys-
tem is comprised of a pipeline model with four

1In this experiment, we use second order features and the
projective decoder for the MST parser trained with 10 iter-
ations, and Arc-eager algorithm with a quadric polynomial
kernel for the MaltParser.

199

sub-components that performs predicate identi-
fication (PI), argument identification (AI), argu-
ment classification (AC) and predicate classifica-
tion (PC) respectively. The output in previous
steps are taken as input information to the follow-
ing stages. All these components are essentially
based on a maximum entropy statistical classifier,
although with different task-specific optimizations
and feature configurations in each step. Depending
on the available information from the input data
structure, the same architecture is used for both
closed and open challenge runs, with different fea-
ture types. Note that our system does not make use
of or predict SU chains.

Predicate Identification The component makes
binary prediction on each input token whether it
forms a predicate in the input sentence. This pre-
dictor precedes other components because it is a
relatively easy task (comparing to the following
components). Also, making this prediction early
helps to cut down the search space in the follow-
ing steps. Based on the observation on the training
data, we limit the PI predictor to only predict for
tokens with certain POS types (POSes marked as
predicates for at least 50 times in the training set).
This helps to significantly improve the system effi-
ciency in both training and prediction time without
sacrificing prediction accuracy.

It should be noted that the prediction of nominal
predicates are generally much more difficult (based
on CoNLL 2008 shared task annotation). The PI
model achieved 96.32 F-score on WSJ with verbal
predicates, but only 84.74 on nominal ones.

Argument Identification After PI, the argu-
ments to the predicted predicates are identified
with the AI component. Similar to the approach
taken in Hacioglu (2004), we use a statistical clas-
sifier to select from a set of candidate nodes in a
dependency tree. However, instead of selecting
from a set of neighboring nodes from the predicate
word 2, we define the concept of argument path as
a chain of dependency relations from the predicate
to the argument in the dependency tree. For in-
stance, an argument path [|] indicates that
if the predicate is syntactically depending as on
a node which has a child, then the node

2Hacioglu (2004) defines a tree-structured family of a
predicate as a measure of locality. It is a set of dependency
relation nodes that consists of the predicate’s parent, chil-
dren, grandchildren, siblings, siblings’ children and siblings’
grandchildren with respect to its dependency tree

(sibling to the predicate) is an argument candidate.
While Hacioglu (2004)’s approach focus mainly
on local arguments (with respect to the syntactic
dependencies), our approach is more suitable of
capturing long distance arguments from the pred-
icate. Another minor difference is that we allow
predicate word to be its own argument (which is
frequently the case for nominal predicates) with an
empty argument path [|].

The set of effective argument paths are obtained
from the training set, sorted and filtered according
to their frequencies, and used in testing to obtain
the candidate arguments. By setting a frequency
threshold, we are able to select the most useful
argument paths. The lower the threshold is, the
higher coverage one might get in finding candi-
date arguments, accompanied with a higher aver-
age candidate number per predicate and potentially
a more difficult task for the statistical classifier.
By experimenting with different frequency thresh-
olds on the training set, we established a frequency
threshold of 40, which guarantees candidate argu-
ment coverage of 95%, and on average 5.76 candi-
dates per predicate. Given that for the training set
each predicate takes on average 2.13 arguments,
the binary classifier will have relatively balanced
prediction classes.

Argument Classification For each identified ar-
gument, an argument label will be assigned during
the argument classification step. Unlike the binary
classifiers in previous two steps, AC uses a multi-
class classifier that predicts from the inventory of
argument labels. For efficiency reasons, we only
concern the most frequent 25 argument labels.

Predicate Classification The final step in the
SRL component labels the predicted predicate with
a predicate name. Due to the lack of lexical
resources in the closed competition, this step is
scheduled for the last, in order to benefit from the
predictions made in the previous steps. Unlike the
previous steps, the statistical model used in this
step is a ranking model. We obtained a list of can-
didate frames and corresponding rolesets from the
provided PropBank and NomBank data. Each pre-
dicted predicate is mapped onto the potential role-
sets it may take. When the frame for the predicate
word is missing from the list, or there is only one
candidate roleset for it, the predicate name is as-
signed deterministically (word stem concatenated
with “.01” for frame missing predicates, the unam-

200

biguous roleset name when there is only one can-
didate). When there are more than one candidate
rolesets, a ranking model is trained to select the
most probable roleset for a given predicate given
the syntactic and semantic context.

4.2 Features

The feature types used in our SRL component are
summarized in Table 1, with the configurations of
our submitted “closed” and “open” runs marked.
Numerous different configurations with these fea-
ture types have been experimented on training and
development data. The results show that feature
types 1–14 are the best performing ones. Fea-
tures related to the siblings of the predicate only
introduce minor performance variation. We also
find the named entity labels does not lead to im-
mediate improvement of SRL performance. The
WordNet sense feature does achieve minor perfor-
mance increase on PI and PC, although the signif-
icant remains to be further examined. Based on
the pipeline model, we find it difficult to achieve
further improvement by incorporate more features
types from provided annotation. And the vari-
ance of SRL performance with different open fea-
tures is usually less than 1%. To clearly show the
contribution of extra external resources, these less
contributing features (siblings, named entity labels
and WordNet sense) are not used in our submitted
“open” runs.

MRSes as features to SRL As a novel point of
our SRL system, we incorporate parsing results
from a linguistic grammar-based parsing system
in our “open” competition run. In this experi-
ment, we used English Resource Grammar (ERG,
Flickinger (2000)), a precision HPSG grammar for
English. For parsing, we used PET (Callmeier,
2001), an efficient HPSG parser, together with ex-
tended partial parsing module (Zhang et al., 2007)
for maximum robustness. The grammar is hand-
crafted and the disambiguation models are trained
on Redwoods treebanks. They present general lin-
guistic knowledge, and are not tuned for the spe-
cific domains in this competition.

While the syntactic analysis of the HPSG gram-
mar is largely different from the dependency anno-
tation used in this shared task, the semantic rep-
resentations do share a similar view on predicate-
argument structures. ERG uses as its semantic
representation the Minimal Recursion Semantics
(MRS, Copestake et al. (2005)), a non-recursive flat

structure that is suitable for underspecifying scope
ambiguities. A predicate-argument backbone of
MRS can be extracted by identifying shared vari-
ables between elementary predications (s).

In order to align the HPSG parser’s I/O with
CoNLL’s annotation, extensive mapping scripts
are developed to preprocess the texts, and extract
backbone from output MRSes. The unknown word
handling techniques (Zhang and Kordoni, 2005)
are used to overcome lexical gaps. Only the best
analysis is used for MRS extraction. Without par-
tial parsing, the ERG achieves around 70% of raw
coverage on the training data. When partial pars-
ing is used, almost all the sentences received ei-
ther full or partial analysis (except for several cases
where computational resources are exhausted), and
the SRL performance improves by ∼0.5%.

5 Results

Among 20+ participant groups, our system ranked
seventh in the “closed” competition, and first in
the “open” challenge. The performance of the syn-
tactic and semantic components of our system are
summarized in Table 2.

In-Domain Out-Domain
Lab. Unlab. Lab. Unlab.

Syntactic Dep. 88.14% 90.78% 80.80% 86.12%

SR
L Closed 72.67% 82.68% 60.16% 76.98%

Open 73.08% 83.04% 62.11% 78.48%

Table 2: Labeled and unlabeled attachment scores
in syntactic dependency parsing and F1 score for
semantic role labeling.

The syntactic voting and semantic labeling parts
of our system are implemented in Java together
with a few Perl scripts. Using the open source
TADM for parameter estimation, our the voting
component take no more than 1 minute to train and
10 seconds to run (on WSJ testset). The SRL com-
ponent takes about 1 hour for training, and no more
than 30 seconds for labeling (WSJ testset).

Result analysis shows that the combination of
the two state-of-the-art parsers delivers good syn-
tactic dependencies (ranked 2nd). Error analysis
shows most of the errors are related to preposi-
tions. One category is the syntactic ambiguity of
pp-attachment, e.g. in “when trading was halted
in Philip Morris”, “in” can be attached to either
“trading” or “halted”. The other category is the
LOC and TMP tags in phrases like “at the end of
the day”, “at the point of departure”, etc.

201

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

P
le

m
m

a

P
PO

S

P
re

l

P-
pa

re
nt

PO
S

A
le

m
m

a

A
PO

S

A
re

l

P-
ch

ild
re

n
PO

Se
s

P-
ch

ild
re

n
re

l

P-
A

pa
th

A
-c

hi
ld

re
n

PO
Se

s

A
-c

hi
ld

re
n

re
ls

P
pr

ec
ed

es
A

?

A
’s

po
si

tio
n

P-
si

bl
in

gs
PO

Se
s

P-
si

bl
in

gs
re

ls

P
N

E
la

be
l

P
W

N
se

ns
e

P
M

R
S

-

na
m

e

P
M

R
S-

ar
gs

la
be

ls

P
M

R
S-

ar
gs

PO
Se

s

A
M

R
S

-

na
m

e

A
M

R
S-

pr
ed

s
la

be
ls

A
M

R
S-

pr
ed

s
PO

Se
s

PI ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ × × � � �
AI ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ × × � � � � � �
AC ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ × × � � � � � �
PC ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ × × � � �

Table 1: Feature types used in semantic role labeling sub-components. Feature types marked with × are
used in the “closed” run; feature types marked with � are used in the “open” run; feature types marked
with ⊗ are used in both runs. P denotes predicate; A denotes semantic argument.

The results on semantic role labeling show,
sometimes, even with syntactic errors of
LOC/TMP tags, the semantic role labeler can
still predict AM-LOC/AM-TMP correctly, which
indicates the robustness of our hybrid approach.
By comparing our “closed” and “open” runs, the
MRS features do introduce a clear performance
improvement. The performance gain is even
more significant in out-domain test, showing that
the MRS features from ERG are indeed much less
domain dependent. Another example worth men-
tioning is that, in the sentence “Scotty regarded the
ear and the grizzled hair around it with a moment
of interest”, it is extremely difficult to know that
“Scotty” is a semantic role of “interest”.

Also, we are the only group that submitted runs
for both tracks, and achieved better performance
in open competition. Although the best ways of
integrating deep linguistic processing techniques
remain as an open question, the achieved results
at least show that hand-crafted grammars like ERG
do provide heterogeneous linguistic insights that
can potentially find their usage in data-driven NLP
tasks as such.

6 Conclusion

In this paper, we described our hybrid system
on both syntactic and semantic dependencies la-
beling. We built a voting model to combine
the results of two state-of-the-art syntactic depen-
dency parsers, and a pipeline model to combine
deep parsing results for SRL. The experimental re-
sults showed the advantages of our hybrid strat-
egy, especially on the cross-domain data set. Al-
though the optimal ways of combining deep pro-
cessing techniques remains to be explored, the

performance gain achieved by incorporating hand-
crafted grammar outputs shows a promising direc-
tion of study for both fields.

References
Callmeier, Ulrich. 2001. Efficient parsing with large-scale

unification grammars. Master’s thesis, Universität des
Saarlandes, Saarbrücken, Germany.

Copestake, Ann, Dan Flickinger, Carl J. Pollard, and Ivan A.
Sag. 2005. Minimal recursion semantics: an introduction.
Research on Language and Computation, 3(4):281–332.

Flickinger, Dan. 2000. On building a more efficient gram-
mar by exploiting types. Natural Language Engineering,
6(1):15–28.

Hacioglu, Kadri. 2004. Semantic role labeling using de-
pendency trees. In Proceedings of COLING 2004, pages
1273–1276, Geneva, Switzerland, Aug 23–Aug 27.

McDonald, Ryan, Fernando Pereira, Kiril Ribarov, and Jan
Hajic. 2005. Non-Projective Dependency Parsing us-
ing Spanning Tree Algorithms. In Proceedings of HLT-
EMNLP 2005, pages 523–530, Vancouver, Canada.

Nivre, Joakim, Jens Nilsson, Johan Hall, Atanas Chanev,
Gülsen Eryigit, Sandra Kübler, Svetoslav Marinov, and Er-
win Marsi. 2007. Maltparser: A language-independent
system for data-driven dependency parsing. Natural Lan-
guage Engineering, 13(1):1–41.

Surdeanu, Mihai, Richard Johansson, Adam Meyers, Lluı́s
Màrquez, and Joakim Nivre. 2008. The CoNLL-2008
shared task on joint parsing of syntactic and semantic
dependencies. In Proceedings of the 12th Conference
on Computational Natural Language Learning (CoNLL-
2008), Manchester, UK.

Zhang, Yi and Valia Kordoni. 2005. A statistical approach
towards unknown word type prediction for deep grammars.
In Proceedings of the Australasian Language Technology
Workshop 2005, pages 24–31, Sydney, Australia.

Zhang, Yi, Valia Kordoni, and Erin Fitzgerald. 2007. Partial
parse selection for robust deep processing. In Proceed-
ings of ACL 2007 Workshop on Deep Linguistic Process-
ing, pages 128–135, Prague, Czech.

202

