
CoNLL 2008: Proceedings of the 12th Conference on Computational Natural Language Learning, pages 188–192
Manchester, August 2008

A Joint Model for Parsing Syntactic and Semantic Dependencies

Xavier Lluı́s and Lluı́s Màrquez
TALP Research Centre – Software Department (LSI)

Technical University of Catalonia (UPC)
{xlluis,lluism}@lsi.upc.edu

Abstract

This paper describes a system that jointly
parses syntactic and semantic dependen-
cies, presented at the CoNLL-2008 shared
task (Surdeanu et al., 2008). It combines
online Peceptron learning (Collins, 2002)
with a parsing model based on the Eisner
algorithm (Eisner, 1996), extended so as
to jointly assign syntactic and semantic la-
bels. Overall results are 78.11 global F1,
85.84 LAS, 70.35 semantic F1. Official re-
sults for the shared task (63.29 global F1;
71.95 LAS; 54.52 semantic F1) were sig-
nificantly lower due to bugs present at sub-
mission time.

1 Introduction

The main goal of this work was to construct a joint
learning architecture for syntactic-semantic pars-
ing and to test whether the syntactic and semantic
layers can benefit each other from the global train-
ing and inference.

All the components of our system were built
from scratch for this shared task. Due to strong
time limitations, our design decisions were biased
towards constructing a simple and feasible system.
Our proposal is a first order linear model that re-
lies on an online averaged Perceptron for learning
(Collins, 2002) and an extended Eisner algorithm
for the joint parsing inference.

Systems based on Eisner algorithm (Carreras et
al., 2006; Carreras, 2007) showed a competitive
performance in the syntactic parsing of the English
language in some past CoNLL shared tasks. Also,

c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

we believe that extending the Eisner algorithm to
jointly parse syntactic and semantic dependencies
it is a natural step to follow.

Note that syntactic and semantic tasks are re-
lated but not identical. Semantic dependencies can
take place between words loosely related by the
syntactic structure. Another difficulty is that state
of the art SRL systems (Surdeanu et al., 2007)
strongly rely on features extracted from the syn-
tactic tree. The joint model grows syntactic and
semantic structures at the same time, so features
extracted from the syntactic tree (e.g., a syntactic
path between a modifier and a distant predicate)
are not available or expensive to compute within
the Eisner algorithm. We overcome this problem
again with a very simple (though not elegant) solu-
tion, consisting of introducing a previous syntactic
parsing step.

2 System architecture

This section briefly describes the main components
of our system: 1) Preprocessing, 2) Syntactic pars-
ing, 3) Predicate identification, 4) Joint syntactic-
semantic parsing, and 5) Postprocessing.

In preprocessing, the training corpus is traversed
and feature extraction performed. Main features
are borrowed from pre-existing well-known sys-
tems (see next subsection). The initial syntactic
parsing is based on an Eisner parser trained with
Perceptron and it is merely intended to allow the
extraction of syntactic-based features for all the
following phases (which share exactly the same
feature set extracted from these parse trees). Pred-
icate identification recognizes predicates by apply-
ing SVM classifiers1 and a set of simple heuristic
rules. The joint syntactic-semantic parsing phase

1We used SVM-light (see www.joachims.org for details).

188

is the core module of this work. It simultaneously
derives the syntactic and semantic dependencies
by using a first order Eisner model, extended with
semantic labels and trained with averaged Percep-
tron. Finally, postprocessing simply selects the
most frequent sense for each predicate.

2.1 Preprocessing and feature extraction
All features in our system are calculated in the pre-
processing phase. We use the features described
in McDonald et al. (2005) and Carreras et al.
(2006) as input for the syntactic parsing phase, ex-
cept for the dynamic features from Carreras et al.
(2006). The joint syntactic-semantic parser uses
all the previous features and also specific features
for semantic parsing from Xue and Palmer (2004)
and Surdeanu et al. (2007). The features have been
straightforwardly adapted to the dependency struc-
ture used in this shared task, by substituting any
reference to a syntactic constituent by the head of
that constituent. About 5M features were extracted
from the training corpus. The number of features
was reduced to ∼222K using a frequency thresh-
old filter. A detailed description of the feature set
can be found at Lluı́s (Forthcoming 2008).

2.2 Syntactic parsing
Our system uses the Eisner algorithm combined
with an online averaged Pereceptron. We define
the basic model, which is also the starting point
for the joint model. Let L be the set of syntactic
labels, x = x1, . . . , xn a sentence with n words,
and Y(x) the set of all possible projective depen-
dency trees for x.

A dependency tree y ∈ Y(x) is a labeled tree
with arcs of the form 〈h,m, l〉 that is rooted on
an artificial node, 0, added for this purpose. The
head, h, and modifier, m, for a dependency index
words in the sentence and can take values in 0 ≤
h ≤ n and 1 ≤ m ≤ n. l ∈ L is the label of the
dependency.

The dependency parser (dp) is interested in find-
ing the best scored tree for a given sentence x:

dp(x,w) = arg max
y∈Y(x)

score tree(y, x,w)

Using an arc-based first order factorization, the
function score tree(y, x,w) is defined as the sum-
mation of scores of the dependencies in y:∑

〈h,m,l〉∈y

score(〈h,m, l〉 , x,w) ,

where w is the weight vector of the parser, com-
puted using an online perceptron. The weight vec-
tor w can be seen as a concatenation of |L| weight
vectors of d components, one for each of the la-
bels: w = (w(1), . . . ,w(l), . . . ,w(|L|)). A func-
tion φ is assumed to extract features from a de-
pendency 〈h,m, l〉 and from the whole sentence x.
This function represents the extracted features as a
d-dimensional vector.

With all these elements, the score of a depen-
dency 〈h,m, l〉 is computed as a linear function:

score(〈h,m, l〉 , x,w) = φ (〈h,m, l〉 , x) ·w(l)

2.3 Predicate identification
We identified as verb predicates all verbs exclud-
ing the auxiliaries and the verb to be. These simple
rules based on the POS and lemma of the tokens
are enough to correctly identify almost all verb
predicates. With regard to noun predicates, we di-
rectly identified as predicates the lemmas which
appeared always as predicates with a minimum fre-
quency in the training corpus. The remaining noun
predicates were identified by a degree-2 polyno-
mial SVM. This classifier was trained with the
same features used in subsequent phases, but ex-
cluding those requiring identified predicates.

2.4 Joint syntactic and semantic Parsing
The previously described basic parsing model will
be extended to jointly assign semantic dependency
labels. Let S be the set of semantic labels. Note
that at this point, a sentence x has a set of q words
already identified as predicates. We will refer to
them as p1, . . . , pq, where pi ∈ {1, . . . , n}. We
consider that each dependency has a set of se-
mantic tags lsem p1 , . . . , lsem pq one for each sen-
tence predicate pi. Also, we consider an extra
no-argument label in the set of semantic labels S.
Thus, an extended dependency ds is defined as:

ds =
〈
h,m, lsyn, lsem p1 , . . . , lsem pq

〉
,

where lsyn denotes the syntactic label for the de-
pendency.

Again, the best parse tree is that maximizing the
score of a first order factorization:

dp(x,w, y′) = arg max
y∈Y(x)

score tree(y, x,w, y′)

score tree(y, x,w, y′) =

=
∑

〈h,m,l〉∈y

score(〈h,m, l〉 , x,w, y′) ,

189

where the dependency label is now extended to
l = 〈lsyn, lsem p1 , . . . , lsem pq〉 and y′ denotes the
precomputed syntax tree. The score of a syntactic-
semantic dependency is:

score
(〈h,m, l〉 , x,w, y′) =

syntactic score (h,m, lsyn, x,w) +

sem score
(
h,m, lsem p1 , . . . , lsem pq , x,w, y

′)
The syntactic score is computed as described in the
basic model. Finally, the semantic scoring func-
tion computes the semantic score as the sum of the
semantic scores for each predicate semantic label:

sem score
(
h,m, lsem p1 , . . . , lsem pq , x,w, y

′) =

∑
lsem pi

φsem (〈h,m, lsem pi〉 , x, y′) ·w(lsem pi)

q

Note that each sentence x has a different number
of predicates q. To avoid an excessive weight of
the semantic component in the global score and a
bias towards sentences with many predicates, the
score is normalized by the number of predicates in
the sentence.

Figure 1 shows an example of a sen-
tence fragment with syntactic and seman-
tic dependencies. The three predicates
of the sentence are already identified:
{p1 = completed, p2 = announced, p3 =
acquisition}. All dependencies are of the
form d = 〈h,m, lsyn, lsem p1 , lsem p2 , lsem p3〉.
Note that semantic labels express semantic
relations between a modifier and a predicate
that can be anywhere in the sentence. The
semantic labeling is not restricted to predicates
that are the head of the modifier. In this ex-
ample, the correct output for the dependency
previously-announced is h = announced,
m = previously, lsyn = AMOD, lsem p1 = null,
lsem p2 = AM-TMP, lsem p3 = null.

The above described factorization allows the
parser to simultaneously assign syntactic and
semantic labels and also to maximize a joint
syntactic-semantic score of the tree. Note that the
semantic scoring function φsem extracts features
from the modifier, the head and the predicate of the
parsed dependencies. The proposed model allows
to capture interactions between syntax and seman-
tics not only because the syntactic and semantic
scores are combined but also because the semantic
scoring function relies on features extracted from

the head-modifier-predicate relations. Thus, the
semantic scoring function depends on the syntactic
dependency being built, and, in reverse, the seman-
tic score can modify the dependency chosen.

Regarding implementation issues, note that we
compute |L|+ |S| · q scores to assign q + 1 labels
to a given dependency. The scores are computed
independently for each label. Otherwise, interac-
tions among these labels, would raise the num-
ber of possible combined labels to an exponential
number, |L| · |S|q, making the exhaustive evalu-
ation infeasible in practice. Also related to effi-
ciency, we apply syntactic and semantic filters in
order to reduce the number of score evaluations.
In particular, the set of assignable labels is filtered
by the POS of the head and modifier (discarding
all labels not previously seen in the training corpus
between words with the same POS). Another fil-
ter removes the core arguments not present in the
frame file of each predicate. This strategy allowed
us to significantly improve efficiency without any
loss in accuracy.

2.5 Postprocess

A simple postprocess assigns the most frequent
sense to each identified predicate. Frequencies
were computed from the training corpus. Ex-
periments performed combining the best and sec-
ond output of the joint parser and enforcing do-
main constraints via ILP (Punyakanok et al., 2004)
showed no significant improvements.

3 Experiments and Results

All the experiments reported here were done using
the full training corpus, and results are presented
on the development set. The number of features
used by the syntactic parser is ∼177K. The joint
parser uses∼45K additional features for recogniz-
ing semantic dependencies.

Figure 2 shows the learning curves from epoch
1 to 17 for several subsystems and variants. More
specifically, it includes LAS performance on syn-
tactic parsing, both for the individual parser and
for the syntactic annotation coming from the joint
syntactic-semantic parser. For the latter, also the
F1 score on semantic dependencies and global
F1 results are presented. We can observe that
the syntactic LAS scores for the syntactic and
joint parsers are very similar, showing that there
is no loss in syntactic performance when using
the joint syntactic-semantic strategy. Overall re-

190

SBJ, A0, _, A0

OBJ, _, _, Su

NMOD, _, _, _ AMOD, _, AM-TMP, _ NMOD, _, _, _

OBJ, A1, A1, _

Figure 1: Syntactic and semantic dependencies.

sults are quite stable from epoch 4 (syntax slightly
decreases but semantics slightly increases). The
overall results on the test set (78.11 global F1,
85.84 LAS, 70.35 semantic F1) were computed by
using 5 epochs of training, the optimal on the de-
velopment set.

 68

 70

 72

 74

 76

 78

 80

 82

 84

 86

 2 4 6 8 10 12 14 16

LAS single syn
LAS syn joint
F1 sem joint

F1 global joint

Figure 2: Learning curves for the syntactic-only
and joint parsers.

The global F1 result on the WSJ test corpus is
79.16, but these results drop 9.32 F1 points on
the out-of-domain Brown corpus. Also, a signif-
icant performance drop is observed when mov-
ing from verb argument classification (74.58 F1,
WSJ test) to noun argument classification (56.65
F1, WSJ test). Note that the same features were
used for training noun and verb argument classi-
fiers. These results point out that there is room for
improvement on noun argument classification. Fi-
nally, a comparison to a simple equivalent pipeline
architecture, consisting of applying the syntactic
base parser followed by an independent classifica-

tion of semantic dependencies (using exactly the
same features) revealed that the joint model out-
performed the pipeline by 4.9 F1 points in the an-
notation of semantic dependencies.

Regarding efficiency, the proposed architecture
is really feasible. About 0.7GB of memory is re-
quired for the syntactic parser and 1.5GB for the
joint parser. Most of these memory needs are due
to the filters used. The filters allowed for a reduc-
tion of the computational cost by a factor of 5 with
no loss in accuracy. These filters have almost no
effect on the theoretical upper bound discarding
the correct labels for only 0.2% of the syntactic de-
pendencies and 0.44% of the semantic arguments
in the development corpus. The semantic exten-
sion of the Eisner algorithm requires only a new
table with backpointers for each predicate. Using a
single processor of an amd64 Athlon x2 5000+, the
syntactic parser can be trained at 0.2 s/sentence,
and the joint parser at 0.3 s/sentence. Efficiency at
test times is only slightly better.

4 Discussion

We have presented a novel joint approach to per-
form syntactic and semantic parsing by extend-
ing Eisner’s algorithm. Our model allows to cap-
ture syntactic-semantic interactions as the com-
puted syntactic-semantic score is globally opti-
mized. The computational cost of the new setting
is admissible in practice, leading to fairly efficient
parsers, both in time and memory requirements.

Results obtained with the presented joint ap-
proach are promising, though not outstanding in
the context of the CoNLL-2008 shared task. We
believe that there is room for substantial improve-
ment since many of the current system components

191

are fairly simple. For instance, higher order ex-
tensions to the Eisner algorithm and well-known
tricks for dealing with non-projective structures
can be incorporated in our model. Also, we plan
to incorporate other subtasks in the training of the
joint model, such as predicate identification and ar-
gument recognition.

One of the potential drawbacks of our current
approach is the need for a syntactic parsing pre-
ceding the joint model. This previous parse is
simply included to permit the extraction of syntax
based features. These features (including the syn-
tactic path) could be dynamically computed when
performing the joint parsing in the cases in which
the predicate coincides with the head of the modi-
fier being processed. These cases account for only
63.6% of the training corpus arguments. If a pred-
icate is located in a sibling sentence span, the dy-
namic programming algorithm has not yet chosen
which of the possible spans will be included in
the final parse tree. Also, the predicate can be
located at a lower level within the current span.
These cases would require to recompute the score
of the current span because syntactic path features
are not available. The resulting cost would be pro-
hibitive and approximate search needed. Our pre-
vious parsing phase is just an efficient and simple
solution to the feature extraction problem in the
joint model.

As previously seen, the joint model showed a
similar syntactic performance and clearly better
semantic performance than an equivalent pipeline
system, showing that some degree of syntactic-
semantic overlap is exploitable. Regarding the for-
mer, there is only a moderate degree (63.6%) of
direct overlap between the syntactic head-modifier
and semantic predicate-modifier relations. If the
semantic score is highly dependent on a correct
head the resulting increased score could benefit the
choosing of a correct dependency. Otherwise, joint
scores can introduce a significant amount of noise.
All in all, further research is required in this direc-
tion.

Acknowledgements

This research has been partially funded by the
Spanish Ministry of Education and Science,
projects Trangram (TIN2004-07925-C03-02) and
OpenMT (TIN2006-15307-C03-02).

References
Carreras, Xavier, Mihai Surdeanu, and Lluı́s Màrquez.

2006. Projective dependency parsing with percep-
tron. In Proceedings of the 10th Conference on Com-
putational Natural Language Learning (CoNLL-
2006).

Carreras, Xavier. 2007. Experiments with a higher-
order projective dependency parser. In Proceedings
of the 11th Conference on Computational Natural
Language Learning (CoNLL-2007).

Collins, Michael. 2002. Discriminative training meth-
ods for hidden markov models: Theory and exper-
iments with perceptron algorithms. In Proceedings
of the ACL-02 conference on Empirical methods in
natural language processing.

Eisner, Jason M. 1996. Three new probabilistic mod-
els for dependency parsing: An exploration. In Pro-
ceedings of the 16th International Conference on
Computational Linguistics (COLING-96).

Lluı́s, Xavier. Forthcoming 2008. Joint learning of
syntactic and semantic dependencies. Master’s the-
sis, Technical University of Catalonia (UPC).

McDonald, Ryan, Koby Crammer, and Fernando
Pereira. 2005. Online large-margin training of de-
pendency parsers. In Proceedings of the 43rd An-
nual Meeting of the Association for Computational
Linguistics (ACL-2005).

Punyakanok, Vasin, Dan Roth, Wen-tau Yih, and Dav
Zimak. 2004. Semantic role labeling via integer lin-
ear programming inference. In Proceedings of Col-
ing 2004.

Surdeanu, Mihai, Lluı́s Màrquez, Xavier Carreras, and
Pere R. Comas. 2007. Combination strategies for
semantic role labeling. Journal of Artificial Intelli-
gence Research.

Surdeanu, Mihai, Richard Johansson, Adam Meyers,
Lluı́s Màrquez, and Joakim Nivre. 2008. The
CoNLL-2008 shared task on joint parsing of syntac-
tic and semantic dependencies. In Proceedings of
the 12th Conference on Computational Natural Lan-
guage Learning (CoNLL-2008).

Xue, Nianwen and Martha Palmer. 2004. Calibrating
features for semantic role labeling. In Proceedings
of the Empirical Methods in Natural Language Pro-
cessing (EMNLP-2004).

192

