
CoNLL 2008: Proceedings of the 12th Conference on Computational Natural Language Learning, pages 183–187
Manchester, August 2008

Dependency-based Syntactic–Semantic Analysis with PropBank and
NomBank

Richard Johansson and Pierre Nugues

Lund University, Sweden

{richard, pierre}@cs.lth.se

Abstract

This paper presents our contribution in the

closed track of the 2008 CoNLL Shared

Task (Surdeanu et al., 2008). To tackle the

problem of joint syntactic–semantic anal-

ysis, the system relies on a syntactic and

a semantic subcomponent. The syntactic

model is a bottom-up projective parser us-

ing pseudo-projective transformations, and

the semantic model uses global inference

mechanisms on top of a pipeline of clas-

sifiers. The complete syntactic–semantic

output is selected from a candidate pool

generated by the subsystems.

The system achieved the top score in the

closed challenge: a labeled syntactic accu-

racy of 89.32%, a labeled semantic F1 of

81.65, and a labeled macro F1 of 85.49.

1 Introduction: Syntactic–Semantic

Analysis

Intuitively, semantic interpretation should help

syntactic disambiguation, and joint syntactic–

semantic analysis has a long tradition in linguis-

tic theory. This motivates a statistical modeling of

the problem of finding a syntactic tree ŷsyn and a

semantic graph ŷsem for a sentence x as maximiz-
ing a function F that scores the joint syntactic–
semantic structure:

〈ŷsyn, ŷsem〉 = arg max
ysyn,ysem

F (x, ysyn, ysem)

The dependencies in the feature representation

used to compute F determine the tractability of the
search procedure needed to perform the maximiza-

tion. To be able to use complex syntactic features

c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

such as paths when predicting semantic structures,

exact search is clearly intractable. This is true even

with simpler feature representations – the problem

is a special case of multi-headed dependency anal-

ysis, which is NP-hard even if the number of heads

is bounded (Chickering et al., 1994).

This means that we must resort to a simplifica-

tion such as an incremental method or a reranking

approach. We chose the latter option and thus cre-

ated syntactic and semantic submodels. The joint

syntactic–semantic prediction is selected from a

small list of candidates generated by the respective

subsystems.

2 Syntactic Submodel

We model the process of syntactic parsing of

a sentence x as finding the parse tree ŷsyn =
arg maxy F (x, y) that maximizes a scoring func-
tion F . The learning problem consists of fitting
this function so that the cost of the predictions is

as low as possible according to a cost function ρ.
In this work, we consider linear scoring functions

of the following form:

F (x, y) = w · Ψ(x, y)

where Ψ(x, y) is a numeric feature representation
of the pair (x, y) andw a vector of feature weights.
We defined the syntactic cost ρ as the sum of link
costs, where the link cost was 0 for a correct de-

pendency link with a correct label, 0.5 for a correct

link with an incorrect label, and 1 for an incorrect

link.

A widely used framework for fitting the weight

vector is the max-margin model (Taskar et al.,

2003), which is a generalization of the well-

known support vector machines to general cost-

based prediction problems. Since the large num-

ber of training examples and features in our case

make an exact solution of the max-margin opti-

mization problem impractical, we used the on-

line passive–aggressive algorithm (Crammer et al.,

183



2006), which approximates the optimization pro-

cess in two ways:

• The weight vector w is updated incremen-
tally, one example at a time.

• For each example, only the most violated con-
straint is considered.

The algorithm is a margin-based variant of the per-

ceptron (preliminary experiments show that it out-

performs the ordinary perceptron on this task). Al-

gorithm 1 shows pseudocode for the algorithm.

Algorithm 1 The Online PA Algorithm

input Training set T = {(xt, yt)}Tt=1

Number of iterations N
Regularization parameter C

Initialize w to zeros
repeat N times
for (xt, yt) in T
let ỹt = arg maxy F (xt, y) + ρ(yt, y)

let τt = min
“
C, F (xt,ỹt)−F (xt,yt)+ρ(yt,ỹt)

‖Ψ(x,yt)−Ψ(x,ỹt)‖2
”

w ← w + τt(Ψ(x, yt)−Ψ(x, ỹt))
returnwaverage

We used a C value of 0.01, and the number of
iterations was 6.

2.1 Features and Search

The feature function Ψ is a second-order edge-
factored representation (McDonald and Pereira,

2006; Carreras, 2007). The second-order repre-

sentation allows us to express features not only of

head–dependent links, but also of siblings and chil-

dren of the dependent. This feature set forces us

to adopt the expensive search procedure by Car-

reras (2007), which extends Eisner’s span-based

dynamic programming algorithm (1996) to allow

second-order feature dependencies. Since the cost

function ρ is based on the cost of single links, this
procedure can also be used to find the maximizer

of F (xi, yij)+ρ(yi, yij), which is needed at train-
ing time. The search was constrained to disallow

multiple root links.

2.2 Handling Nonprojective Links

Although only 0.4% of the links in the training set

are nonprojective, 7.6% of the sentences contain at

least one nonprojective link. Many of these links

represent long-range dependencies – such as wh-

movement – that are valuable for semantic pro-

cessing. Nonprojectivity cannot be handled by

span-based dynamic programming algorithms. For

parsers that consider features of single links only,

the Chu-Liu/Edmonds algorithm can be used in-

stead. However, this algorithm cannot be gen-

eralized to the second-order setting – McDonald

and Pereira (2006) proved that this problem is NP-

hard, and described an approximate greedy search

algorithm.

To simplify implementation, we instead opted

for the pseudo-projective approach (Nivre and

Nilsson, 2005), in which nonprojective links are

lifted upwards in the tree to achieve projectivity,

and special trace labels are used to enable recovery

of the nonprojective links at parse time. The use

of trace labels in the pseudo-projective transfor-

mation leads to a proliferation of edge label types:

from 69 to 234 in the training set, many of which

occur only once. Since the running time of our

parser depends on the number of labels, we used

only the 20 most frequent trace labels.

3 Semantic Submodel

Our semantic model consists of three parts:

• A SRL classifier pipeline that generates a list
of candidate predicate–argument structures.

• A constraint system that filters the candidate
list to enforce linguistic restrictions on the

global configuration of arguments.

• A global classifier that rescores the predicate–
argument structures in the filtered candidate

list.

Rather than training the models on gold-

standard syntactic input, we created an automati-

cally parsed training set by 5-fold cross-validation.

Training on automatic syntax makes the semantic

classifiers more resilient to parsing errors, in par-

ticular adjunct labeling errors.

3.1 SRL Pipeline

The SRL pipeline consists of classifiers for predi-

cate identification, predicate disambiguation, sup-

port identification (for noun predicates), argument

identification, and argument classification. We

trained one set of classifiers for verb predicates

and another for noun predicates. For the pred-

icate disambiguation classifiers, we trained one

subclassifier for each lemma. All classifiers in the

pipeline were L2-regularized linear logistic regres-

sion classifiers, implemented using the efficient

LIBLINEAR package (Lin et al., 2008). For multi-

class problems, we used the one-vs-all binarization

184



method, which makes it easy to prevent outputs not

allowed by the PropBank or NomBank frame.

Since our classifiers were logistic, their output

values could be meaningfully interpreted as prob-

abilities. This allowed us to combine the scores

from subclassifiers into a score for the complete

predicate–argument structure. To generate the can-

didate lists used by the global SRL models, we ap-

plied beam search based on these scores using a

beam width of 4.

The features used by the classifiers are listed in

Tables 1 and 2. In the tables, the features used

by the classifiers for noun and verb predicates are

indicated by N and V, respectively. We selected the

feature sets by greedy forward subset selection.

Feature PredId PredDis

PREDWORD N,V N,V

PREDLEMMA N,V N,V

PREDPARENTWORD/POS N,V N,V

CHILDDEPSET N,V N,V

CHILDWORDSET N,V N,V

CHILDWORDDEPSET N,V N,V

CHILDPOSSET N,V N,V

CHILDPOSDEPSET N,V N,V

DEPSUBCAT N,V N,V

PREDRELTOPARENT N,V N,V

Table 1: Classifier features in predicate identifica-

tion and disambiguation.

Feature Supp ArgId ArgCl

PREDPARENTWORD/POS N N,V

CHILDDEPSET N N,V N,V

PREDLEMMASENSE N N,V N,V

VOICE V V

POSITION N N,V N,V

ARGWORD/POS N N,V N,V

LEFTWORD/POS N N,V

RIGHTWORD/POS N N,V N,V

LEFTSIBLINGWORD/POS N,V

RIGHTSIBLINGWORD/POS N N

PREDPOS N N,V V

RELPATH N N,V N,V

POSPATH N

RELPATHTOSUPPORT N N

VERBCHAINHASSUBJ V V

CONTROLLERHASOBJ V N

PREDRELTOPARENT N N,V N,V

FUNCTION N,V

Table 2: Classifier features in argument identifica-

tion and classification and support detection.

Features Used in Predicate Identification and

Disambiguation

PREDWORD, PREDLEMMA. The lexical form

and lemma of the predicate.

PREDPARENTWORD and PREDPARENTPOS.

Form and part-of-speech tag of the parent

node of the predicate.

CHILDDEPSET, CHILDWORDSET, CHILD-

WORDDEPSET, CHILDPOSSET, CHILD-

POSDEPSET. These features represent the

set of dependents of the predicate using

combinations of dependency labels, words,

and parts of speech.

DEPSUBCAT. Subcategorization frame: the con-

catenation of the dependency labels of the

predicate dependents.

PREDRELTOPARENT. Dependency relation be-

tween the predicate and its parent.

Features Used in Argument Identification and

Classification

PREDLEMMASENSE. The lemma and sense

number of the predicate, e.g. give.01.

VOICE. For verbs, this feature is Active or Pas-

sive. For nouns, it is not defined.

POSITION. Position of the argument with respect

to the predicate: Before, After, or On.

ARGWORD and ARGPOS. Lexical form and

part-of-speech tag of the argument node.

LEFTWORD, LEFTPOS, RIGHTWORD, RIGHT-

POS. Form/part-of-speech tag of the left-

most/rightmost dependent of the argument.

LEFTSIBLINGWORD, LEFTSIBLINGPOS,

RIGHTSIBLINGWORD, RIGHTSIBLING-

POS. Form/part-of-speech tag of the

left/right sibling of the argument.

PREDPOS. Part-of-speech tag of the predicate.

RELPATH. A representation of the complex

grammatical relation between the predicate

and the argument. It consists of the sequence

of dependency relation labels and link direc-

tions in the path between predicate and argu-

ment, e.g. IM↑OPRD↑OBJ↓.
POSPATH. An alternative view of the grammat-

ical relation, which consists of the POS tags

passed when moving from predicate to argu-

ment, e.g. VB↑TO↑VBP↓PRP.
RELPATHTOSUPPORT. The RELPATH from the

argument to a support chain.

VERBCHAINHASSUBJ. Binary feature that is set

to true if the predicate verb chain has a sub-

ject. The purpose of this feature is to resolve

verb coordination ambiguity as in Figure 1.

CONTROLLERHASOBJ. Binary feature that is

true if the link between the predicate verb

chain and its parent is OPRD, and the parent

has an object. This feature is meant to resolve

control ambiguity as in Figure 2.

185



FUNCTION. The grammatical function of the ar-

gument node. For direct dependents of the

predicate, this is identical to the RELPATH.

I

SBJ

eat drinkyouand

COORD SBJ

CONJ
ROOT

SBJ COORD

ROOT

drinkandeatI

CONJ

Figure 1: Coordination ambiguity: The subject I is

in an ambiguous position with respect to drink.

I to

IMSBJ

want sleephim

OBJ

OPRD
ROOT

IM

sleepI

SBJ

want

ROOT

to

OPRD

Figure 2: Subject/object control ambiguity: I is in

an ambiguous position with respect to sleep.

3.2 Linguistically Motivated Global

Constraints

The following three global constraints were used

to filter the candidates generated by the pipeline.

CORE ARGUMENT CONSISTENCY. Core argu-

ment labels must not appear more than once.

DISCONTINUITY CONSISTENCY. If there is a la-

bel C-X, it must be preceded by a label X.

REFERENCE CONSISTENCY. If there is a label

R-X and the label is inside a relative clause, it

must be preceded by a label X.

3.3 Global SRL Model

Toutanova et al. (2005) have showed that a

global model that scores the complete predicate–

argument structure can lead to substantial perfor-

mance gains. We therefore created a global SRL

classifier using the following global features in ad-

dition to the features from the pipeline:

CORE ARGUMENT LABEL SEQUENCE. The

complete sequence of core argument labels.

The sequence also includes the predicate and

voice, for instance A0+break.01/Active+A1.

MISSING CORE ARGUMENT LABELS. The set

of core argument labels declared in the Prop-

Bank/NomBank frame that are not present in

the predicate–argument structure.

Similarly to the syntactic submodel, we trained

the global SRL model using the online passive–

aggressive algorithm. The cost function ρ was

defined as the number of incorrect links in the

predicate–argument structure. The number of it-

erations was 20 and the regularization parameter

C was 0.01. Interestingly, we noted that the global
SRL model outperformed the pipeline even when

no global features were added. This shows that the

global learning model can correct label bias prob-

lems introduced by the pipeline architecture.

4 Syntactic–Semantic Integration

Our baseline joint feature representation contained

only three features: the log probability of the syn-

tactic tree and the log probability of the semantic

structure according to the pipeline and the global

model, respectively. This model was trained on the

complete training set using cross-validation. The

probabilities were obtained using the multinomial

logistic function (“softmax”).

We carried out an initial experiment with a more

complex joint feature representation, but failed to

improve over the baseline. Time prevented us from

exploring this direction conclusively.

5 Results

The submitted results on the development and test

corpora are presented in the upper part of Table 3.

After the submission deadline, we corrected a bug

in the predicate identification method. This re-

sulted in improved results shown in the lower part.

Corpus Syn acc Sem F1 Macro F1

Development 88.47 80.80 84.66
Test WSJ 90.13 81.75 85.95
Test Brown 82.81 69.06 75.95
Test WSJ + Brown 89.32 80.37 84.86

Development 88.47 81.86 85.17
Test WSJ 90.13 83.75 86.61
Test Brown 82.84 69.85 76.34
Test WSJ + Brown 89.32 81.65 85.49

Table 3: Results.

5.1 Syntactic Results

Table 4 shows the effect of adding second-order

features to the parser in terms of accuracy as well

as training and parsing time on a Mac Pro, 3.2

GHz. The training times were measured on the

complete training set and the parsing time and ac-

curacies on the development set. Similarly to Car-

reras (2007), we see that these features have a very

large impact on parsing accuracy, but also that the

parser pays dearly in terms of efficiency as the

search complexity increases fromO(n3) toO(n4).

186



Since the low efficiency of the second-order parser

restricts its use to batch applications, we see an in-

teresting research direction to find suitable com-

promises between the two approaches, for instance

by sacrificing the exact search procedure.

System Training Parse Labeled Unlabeled

1st order 65 min 28 sec 85.78 89.51
2nd order 60 hours 34 min 88.33 91.43

Table 4: Impact of second-order features.

Table 5 shows the dependency types most af-

fected by the addition of second-order features to

the parser when ordered by the increase in F1. As

can be seen, they are all verb adjunct categories,

which demonstrates the effect of grandchild fea-

tures on PP attachment and labeling.

Label ∆R ∆P ∆F1

TMP 14.7 12.9 13.9
DTV 0 19.9 10.5
LOC 7.8 12.3 9.9
PRP 12.4 6.7 9.6
DIR 5.9 7.2 6.5

Table 5: Labels affected by second-order features.

5.2 Semantic Results

To assess the effect of the components in the se-

mantic submodel, we tested their performance on

the top-scoring parses from the syntactic model.

Table 6 shows the results. The baseline system

consists of the SRL pipeline only (P). Adding lin-

guistic constraints (C) results in a more precision-

oriented system with slightly lower recall, but sig-

nificantly higher F1. Even higher performance is

obtained when adding the global SRL model (G).

System P R F1

P 80.74 77.98 79.33
P+C 82.42 77.66 79.97
P+C+G 83.64 78.14 80.40

Table 6: SRL results on the top-scoring parse trees.

5.3 Syntactic–Semantic Integration

The final experiment concerned the integration of

syntactic and semantic analysis. In this setting,

the system chooses the output that maximizes the

joint syntactic–semantic score, based on the top N
syntactic trees. Table 7 shows the results on the

development set. We see that syntactic–semantic

integration improves both syntactic accuracy and

semantic F1. This holds for the constraint-based

SRL system as well as for the full system.

Sem model N Syn acc Sem F1 Macro F1

P+C 1 88.33 79.97 84.17
P+C 16 88.42 80.42 84.44

P+C+G 1 88.33 80.40 84.39
P+C+G 16 88.47 80.80 84.66

Table 7: Syntactic–semantic integration.

6 Conclusion

We have described a system1 for syntactic and se-

mantic dependency analysis based on PropBank

and NomBank, and detailed the implementation

of its subsystems. Crucial to our success was the

high performance of the syntactic parser, which

achieved a high accuracy. In addition, we recon-

firmed the benefits of global inference in semantic

analysis: both constraint-based and learning-based

methods resulted in improvements over a baseline.

Finally, we showed that integration of syntactic

and semantic analysis is beneficial for both sub-

tasks. We hope that this shared task will spur fur-

ther research that leads to new feature representa-

tions and search procedures to handle the problem

of joint syntactic and semantic analysis.

References

Carreras, Xavier. 2007. Experiments with a higher-order pro-
jective dependency parser. In Proceedings of CoNLL.

Chickering, David M., Dan Geiger, and David Heckerman.
1994. Learning Bayesian networks: The combination of
knowledge and statistical data. Technical Report MSR-
TR-94-09, Microsoft Research.

Crammer, Koby, Ofer Dekel, Joseph Keshet, Shai Shalev-
Schwartz, and Yoram Singer. 2006. Online passive-
aggressive algorithms. JMLR, 2006(7):551–585.

Eisner, Jason M. 1996. Three new probabilistic models for
dependency parsing: An exploration. In Proc. of ICCL.

Lin, Chih-Jen, Ruby C. Weng, and S. Sathiya Keerthi. 2008.
Trust region Newton method for large-scale logistic regres-
sion. JMLR, 2008(9):627–650.

McDonald, Ryan and Fernando Pereira. 2006. Online learn-
ing of approximate dependency parsing algorithms. In
Proceedings of EACL-2006.

Nivre, Joakim and Jens Nilsson. 2005. Pseudo-projective
dependency parsing. In Proceedings of ACL-2005.

Surdeanu, Mihai, Richard Johansson, Adam Meyers, Lluís
Màrquez, and Joakim Nivre. 2008. The CoNLL–2008
shared task on joint parsing of syntactic and semantic de-
pendencies. In Proceedings of CoNLL–2008.

Taskar, Ben, Carlos Guestrin, and Daphne Koller. 2003.
Max-margin Markov networks. In Proceedings of NIPS.

Toutanova, Kristina, Aria Haghighi, and Christopher D. Man-
ning. 2005. Joint learning improves semantic role label-
ing. In Proceedings of ACL-2005.

1Our system is freely available for download at
http://nlp.cs.lth.se/lth_srl.

187


