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Abstract

Children can determine the meaning of a
new word from hearing it used in a familiar
context—an ability often referred to asfast
mapping. In this paper, we study fast map-
ping in the context of a general probabilistic
model of word learning. We use our model
to simulate fast mapping experiments on chil-
dren, such as referent selection and retention.
The word learning model can perform these
tasks through an inductive interpretation of
the acquired probabilities. Our results suggest
that fast mapping occurs as a natural conse-
quence of learning more words, and provides
explanations for the (occasionally contradic-
tory) child experimental data.

1 Fast Mapping

An average six-year-old child knows over14, 000
words, most of which s/he has learned from hearing
other people use them in ambiguous contexts (Carey,
1978). Children are thus assumed to be equipped with
powerful mechanisms for performing such a complex
task so efficiently. One interesting ability children as
young as two years of age show is that of correctly and
immediately mapping a novel word to a novel object
in the presence of other familiar objects. The term
“fast mapping” was first used by Carey and Bartlett
(1978) to refer to this phenomenon.

Carey and Bartlett’s goal was to examine how much
children learn about a word when presented in an am-
biguous context, as opposed to concentrated teaching.
They used an unfamiliar name (chromium) to refer to
an unfamiliar color (olive green), and then asked
a group of four-year-old children to select an object
from among a set, upon hearing a sentence explicitly
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asking for the object of the new color, as in:bring
the chromium tray, not the blue one. Children were
generally good at performing this “referent selection”
task. In a production task performed six weeks later,
when children had to use the name of the new color,
they showed signs of having learned something about
the new color name, but were not successful at pro-
ducing it. On the basis of these findings, Carey and
Bartlett suggest that fast mapping and word learning
are two distinct, yet related, processes.

Extending Carey and Bartlett’s work, much re-
search has concentrated on providing an explanation
for fast mapping, and on examining its role in word
learning. These studies also show that children are
generally good at referent selection, given a novel tar-
get. However, there is not consistent evidence regard-
ing whether children actually learn the novel word
from one or a few such exposures (retention). For
example, whereas the children in the experiments of
Golinkoff et al. (1992) and Halberda (2006) showed
signs of nearly-perfect retention of the fast-mapped
words, those in the studies reported by Horst and
Samuelson (2008) did not (all participating children
were close in age range).

There are also many speculations about the possible
causes of fast mapping. Some researchers consider
it as a sign of a specialized (innate) mechanism for
word learning. Markman and Wachtel (1988), for ex-
ample, argue that children fast map because they ex-
pect each object to have only one name (mutual exclu-
sivity). Golinkoff et al. (1992) attribute fast mapping
to a (hard-coded) bias towards mapping novel names
to nameless object categories. Some even suggest a
change in children’s learning mechanisms, at around
the time they start to show evidence of fast mapping
(which coincides with a sudden burst in their vocab-
ulary), e.g., from associative to referential (Gopnik
and Meltzoff, 1987; Reznick and Goldfield, 1992). In
contrast, others see fast mapping as a phenomenon
that arises from more general processes of learning
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and/or communication, which also underlie the im-
pressive rate of lexical acquisition in children (e.g.,
Clark, 1990; Diesendruck and Markson, 2001; Regier,
2005; Horst et al., 2006; Halberda, 2006).

In our previous work (Fazly et al., 2008), we pre-
sented a word learning model which proposes a prob-
abilistic interpretation of cross-situational learning,
and bootstraps its own partially-learned knowledge of
the word meanings to accelerate word learning over
time. We have shown that the model can learn reason-
able word–meaning associations from child-directed
data, and that it accounts for observed learning pat-
terns in children, such as vocabulary spurt, without
requiring a developmental change in the underlying
learning mechanism. Here, we use this computational
model to investigate fast mapping and its relation to
word learning. Specifically, we take a close look at
the onset of fast mapping in our model by simulat-
ing some of the psychological experiments mentioned
above. We examine the behaviour of the model in var-
ious referent selection and retention tasks, and pro-
vide explanations for the (occasionally contradictory)
experimental results reported in the literature. We also
study the effect of exposure to more input on the per-
formance of the model in fast mapping.

Our results suggest that fast mapping can be ex-
plained as an induction process over the acquired as-
sociations between words and meanings. Our model
learns these associations in the form of probabilities
within a unified framework; however, we argue that
different interpretations of such probabilities may be
involved in choosing the referent of a familiar as op-
posed to a novel target word (as noted by Halberda,
2006). Moreover, the overall behaviour of our model
confirms that the probabilistic bootstrapping approach
to word learning naturally leads to the onset of fast
mapping in the course of lexical development, with-
out hard-coding any specialized learning mechanism
into the model to account for this phenomenon.

2 Overview of the Computational Model

This section summarizes the model presented in Fa-
zly et al. (2008). Our word learning algorithm is an
adaptation of the IBM translation model proposed by
Brown et al. (1993). However, our model is incre-
mental, and does not require a batch process over the
entire data.

2.1 Utterance and Meaning Representations

The input to our word learning model consists of a set
of utterance–scene pairs that link an observed scene
(what the child perceives) to the utterance that de-
scribes it (what the child hears). We represent each
utterance as a sequence of words, and the correspond-

ing scene as a set of meaning symbols. To simulate
referential uncertainty (i.e., the case where the child
perceives aspects of the scene that are unrelated to the
perceived utterance), we include additional symbols
in the representation of the scene, e.g.:

Utterance: Joe rolled the ball
Scene: {joe, roll, the, ball, mommy, hand, talk}
In Section 3.1, we explain how the utterances and
the corresponding semantic symbols are selected, and
how we add referential uncertainty.

Given a corpus of such utterance–scene pairs, our
model learns the meaning of each wordw as a prob-
ability distribution, p(.|w), over the semantic sym-
bols appearing in the corpus. In this representation,
p(m|w) is the probability of a symbolm being the
meaning of a wordw. In the absence of any prior
knowledge, all symbols are equally likely to be the
meaning of a word. Hence, prior to receiving any us-
ages of a given word, the model assumes a uniform
distribution over semantic symbols as its meaning.

2.2 Meaning Probabilities

Our model combines probabilistic interpretations of
cross-situational learning (Quine, 1960) and of a
variation of the principle of contrast (Clark, 1990),
through an interaction between two types of prob-
abilistic knowledge acquired and refined over time.
Given an utterance–scene pair received at timet, i.e.,
(U(t), S(t)), the model first calculates an alignment
probability a for eachw ∈ U(t) and eachm ∈ S(t),
using the meaning probabilitiesp(.|w) of all the
words in the utterance prior to this time. The model
then revises the meaning of the words inU(t) by in-
corporating the alignment probabilities for the current
input pair. This process is repeated for all the input
pairs, one at a time.

Step 1: Calculating the alignment probabilities.
We estimate the alignment probabilities of words
and meaning symbols based on a localized version
of the principle of contrast: that a meaning sym-
bol in a scene is likely to be highly associated with
only one of the wordsin the corresponding utter-
ance.1 For a symbolm ∈ S(t) and a wordw ∈ U(t),
the higher the probability ofm being the meaning
of w (according top(m|w)), the more likely it is
that m is aligned withw in the current input. In
other words,a(w |m, U(t), S(t)) is proportional to
p(t−1)(m|w). In addition, if there is strong evidence
that m is the meaning of another word inU(t)—
i.e., if p(t−1)(m|w′) is high for somew′ ∈ U(t) other

1Note that this differs from what is widely known as the prin-
ciple of contrast (Clark, 1990), in that the latter assumes contrast
across the entire vocabulary rather than within an utterance.
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thanw—the likelihood of aligningm to w should de-
crease. Combining these two requirements:

a(w |m, U(t), S(t)) =
p(t−1)(m|w)∑

w ′∈U(t)

p(t−1)(m|w ′)
(1)

Due to referential uncertainty, some of the meaning
symbols in the scene might not have a counterpart
in the utterance. To accommodate for such cases, a
dummy word is added to each utterance before the
alignment probabilities are calculated, in order to let
a meaning symbol not be (strongly) aligned with any
of the words in the current utterance.

Step 2: Updating the word meanings. We need to
update the probabilitiesp(.|w) for all wordsw ∈ U(t),
based on the evidence from the current input pair re-
flected in the alignment probabilities. We thus add
the current alignment probabilities forw and the sym-
bolsm ∈ S(t) to the accumulated evidence from prior
co-occurrences ofw and m. We summarize this
cross-situational evidence in the form of an associa-
tion score, which is updated incrementally:

assoc(t)(w, m) = assoc(t−1)(w, m) +
a(w|m, U(t), S(t)) (2)

whereassoc(t−1)(w, m) is zero ifw andm have not
co-occurred before. The association score of a word
and a symbol is basically a weighted sum of their co-
occurrence counts.

The model then uses these association scores to up-
date the meaning of the words in the current input:

p(t)(m|w) =
assoc(t)(m, w) + λ∑

mj∈M
assoc(t)(mj , w) + β × λ

(3)

whereM is the set of all symbols encountered prior to
or at timet, β is the expected number of symbol types,
andλ is a small smoothing factor. The denominator is
a normalization factor to get valid probabilities. This
formulation results in a uniform probability of1/β
over allm ∈M for a novel wordw, and a probability
smaller thanλ for a meaning symbolm that has not
been previously seen with a familiar wordw.

Our model updates the meaning of a word ev-
ery time it is heard in an utterance. The strength
of learning of a word at timet is reflected in
p(t)(m = mw|w), wheremw is the “correct” mean-
ing of w: for a learned wordw, the probability dis-
tribution p(.|w) is highly skewed towards the correct
meaningmw, and therefore hearingw will trigger the
retrieval of the meaningmw.2

2An input-generation lexicon contains the correct meaning for
each word, as described in Section 3.1. Note that the model does
not have access to this lexicon for learning; it is used only for
input generation and evaluation.

From this point on, we simply usep(m|w) (omit-
ting the superscript(t)) to refer to the meaning prob-
ability of m for w at the present time of learning.

2.3 Referent Probabilities

The meaning probabilityp(m|w) is used to retrieve
the most probable meaning forw among all the possi-
ble meaning symbolsm. However, in the referent se-
lection tasks performed by children, the subject is of-
ten forced to select the referent of a target word from
among a limited set of objects, even when the mean-
ing of the target word has not been accurately learned
yet. For our model to perform such tasks, it has to de-
cide how likely it is for a target wordw to refer to a
particular objectm, based on its previous knowledge
about the mapping betweenm andw (i.e., p(m|w)),
as well as the mapping betweenm and other words in
the lexicon.3

The likelihood of using a particular namew to refer
to a given objectm is calculated as:

rf (w|m) = p(w|m)

=
p(m|w) · p(w)

p(m)

=
p(m|w) · p(w)∑

w′∈V p(m|w′) · p(w′)
(4)

whereV is the set of all words that the model has seen
so far, andp(w) is the relative frequency ofw:

p(w) =
freq(w)∑

w′∈V freq(w′)
(5)

The referent of a target wordw among the present ob-
jects, therefore, will be the objectm with the highest
referent probabilityrf (w|m).

3 Experimental Setup

3.1 The Input Corpora

We extract utterances from the Manchester corpus
(Theakston et al., 2001) in the CHILDES database
(MacWhinney, 2000). This corpus contains tran-
scripts of conversations with children between the
ages of1; 8 and 3; 0 (years;months). We use the
mother’s speech from transcripts of6 children, re-
move punctuation and lemmatize the words, and con-
catenate the corresponding sessions as input data.

There is no semantic representation of the corre-
sponding scenes available from CHILDES. There-
fore, we automatically construct a scene representa-
tion for each utterance, as a set containing the seman-
tic referents of the words in that utterance. We get
these from an input-generation lexicon that contains
a symbol associated with each word as its semantic

3All through the paper, we usem as both the meaning and the
referent of a wordw.
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referent. We use every other sentence from the orig-
inal corpus, preserving their chronological order. To
simulate referential uncertainty in the input, we then
pair each sentence with its own scene representation
as well as that of the following sentence in the origi-
nal corpus. (Note that the latter sentence is not used
as an utterance in our input.) The extra semantic sym-
bols that are added to each utterance thus correspond
to meaningful semantic representations, as opposed
to randomly selected symbols. In the resulting corpus
of 92, 239 input pairs, each utterance is, on average,
paired with78% extra meaning symbols, reflecting a
high degree of referential uncertianty.

3.2 The Model Parameters

We set the parameters of our learning algorithm using
a development data set which is similar to our training
and test data, but is selected from a non-overlapping
portion of the Manchester corpus. The expected num-
ber of symbols,β in Eq. (3), is set to8500 based on
the total number of distinct symbols extracted for the
development data. Therefore, the default probability
of a symbol for a novel word will be1/8500. A famil-
iar word, on the other hand, has been seen with some
symbols before. Therefore, the probability of a previ-
ously unseen symbol for it (which, based on Eq. (3),
has an upper bound ofλ) must be less than the default
probability mentioned above. Accordingly, we setλ
to 10−5.

3.3 The Training Procedure

In the next section, we report results from the com-
putational simulation of our model for a number of
experiments. All of the simulations use the same pa-
rameter settings (as described in the previous section),
but different input: in each simulation, a random por-
tion of 1000 utterance–scene pairs is selected from
the input corpus, and incrementally processed by the
model. The size of the training corpus is chosen arbi-
trarily to reflect a sample point in learning, and further
experiments have shown that increasing this number
does not change the pattern observed in the results. In
order to avoid behaviour that is specific to a particu-
lar sequence of input items, the reported results in the
next section are averaged over10 simulations.

4 Experimental Results and Analysis

4.1 Referent Selection

In a typical word learning scenario, the child faces
a scene where a number of familiar and unfamiliar
objects are present. The child then hears a sentence,
which describes (some part of) the scene, and is com-
posed of familiar and novel words (e.g., hearingJoe is

eating a cheem, wherecheem is a previously unseen
fruit). In such a setting, our model aligns the objects
in the scene with the words in the utterance based on
its acquired knowledge of word meanings, and then
updates the meanings of the words accordingly. The
model can align a familiar word with its referent with
high confidence, since the previously learned mean-
ing probability of the familiar object given the famil-
iar word, orp(m|w), is much higher than the meaning
probability of the same object given any other word in
the sentence. In a similar fashion, the model can eas-
ily align a novel word in the sentence with a novel
object in the scene, because the meaning probability
of the novel object given the novel word (1/β, ac-
cording to Eq. (3)) is higher than the meaning proba-
bility of that object for any previously heard word in
the sentence (the latter probability is smaller thanλ in
Eq. (3), as explained in Section 3.2).

Earlier fast mapping experiments on children as-
sumed that it is such a contrast between the familiar
and novel words in the same sentence that helps chil-
dren select the correct target object in a referent selec-
tion task. For example, in Carey and Bartlett’s (1978)
experiment, to introduce a novel word–meaning as-
sociation (e.g.,chromium–olive), the authors use
both the familiar and the novel words in one sentence
(bring me the chromium tray, not the blue one.). How-
ever, further experiments show that children can suc-
cessfully select the correct referent even if such a con-
trast is not present in the sentence. Many researchers
have performed experiments where young subjects
are forced to choose between a novel and a familiar
object upon hearing a request, such asgive me the
ball (familiar target), orgive me the dax (novel tar-
get). In all of the reported experimental results, chil-
dren can readily pick the correct referent for a famil-
iar or a novel target word in such a setting (Golinkoff
et al., 1992; Halberda and Goldman, 2008; Halberda,
2006; Horst and Samuelson, 2008).

However, Halberda’s eye-tracking experiments on
both adults and pre-schoolers suggest that the pro-
cesses involved for referent selection in the familiar
target situation may be different from those in the
novel target situation. In the latter situation, subjects
appear to systematically reject the familiar object as
the referent of the novel name before mapping the
novel object to the novel name. In the familiar target
situation, however, there is no need to reject the novel
distractor object, because the subject already knows
the referent of the target.

The difference between these two conditions can be
explained in terms of the meaning and referent proba-
bilities of our model explained in Section 2. In a typi-
cal referent selection experiment, the child is asked to
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“get the ball” while facing aball and a novel object
(dax). We assume that the child knows the meaning
of verbs and determiners such asget andthe, therefore
we simplify the familiar target condition in the form
of the following input item:

ball (FAMILIAR TARGET)

{ball, dax}
A familiar word such asball has a meaning prob-
ability highly skewed towards its correct meaning.
That is, upon hearingball, the model can confidently
retrieve its meaningball, which is the one with
the highest probabilityp(m|ball) among all possible
meaningsm. In such a case, ifball is present in the
scene, the model can easily pick it as the referent of
the familiar target name, without processing the other
objects in the scene.

Now consider the condition where a novel target
name is used in the presence of a familiar and a pre-
viously unseen object:

dax (NOVEL TARGET)

{ball, dax}
Since this is the first time the model has heard the
word dax, both meaningsball anddax are equally
likely becausep(.|dax ) is uniform. Thus the mean-
ing probabilities cannot be solely used for selecting
the referent ofdax, and the model has to perform
some kind of induction on the potential referents in
the scene based on what it has learned about each
of them. The model can infer the referent ofdax
by comparing the referent probabilitiesrf (dax |ball)
andrf (dax |dax) from Eq. (4) after processing the in-
put item. Sinceball has strong associations with an-
other wordball, its referent probability for the novel
namedax is much lower than the referent probability
of dax, which does not have strong associations with
any of the words in the learned lexicon.

We simulate the process of referent selection in our
model as follows. We train the model as described
in Section 3.3. We then present the model with one
more input item, which represents either the FAMIL -
IAR TARGET or the NOVEL TARGET condition. For
each condition, we compare the meaning probability
p(object|target) for both familiar and novel objects
in the scene (see Table 1, top panel). In the FA-
MILIAR TARGET condition, the model demonstrates
a strong preference towards choosing the familiar ob-
ject as the referent, whereas in the NOVEL TARGET

condition, the model shows no preference towards any
of the objects based on the meaning probabilities of
the target word. Therefore, for the NOVEL TARGET

condition, we also compare the referent probabilities
rf (target |object) for both objects after processing

Table 1: Referent selection in FAMILIAR and NOVEL

TARGET conditions.

UPON HEARING THE TARGET WORD

Condition p(ball|target ) p(dax|target )
FAMILIAR TARGET 0.843 ±0.056 ≪ 0.0001
NOVEL TARGET 0.0001±0.00 0.0001±0.00

AFTER PERFORMING INDUCTION

Condition rf (target |ball) rf (target |dax)
NOVEL TARGET 0.127±0.127 0.993 ±0.002

the input item as a training pair, simulating the in-
duction process that humans go through to select the
referent in such cases. This time, the model shows a
strong preference towards the novel object as the ref-
erent of the target word (see Table 1, bottom panel).
Our results confirm that in both conditions, the model
consistently selects the correct referent for the target
word across all the simulations.

4.2 Retention

As discussed in the previous section, results from
the human experiments as well as our computational
simulations show that the referent of a novel target
word can be selected based on the previous knowl-
edge about the present objects and their names. How-
ever, the success of a subject in a referent selection
task does not necessarily mean that the child/model
haslearned the meaning of the novel word based on
that one trial. In order to better understand what and
how much children learn about a novel word from a
single ambiguous exposure, some studies have per-
formed retention trials after the referent selection ex-
periments. Often, various referent selection trials are
performed in one session, where in each trial a novel
object–name pair is introduced among familiar ob-
jects. Some of the recently introduced objects are
then put together in one last trial, and the subjects
are asked to choose the correct referent for one of the
(recently heard) novel target words. The majority of
the reported experiments show that children can suc-
cessfully perform the retention task (Golinkoff et al.,
1992; Halberda and Goldman, 2008; Halberda, 2006).

We simulate a similar retention experiment by
training the model as usual. We further present the
model with two experimental training items similar to
the one used in the NOVEL TARGET condition in the
previous section, with different familiar and novel ob-
jects and words in each input:

dax (REFERENTSELECTIONTRIAL 1)

{ball, dax}

cheem (REFERENTSELECTION TRIAL 2)

{pen, cheem}
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Table 2: Retention of a novel target word from a set
of novel objects.

2-OBJECTRETENTION TRIAL

rf (dax |dax) rf (dax |cheem)
0.996 ±0.001 0.501±0.068

3-OBJECTRETENTION TRIAL

rf (dax |dax) rf (dax |cheem) rf (dax |lukk)
0.995 ±0.001 0.407±0.062 0.990 ±0.001

The training session is followed by a retention trial,
where the two novel objects used in the previous ex-
perimental inputs are paired with one of the novel tar-
get words:

dax (2-OBJECTRETENTION TRIAL )

{cheem, dax}
After processing the retention input, we com-
pare the referent probabilitiesrf (dax |cheem) and
rf (dax |dax) to see if the model can choose the cor-
rect novel object in response to the target worddax.
The top panel in Table 2 summarizes the results of this
experiment. The model consistently shows a strong
preference towards the correct novel object as the ref-
erent of the novel target word across all simulations.

Unlike studies on referent selection, experimental
results for retention have not been consistent across
various studies. Horst and Samuelson (2008) per-
form experiments with two-year-old children involv-
ing both referent selection and retention, and report
that their subjects perform very poorly at the retention
task. One factor that discriminates the experimental
setup of Horst and Samuelson from others (e.g., Hal-
berda, 2006) is that, in their retention trials, they put
together two recently observed novel objects with a
third novel object that has not been seen in any of the
experimental sessions before. The authors do not at-
tribute their contradictory results to the presence of
this third object, but this factor can in fact affect the
performance considerably. We simulate this condition
by using the same input items for referent selection
trials as in the previous simulation, but we replace the
retention trial with the following:

dax (3-OBJECTRETENTION TRIAL )

{cheem, dax, lukk}
The third object,lukk, has not been seen by the
model before. Results under the new condition are re-
ported in the bottom panel of Table 2. As can be seen,
the model shows a strong tendency towards the cor-
rect novel referentdax for the novel targetdax, com-
pared to the other recently seen novel objectcheem.
However, the probability of the unseen objectlukk
is also very high for the target worddax. That is be-
cause the model cannot use any previously acquired
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Figure 1: Number of usages needed to learn a word,
as a function of the word’s age of exposure.

knowledge aboutlukk (i.e., associating it with an-
other word) to rule it out as a referent fordax. These
results show that introducing a new object for the first
time in a retention trial considerably increases the dif-
ficulty of the task. This can explain the contradictory
results reported in the literature: when the referent
probabilities are not informative, other factors may
influence the outcome of the experiment, such as the
amount of training received for a novel word–object,
or a possible delay between training and test sessions.

4.3 The Effect of Exposure to More Input

The fast mapping ability observed in children implies
that once children have learned a repository of words,
they can easily link novel words to novel objects in a
familiar context based only on a few exposures. We
examine this effect in our model: we train the model
on20, 000 input pairs, looking at the relation between
the time of first exposure to a word, and the number
of usages that the model needs for learning that word.
Figure 1 plots this for words that have been learned at
some point during the training.4 We can see that the
model shows clear fast mapping behaviour—that is,
words received later in time, on average, require fewer
usages to be learned. These results show that our
model exhibits fast mapping patterns once it has been
exposed to enough word usages, and that no change
in the underlying learning mechanism is needed.5

The effect of exposure to more input on fast map-
ping can be described in terms of context familiarity:
the more input the model has processed so far, the
more likely it is that the context of the usage of a novel
word (the other words in the sentence and the objects
in the scene) is familiar to the model. This pattern
has been studied through a number of experiments on

4We consider a wordw as learned if the meaning probability
p(mw|w) is higher than a certain thresholdθ. For this experi-
ment, we setθ = 0.70.

5In Fazly et al. (2008), we reported a variation of this exper-
iment, where we used a smaller training set, and also a different
semantic representation for word meanings.
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children. For example, Gershkoff-Stowe and Hahn
(2007) taught16- to 18-month-olds the names of24
unfamiliar objects over12 training sessions, where
unfamiliar objects were presented with varying fre-
quency. Data were compared to a control group of
children who were exposed to the same experimen-
tal words at the first and last sessions only. Their re-
sults show that for children in the experimental group,
extended practice with a novel set of words led to
the rapid acquisition of a second set of low-practice
words. Children in the control group did not show the
same lexical advantage.

Inspired by Gershkoff-Stowe and Hahn (2007), we
perform an experiment to study the effect of con-
text familiarity on fast mapping in our model. We
choose two sets of words, CONTEXT (containing20
words) and TARGET (containing10 words), to con-
duct a referent selection task as follows. First, we
train our model on a sequence of utterance–scene
pairs constructed from the set CONTEXT ∪ TARGET,
as follows: the unified set is randomly shuffled and
divided into two subsets, words in each subset are
put together to form an utterance, and the meanings
of the words in that utterance are put together to
form the corresponding scene. We repeat this process
twice, so that each word appears in exactly two input
pairs. We train our model on the constructed pairs.6

Next, we perform a referent selection task on each
word in the TARGET set: we pair each target word
w with the meaning of10 randomly selected words
from CONTEXT ∪ TARGET, including the meaning of
the target word itself (mw), and have the model pro-
cess this test pair. We compare the referent probabil-
ity of w and eachm ∈ CONTEXT ∪ TARGET to see
whether the model can correctly map the target word
to its referent. We call this setting the LOW TRAIN-
ING condition.

In the above setting, the context words in the ref-
erent selection trials are as new to the model as the
target words. We thus repeat this experiment with
a familiar context: we first train the model over in-
put pairs that are randomly constructed from words
in CONTEXT only, using the same training proce-
dure as described above. This context-familiarization
process is followed by a similar training session on
CONTEXT ∪ TARGET, and a test session on target
words, similar to the previous condition. Again, we
count the number of correct mappings between a tar-
get word and its referent based on the referent proba-
bilities. We call this setting the HIGH TRAINING con-
dition. Table 3 shows the results for both conditions.
It can be seen that the accuracy of finding the referent

6Unlike in previous experiments, here we do not use child-
directed data as we want to control the familiarity of the context.

Table 3: Average number of correct mappings and the
referent probabilities of target words for two condi-
tions, LOW and HIGH TRAINING.

Condition Correct mappings P (target |mtarget)
LOW TRAINING %54 0.216±0.04
HIGH TRAINING %90 0.494±0.79

for a target word, as well as the referent probability of
a target word for its correct meaning, increase as a re-
sult of more training on the context. In other words, a
more familiar context helps the model perform better
in a fast mapping task.

5 Related Computational Models

The rule-based model of Siskind (1996), and the con-
nectionist model proposed by Regier (2005), both
show that learning gets easier as the model is exposed
to more input—that is, words heard later are learned
faster. These findings confirm that fast mapping may
simply be a result of learning more words, and that
no explicit change in the underlying learning mech-
anism is needed. However, these studies do not ex-
amine various aspects of fast mapping, such as ref-
erent selection and retention. Horst et al. (2006) ex-
plicitly test fast mapping in their connectionist model
of word learning by performing referent selection and
retention tasks. The behaviour of their model matches
the child experimental data reported in a study by the
same authors (Horst and Samuelson, 2008), but not
that of the contradictory findings of other similar ex-
periments. Moreover, the model’s learning capacity
is limited, and the fast mapping experiments are per-
formed on a very small vocabulary. Frank et al. (2007)
examine fast mapping in their Bayesian model by test-
ing its performance in a novel target referent selection
task. However, the experiment is performed on an ar-
tifical corpus. Moreover, since the learning algorithm
is non-incremental, the success of the model in refer-
ent selection is determined implicitly: each possible
word–meaning mapping from the test input is added
to the current lexicon, and the consistency of the new
lexicon is checked against the training corpus.

6 Discussion and Concluding Remarks

We have used a general computational model of word
learning (first introduced in Fazly et al., 2008) to study
fast mapping. Our model learns a probabilistic asso-
ciation between a word and its meaning, from expo-
sure to word usages in naturalistic contexts. We have
shown that these probabilities can be used to simu-
late various fast mapping experiments performed on
children, such as referent selection and retention. Our
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experimental results suggest that fast mapping can be
explained as an induction process over the acquired
associations between words and objects. In that sense,
fast mapping is a general cognitive ability, and not
a hard-coded, specialized mechanism of word learn-
ing.7 In addition, our results confirm that the onset
of fast mapping is a natural consequence of learning
more words, which in turn accelerates the learning of
new words. This bootstrapping approach results in a
rapid pace of vocabulary acquisition in children, with-
out requiring a developmental change in the underly-
ing learning mechanism.

Results of the referent selection experiments show
that our model can successfully find the referent of
a novel target word in a familiar context. Moreover,
our retention experiments show that the model can
map a recently heard novel word to its recently seen
novel referent (among other novel objects) after only
one exposure. However, the strength of the associa-
tion of a novel pair after one exposure shows a no-
table difference compared to the association between
a “typical” familiar word and its meaning.8 This is
consistent with what is commonly assumed in the lit-
erature: even though children learn something about
a word from only one exposure, they often need more
exposure to reliably learn its meaning (Carey, 1978).
Various kinds of experiments have been performed to
examine how strongly children learn novel words in-
troduced to them in experimental settings. For exam-
ple, children are persuaded to produce a fast-mapped
word, or to use the novel word to refer to objects
that are from the same category as its original refer-
ent (e.g., Golinkoff et al., 1992; Horst and Samuelson,
2008). We intend to look at these new tasks in our fu-
ture research.
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