
The Exploration of Deterministic and Efficient Dependency Parsing

Yu-Chieh Wu Yue-Shi Lee Jie-Chi Yang
Dept. of Computer Science and

Information Engineering
Dept. of Computer Science and In-

formation Engineering
Graduate Institute of Network

Learning Technology
National Central University Ming Chuan University National Central University

Taoyuan, Taiwan Taoyuan, Taiwan Taoyuan, Taiwan
bcbb@db.csie.ncu.edu.tw lees@mcu.edu.tw yang@cl.ncu.edu.tw

Abstract

In this paper, we propose a three-step
multilingual dependency parser, which
generalizes an efficient parsing algorithm
at first phase, a root parser and post-
processor at the second and third stages.
The main focus of our work is to provide
an efficient parser that is practical to use
with combining only lexical and part-of-
speech features toward language inde-
pendent parsing. The experimental results
show that our method outperforms Malt-
parser in 13 languages. We expect that
such an efficient model is applicable for
most languages.

1 Introduction

The target of dependency parsing is to automati-
cally recognize the head-modifier relationships
between words in natural language sentences. Usu-
ally, a dependency parser can construct a similar
grammar tree with the dependency graph. In this
year, CoNLL-X shared task (Buchholz et al., 2006)
focuses on multilingual dependency parsing with-
out taking the language-specific knowledge into
account. The ultimate goal of this task is to design
an ideal multilingual portable dependency parsing
system.
 To accomplish the shared task, we present a very
light-weight and efficient parsing model to the 13
distinct treebanks (Hajič et al., 2004; Simov et al.,
2005; Simov and Osenova, 2003; Chen et al., 2003;

Böhmová et al., 2003; Kromann 2003; van der
Beek et al., 2002; Brants et al., 2002; Kawata and
Bartels, 2000; Afonso et al., 2002; Džeroski et al.,
2006; Civit and Martí 2002; Nivre et al., 2005;
Oflazer et al., 2003; Atalay et al., 2003) with a
three-step process, Nivre’s algorithm (Nivre, 2003),
root parser, and post-processing. Our method is
quite different from the conventional three-pass
processing, which usually exhaustively processes
the whole dataset three times, while our method
favors examining the “un-parsed” tokens, which
incrementally shrink. At the beginning, we slightly
modify the original parsing algorithm (proposed by
(Nivre, 2003)) to construct the initial dependency
graph. A root parser is then used to recognize root
words, which were not parsed during the previous
step. At the third phase, the post-processor (which
is another learner) recognizes the still un-parsed
words. However, in this paper, we aim to build a
multilingual portable parsing model without em-
ploying deep language-specific knowledge, such as
lemmatization, morphologic analyzer etc. Instead,
we only make use of surface lexical and part-of-
speech (POS) information. Combining these shal-
low features, our parser achieves a satisfactory re-
sult for most languages, especially Japanese.
 In the remainder of this paper, Section 2 describes
the proposed parsing model, and Section 3 lists the
experimental settings and results. Section 4 pre-
sents the discussion and analysis of our parser with
three selected languages. In Section 5, we draw the
future direction and conclusion.

2 System Description

Over the past decades, many state-of-the-art pars-
ing algorithm were proposed, such as head-word
lexicalized PCFG (Collins, 1998), Maximum En-
tropy (Charniak, 2000), Maximum/Minimum
spanning tree (MST) (McDonald et al., 2005), Bot-
tom-up deterministic parsing (Yamada and Ma-
tsumoto, 2003), and Constant-time deterministic
parsing (Nivre, 2003). Among them, the Nivre’s
algorithm (Nivre, 2003) was shown to be most ef-
ficient method, which only costs at most 2n transi-
tion actions to parse a sentence (O(n3) for the
bottom-up or MST approaches). Nivre’s method is
mainly consists of four transition actions,
Left/Right/Reduce/Shift. We further extend these
four actions by dividing the “reduce” into “reduce”
and “sleep (reduce-but-shift)” two actions. Because
the too early reduce action makes the following
words difficult to find the parents. Thus, during
training, if a word which is the child of the top of
the stack, it is then assigned to the “sleep” category
and pushed into stack, otherwise, the conventional
reduce action is applied. Besides, we do not ar-
range these transition actions with priority order,
instead, the decision is made by the classifier. The
overall parsing model can be found in Figure 1.
Table 1 lists the detail system spec of our model.

Figure 1: System architecture

Table 1: Overall parsing system summary
Ⅰ. Parsing Algorithm:

1. Nivre's Algorithm (Nivre, 2003)
2. Root Parser
3. Exhaustive-based Post-processing

Ⅱ. Parser Characteris-
tics:

1. Top-down + Bottom-up
2. Deterministic + Exhaustive
3. Labeling integrated
4. Non-Projective

Ⅲ. Learner: SVMLight (Joachims, 1998)
 (1) One-versus-One
 (2) Linear Kernel
Ⅳ. Feature Set:

1. Lexical (Unigram/Bigram)
2. Fine-grained POS and Coarse grained

BiCPOS

.Ⅴ Post-Processing: Another learner is used to re-recognize
heads in stacks

.Ⅵ Additional/External
Resources: Non-Used

2.1 Constant-time Parser and Analysis

The Nivre’s algorithm makes use of a stack and an
input list to model the word dependency relations
via identifying the transition action of the top token
on the stack (Top) and the next token of the input
list (Next). Typically a learning algorithm can be
used to recognize these actions via encoding fea-
tures of the two terms (Top and Next). The “Left”
and “Reduce” pops the Top from stack whereas the
“Right”, “Reduce-But-Shift”, and “Shift” push to-
ken Next into the top of stack. Nivre (Nivre, 2003)
had proved that this algorithm can accomplish de-
pendency parsing at most 2n transition actions.

Although, the Nivre’s algorithm is much more
efficient than the others, it produces three problems.

1. It does not explicitly indicate which words are
the roots.

2. Some of the terms in the stack do not belong
to the root but still should be parsed.

3. It always only compares the Top and Next
words.

The problem (2) and (3) are complement with each
other. A straightforward way resolution is to adopt
the exhaustive parsing strategy (Covington, 2001).
Unfortunately, such a brute-force way may cause
exponential training and testing spaces, which is
impractical to apply to the large-scale corpus, for
example, the Czech Treebank (1.3 million words).
To overcome this and keep the efficiency, we de-
sign a post-processor that re-cycles the residuum in
the stack and re-identify the heads of them. Since
most of the terms (90-95%) of the terms had be
processed in previous stages, the post-processor
just exhaustively parses a small part. In addition,
for problem (1), we propose a root parser based on
the parsed result of the Nivre’s algorithm. We dis-
cuss the root-parser and post-processor in the next
two subsections.

2.2 Root Parser

After the first stage, the stack may contain root and
un-parsed words. The root parser identifies the root
word in the stack. The main advantage of this
strategy could avoid sequential classification proc-
ess, which only focuses on terms in the stack.

We build a classifier, which learns to find root
word based on encoding context and children fea-
tures. However, most of the dependency relations
were constructed at the first stage. Thus, we have
more sufficient head-modifier information rather

than only taking the contexts into account. The
used features are listed as follows.

Neighbor terms,bigrams,POS,BiCPOS (+/-2 window)
Left most child term, POS, Bigram, BiCPOS
Right most child term, POS, Bigram, BiCPOS

2.3 Post-Processing

Before post-processing, we remove the root words
from stack, which were identified by root-parser.
The remaining un-parsed words in stack were used
to construct the actual dependency graph via ex-
haustive comparing with parsed-words. It is neces-
sary to build a post-processor since there are about
10% un-parsed words in each training set. We pro-
vide the un-parsed rate of each language in Table 2
(the r.h.s. part).

By applying previous two steps (constant-time
parser and root parser) to the training data, the re-
maining un-parsed tokens were recorded. Not only
using the forward parsing direction, the backward
direction is also taken into account in this statistics.
Averagely, the un-parsed rates of the forward and
backward directions are 13% and 4% respectively.
The back ward parsing often achieves lower un-
parsed rate among all languages (except for Japa-
nese and Turkish).

To find the heads of the un-parsed words, we
copy the whole sentence into the word list again,
and re-compare the un-parsed tokens (in stack) and
all of the words in the input list. Comparing with
the same words is disallowed. The comparing
process is going on until the actual head is found.
Acquiescently, we use the nearest root words as its
head. Although such a brute force way is time-
consuming. However, it only parses a small part of
un-parsed tokens (usually, 2 or 3 words per sen-
tence).

2.4 Features and Learners

For the constant-time parser of the first stage, we
employ the features as follows.

Basic features:

Top.word,Top.pos,Top.lchild.pos,Top.lchild.relation,
Top.rchild.pos, Top.rchild.relation,Top.head.pos,
Top.head.relation,
Next.word, Next.pos, Next.lchild.pos,
Next.lchild.relation, Next+1.pos, Next+2.pos, Next+3.pos

Enhanced features:
Top.bigram,Top.bicpos,Next.bigram,Next.bicpos,
Next+1.word,Next+2.word,Next+3.word

In this paper, we use the support vector machines
(SVM) (Joachims, 1998) as the learner. SVM is
widely used in many natural language processing
(NLP) areas, for example, POS tagging (Wu et al.,
2006). However, the SVM is a binary classifier
which only recognizes true or false. For multiclass
problem, we use the so-called one-versus-one
(OVO) method with linear kernel to combine the
results of each pairwise subclassifier. The final
class in testing phase is mainly determined by ma-
jority voting.
 For all languages, our parser uses the same set-
tings and features. For all the languages (except
Japanese and Turkish), we use backward parsing
direction to keep the un-parsed token rate low.

3 Experimental Result

3.1 Dataset and Evaluation Metrics

The testing data is provided by the (Buchholz et al.,
2006) which consists of 13 language treebanks.
The experimental results are mainly evaluated by
the unlabeled and labeled attachment scores. The
CoNLL also provided a perl-scripter to automatic
compute these rates.

3.2 System Results

Table 2 presents the overall parsing performance
of the 13 languages. As shown in Table 2, we list
two parsing results at the second and third columns
(new and old). It is worth to note that the result B
is produced by removing the enhanced features and
the post-processing step from our parser, while the
result A is the complete use of the enhanced fea-
tures and the overall three-step parsing. In this year,
we submit result B to the CoNLL shared task due
to the time limitation.
 In addition, we also apply the Maltparser, which
is implemented with the Nivre’s algorithm (Nivre,
2003) to be compared. The Maltpaser also includes
the SVM and memory-based learner (MBL). Nev-
ertheless, it does not optimize the SVM where the
training and testing times are too long to be com-
pared even the linear kernel is used. Therefore we
use the default MBL and feature model 3 (M3) in
this experiment. We also perform the significant
test to evaluate the statistical difference among the
three results. If the answer is “Yes”, it means the
two systems are significant difference under at
least 95% confidence score (p < 0.05).

Table 2: A general statistical table of labeled attachment score, test and un-parsed rate (percentage)
Statistic test Un-Parsed Rate A

(New result)
B

(Old result)
C

(Maltparser) A vs. B B vs. C A vs. C Forward Backward
Arabic 63.75 63.81 54.11 No Yes Yes 10.3 1.4
Chinese 81.25 74.81 73.92 Yes No Yes 4.01 2.3
Czech 71.24 59.36 59.36 Yes No Yes 16.1 5.6
Danish 79.52 78.38 77.31 No No No 12.8 2.5
Dutch 68.45 68.45 63.61 No Yes Yes 18.4 9.8
German 79.57 76.52 76.52 Yes No Yes 12.7 9.2
Japanese 91.43 90.11 89.07 Yes No Yes 1.1 4.4
Portugese 81.33 81.47 75.38 No Yes Yes 24.3 3.17
Slovene 68.41 67.83 55.04 No Yes Yes 14.9 5.5
Spanish 74.65 72.99 72.81 Yes No Yes 20 0.5
Swedish 79.53 71.72 76.28 Yes Yes Yes 19.1 2.8
Turkish 55.33 55.09 52.18 No Yes Yes 2.5 4
Bulgarian 81.23 79.73 79.73 No No No 15.7 1.2
AVG 75.05 72.32 69.64 13.22 4.02

4 Discussion

4.1 Analysis of Overview Aspect

Although our method is efficient for parsing that
achieves satisfactory result, it is still away from the
state-of-the-art performance. Many problems give
rise to not only the language-specific characteris-
tics, but also the parsing strategy. We found that
our method is weak to the large-scale training size
and large dependency class datasets, for example,
German (Brants et al., 2002) and Czech. For Dutch,
we observe that the large non-projective tokens
and relations in this set. Overall, we conclude the
four main limitations of our parsing model.

1. Unbalanced and large dependency relation
classes

2. Too fine or coarse POS tag
3. Long sentences and non-projective token rates
4. Feature engineering and root accuracy

The main reason of the first problem is still caused
by the unbalanced distribution of the training data.
Usually, the right-action categories obtain much
fewer training examples. For example, in the Turk-
ish data, 50 % of the categories receive less than
0.1% of the training examples, 2/3 are the right
dependency group. For the Czech, 74.6% of the
categories receive less than 0.1% of the training
examples.

Second, the too fine grained size of POS tag set
often cause the features too specific that is difficult
to be generalized by the learner. Although we
found the grained size is not the critical factor of
our parser, it is closely related to the fourth prob-
lem, feature engineering. For example, in Chinese
(Chen et al., 2003), there are 303 fine grained POS
types which achieves better result on the labeled
attachment score is higher than the coarse grained

(81.25 vs. 81.17). Intuitively, the feature combina-
tions deeply affect the system performance (see A
vs. C where we extend more features than the
original Nivre’s algorithm).

Problem 3 exposes the disadvantage of our
method, which is weak to identify the long dis-
tance dependency. The main reason is resulted
from the Nivre’s algorithm in step 1. This method
is quite sensitive and non error-recovered since it is
a deterministic parsing strategy. Abnormal or
wrong push or pop actions usually cause the error
propagation to the remaining words in the list. For
example, there are large parts of errors are caused
by too early reduce or missed left arc makes some
words could not find the actual heads. On the con-
trary, one can use an N-best selection to choose the
optimal dependency graph or applying MST or
exhaustive parsing schema. Usually, these ap-
proaches are quite inefficient which requires at
least O(n3).

Finally, in this paper, we only take the surface
lexical word and POS tag into account without
employing the language-specific features, such as
Lemma, Morph…etc. Actually, it is an open ques-
tion to compile and investigate the feature engi-
neering. On the other hand, we also find the
performance of the root parser in some languages
is poor. For example, for Dutch the root precision
rate is only 38.52, while the recall rate is 76.07. It
indicates most of the words in stack were wrongly
recognized as root. This is because there are sub-
stantially un-parsed rate that left many un-parsed
words remain in stack. One way to remedy the
problem can adjust the root parser to independently
identify root word by sequential word classifica-
tion at first step and then apply the Nivre’s algo-
rithm. We left the comparison of the issue as future
work.

4.2 Analysis of Specific View

We select three languages, Arabic, Japanese, and
Turkish to be more detail analysis. Figure 2 illus-
trates the learning curve of the three languages and
Table 3 summarizes the comparisons of “fine vs.
coarse” POS types and “forward vs. backward”
parsing directions.
 For the three languages, we found that most of the
errors frequently appear to the noun POS tags
which often denominate half of the training set. In
Turkish, the lower performance on the noun POS
attachment rate deeply influents the overall parsing.
For example, the error rate of Noun in Turkish is
39% which is the highest error rate. On the con-
trary, the head error rates fall in the middle rank
for the other two languages.

40

50

60

70

80

90

100

10 20 30 40 50 60 70 80 90 100
Training Size (Percentage)

L
ab

el
ed

 a
tta

ch
em

en
t s

co
re

Japenese Arabic Turkish

Figure 2: Learning curve of the three datasets

Table 3: Parsing performance of different grained
POS tags and forward/backward parsing directions
 Parsing

direction LA-Score POS
grained LA-Score

Ja Forward 91.35 Fine 91.35
 Backward 85.75 Forward Coarse 91.25
Ar Forward 60.62 Fine 63.55
 Backward 63.55

Backward
Coarse 63.63

Tu Forward 55.47 Fine 55.47
 Backward 55.59

Forward
Coarse 55.59

 In Turkish, we also find an interesting result
where the recall rate of the distance=2 parsing
(56.87) is lower than distance=3-6, and >7 (62.65,
57.83). In other words, for Turkish, our parser
failed to recognize the distance=2 dependency rela-
tions. For the other languages, usually the identifi-
cation rate of the longer distance parsing should be
lower than the smaller distance. Thus, a future
work to parsing Turkish, should put more emphasis
on improving not only the noun POS type, but also
the distance=2 parsing.
 Besides, the root parsing accuracy is also an im-
portant factor to most languages. In Japanese, al-

though our parser achieves more than 97%
left/right arc rates. However, for the root word pre-
cision rate is quite lower (85.97). Among all de-
pendency relation classification rates, the root class
usually locates in the lowest rank for the three lan-
guages.

5 Conclusion and Future Remarks

Dependency parsing is one of the most important
issues in NLP community. This paper presents and
analyzes the impact of the efficient parsing model
that only combines with lexical and part-of-speech
information. To go language-independent, we did
not tune any parameter settings in our model and
exclude most of the language-dependent feature set,
which provided by the CoNLL (Buchholz et al.,
2006). The main focus of our work coincides with
the target goal of the CoNLL shared task, i.e., go
multilingual dependency parsing without taking
the language-specific knowledge into account. A
future work on the deterministic parsing strategy is
to convert the existing model toward N-best pars-
ing.

References
Susana Afonso, Eckhard Bick, Renato Haber, and Diana San-

tos. 2002. Floresta sintá(c)tica: a treebank for Portuguese,
In Proceedings of the 3rd International Conference on Lan-
guage Resources and Evaluation (LREC), pages 1698-1703.

Nart B. Atalay, Kemal Oflazer, Bilge Say. 2003. The Annota-
tion Process in the Turkish Treebank, In Proceedings of the
4th International Workshop on Linguistically Interpreted
Corpora (LINC).

A. Böhmová, J. Hajic, E. Hajicová, and B. Hladká. 2003. The
PDT: a 3-level annotation scenario. In Anne Abeille (Ed.)
Treebanks Building and Using Parsed Corpora. Language
and Speech series.

Sabine Brants, Stefanie Dipper, Silvia Hansen, Wolfgang
Lezius, George Smith. 2002. The TIGER Treebank, In Pro-
ceedings of the Workshop on Treebanks and Linguistic
Theories, pages 24-42.

S. Buchholz, E. Marsi, A. Dubey, and Y. Krymolowski. 2006.
CoNLL-X Shared Task on Multilingual Dependency Pars-
ing, In Proceedings of the Tenth Conf. on Computational
Natural Language Learning CoNLL-X.

Eugene Charniak. 2000. A maximum-entropy-inspired parser.
In NAACL, pages 132-139.

Keh-Jiann Chen, Chi-Ching Luo, Ming-Chung Chang, Feng-
Yi Chen, Chao-Jan Chen, Chu-Ren Huang, Zhao-Ming
Gao. 2003. Sinica Treebank: Design Criteria, Representa-
tional Issues and Implementation, In Anne Abeille (Ed.)
Treebanks Building and Using Parsed Corpora. Language
and Speech series, 20:231-248.

Montserrat Civit Torruella, and M. Antònia Martí Antonín.
2002. Design Principles for a Spanish Treebank, In Pro-
ceedings of the 1st Workshop on Treebanks and Linguistic
Theories.

Michael Collins. 1998. Head-driven statistical models for
natural language processing. Ph.D. thesis. University of
Pennsylvania.

Michael A. Covington. 2001. A fundamental Algorithm for
Dependency Parsing. In Proceedings of the Annual ACM
Southeast Conference, pages 95-102.

Sašo Džeroski, Tomaž Erjavec, Nina Ledinek, Petr Pajas,
Zdenek Žabokrtsky, Andreja Žele. 2006. Towards a Slo-
vene Dependency Treebank, In Proceedings of the 7th In-
ternational Conference on Language Resources and
Evaluation (LREC).

Jason M. Eisner. 1996. Three new probabilistic models for
dependency parsing: An exploration. In COLING, pages
340-345.

Jan Hajič, Otakar Smrž, Petr Zemánek, Jan Šnaidauf, and
Emanuel Beška. 2004. Prague Arabic Dependency Tree-
bank: Development in Data and Tools, In Proceedings of
the NEMLAR Intern Conference on Arabic Language Re-
sources and Tools (NEMLAR), pages 110-117.

Thornsten Joachims. 1998. Text categorization with support
vector machines: learning with many relevant features. In
ECML, pages 137-142.

Yasuhiro Kawata and Julia Bartels. 2000. Stylebook for the
Japanese Treebank in VERBMOBIL, Verbmobil-Report,
No. 240.

Matthias T. Kromann. 2003. The Danish Dependency Tree-
bank and the underlying linguistic theory, In Proceedings
of the 2nd Workshop on Treebanks and Linguistic Theories
(TLT).

Ryan McDonald, Koby Crammer, and Fernando Pereira. 2005.
Online Large-Margin Training of Dependency Parsers, In
ACL, pages 91-98.

Joakim Nivre. 2003. An Efficient Algorithm for Projective
Dependency Parsing. In Proceedings of the International
Workshop on Parsing Technology, pages 149-160.

Joakim Nivre, Johan Hall, and Jens Nilsson. 2005. MAMBA
Meets TIGER: Reconstructing a Swedish Treebank from
Antiquity, In Proceedings of the NODALIDA Special Ses-
sion on Treebanks.

Kemal Oflazer,Bilge Say, Dilek Hakkani-Tur, Gokhan Tur.
2003. Building a Turkish Treebank, In Anne Abeille (Ed.)
Treebanks Building and Using Parsed Corpora. Language
and Speech series.

Kiril Simov, Petya Osenova, Alexander Simov and Milen
Kouylekov. 2005. Design and Implementation of the Bul-
garian HPSG-based Treebank, Journal of Research on Lan-
guage and Computation, pages 495-522.

Kiril Simov and Petya Osenova. 2003. Practical Annotation
Scheme for an HPSG Treebank of Bulgarian, In Proceed-
ings of the 4th International Workshop on Linguistically
Interpreteted Corpora (LINC), pages 17-24.

Leonoor van der Beek, Gosse Bouma, Jan Daciuk, Tanja
Gaustad, Robert Malouf, Gertjan van Noord. 2002. The
Alpino Dependency Treebank, Computational Linguistics
in the Netherlands (CLIN).

Yu C. Wu, Chia H. Chang, and Yue S. Lee. 2006. A General
and Multi-lingual Phrase Chunking Model based on Mask-
ing Method. In CICLING, pages 144-155.

Hiroyasu Yamada, and Yuji Matsumoto. 2003. Statistical
Dependency Analysis with Support Vector Machines. In
Proceedings of the International Workshop on Parsing
Technology, pages 195-206.

