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Abstract 

In this paper, we propose a three-step 
multilingual dependency parser, which 
generalizes an efficient parsing algorithm 
at first phase, a root parser and post-
processor at the second and third stages. 
The main focus of our work is to provide 
an efficient parser that is practical to use 
with combining only lexical and part-of-
speech features toward language inde-
pendent parsing. The experimental results 
show that our method outperforms Malt-
parser in 13 languages. We expect that 
such an efficient model is applicable for 
most languages. 

1 Introduction 

The target of dependency parsing is to automati-
cally recognize the head-modifier relationships 
between words in natural language sentences. Usu-
ally, a dependency parser can construct a similar 
grammar tree with the dependency graph. In this 
year, CoNLL-X shared task (Buchholz et al., 2006) 
focuses on multilingual dependency parsing with-
out taking the language-specific knowledge into 
account. The ultimate goal of this task is to design 
an ideal multilingual portable dependency parsing 
system. 
  To accomplish the shared task, we present a very 
light-weight and efficient parsing model to the 13 
distinct treebanks (Hajič et al., 2004; Simov et al., 
2005; Simov and Osenova, 2003; Chen et al., 2003; 

Böhmová et al., 2003; Kromann 2003; van der 
Beek et al., 2002; Brants et al., 2002; Kawata and 
Bartels, 2000; Afonso et al., 2002; Džeroski et al., 
2006; Civit and Martí 2002; Nivre et al., 2005; 
Oflazer et al., 2003; Atalay et al., 2003) with a 
three-step process, Nivre’s algorithm (Nivre, 2003), 
root parser, and post-processing. Our method is 
quite different from the conventional three-pass 
processing, which usually exhaustively processes 
the whole dataset three times, while our method 
favors examining the “un-parsed” tokens, which 
incrementally shrink. At the beginning, we slightly 
modify the original parsing algorithm (proposed by 
(Nivre, 2003)) to construct the initial dependency 
graph. A root parser is then used to recognize root 
words, which were not parsed during the previous 
step. At the third phase, the post-processor (which 
is another learner) recognizes the still un-parsed 
words. However, in this paper, we aim to build a 
multilingual portable parsing model without em-
ploying deep language-specific knowledge, such as 
lemmatization, morphologic analyzer etc. Instead, 
we only make use of surface lexical and part-of-
speech (POS) information. Combining these shal-
low features, our parser achieves a satisfactory re-
sult for most languages, especially Japanese. 
  In the remainder of this paper, Section 2 describes 
the proposed parsing model, and Section 3 lists the 
experimental settings and results. Section 4 pre-
sents the discussion and analysis of our parser with 
three selected languages. In Section 5, we draw the 
future direction and conclusion. 

2 System Description 



Over the past decades, many state-of-the-art pars-
ing algorithm were proposed, such as head-word 
lexicalized PCFG (Collins, 1998), Maximum En-
tropy (Charniak, 2000), Maximum/Minimum 
spanning tree (MST) (McDonald et al., 2005), Bot-
tom-up deterministic parsing (Yamada and Ma-
tsumoto, 2003), and Constant-time deterministic 
parsing (Nivre, 2003). Among them, the Nivre’s 
algorithm (Nivre, 2003) was shown to be most ef-
ficient method, which only costs at most 2n transi-
tion actions to parse a sentence (O(n3) for the 
bottom-up or MST approaches). Nivre’s method is 
mainly consists of four transition actions, 
Left/Right/Reduce/Shift. We further extend these 
four actions by dividing the “reduce” into “reduce” 
and “sleep (reduce-but-shift)” two actions. Because 
the too early reduce action makes the following 
words difficult to find the parents. Thus, during 
training, if a word which is the child of the top of 
the stack, it is then assigned to the “sleep” category 
and pushed into stack, otherwise, the conventional 
reduce action is applied. Besides, we do not ar-
range these transition actions with priority order, 
instead, the decision is made by the classifier. The 
overall parsing model can be found in Figure 1. 
Table 1 lists the detail system spec of our model. 

 

Figure 1: System architecture 
 

Table 1: Overall parsing system summary 
Ⅰ. Parsing Algorithm: 

  

1. Nivre's Algorithm (Nivre, 2003) 
2. Root Parser 
3. Exhaustive-based Post-processing 

Ⅱ. Parser Characteris-
tics: 

 

1. Top-down + Bottom-up 
2. Deterministic + Exhaustive 
3. Labeling integrated 
4. Non-Projective 

Ⅲ. Learner: SVMLight (Joachims, 1998) 
  (1) One-versus-One 
  (2) Linear Kernel 
Ⅳ. Feature Set: 

  

1. Lexical (Unigram/Bigram) 
2. Fine-grained POS and Coarse grained 

BiCPOS 

.Ⅴ  Post-Processing: Another learner is used to re-recognize 
heads in stacks 

.Ⅵ  Additional/External 
Resources: Non-Used 

2.1 Constant-time Parser and Analysis 

The Nivre’s algorithm makes use of a stack and an 
input list to model the word dependency relations 
via identifying the transition action of the top token 
on the stack (Top) and the next token of the input 
list (Next). Typically a learning algorithm can be 
used to recognize these actions via encoding fea-
tures of the two terms (Top and Next). The “Left” 
and “Reduce” pops the Top from stack whereas the 
“Right”, “Reduce-But-Shift”, and “Shift” push to-
ken Next into the top of stack. Nivre (Nivre, 2003) 
had proved that this algorithm can accomplish de-
pendency parsing at most 2n transition actions.  

Although, the Nivre’s algorithm is much more 
efficient than the others, it produces three problems. 

1. It does not explicitly indicate which words are 
the roots. 

2. Some of the terms in the stack do not belong 
to the root but still should be parsed. 

3. It always only compares the Top and Next 
words. 

The problem (2) and (3) are complement with each 
other. A straightforward way resolution is to adopt 
the exhaustive parsing strategy (Covington, 2001). 
Unfortunately, such a brute-force way may cause 
exponential training and testing spaces, which is 
impractical to apply to the large-scale corpus, for 
example, the Czech Treebank (1.3 million words). 
To overcome this and keep the efficiency, we de-
sign a post-processor that re-cycles the residuum in 
the stack and re-identify the heads of them. Since 
most of the terms (90-95%) of the terms had be 
processed in previous stages, the post-processor 
just exhaustively parses a small part. In addition, 
for problem (1), we propose a root parser based on 
the parsed result of the Nivre’s algorithm. We dis-
cuss the root-parser and post-processor in the next 
two subsections. 

2.2 Root Parser 

After the first stage, the stack may contain root and 
un-parsed words. The root parser identifies the root 
word in the stack. The main advantage of this 
strategy could avoid sequential classification proc-
ess, which only focuses on terms in the stack.  

We build a classifier, which learns to find root 
word based on encoding context and children fea-
tures. However, most of the dependency relations 
were constructed at the first stage. Thus, we have 
more sufficient head-modifier information rather 



than only taking the contexts into account. The 
used features are listed as follows. 

Neighbor terms,bigrams,POS,BiCPOS (+/-2 window) 
Left most child term, POS, Bigram, BiCPOS 
Right most child term, POS, Bigram, BiCPOS 

2.3 Post-Processing 

Before post-processing, we remove the root words 
from stack, which were identified by root-parser. 
The remaining un-parsed words in stack were used 
to construct the actual dependency graph via ex-
haustive comparing with parsed-words. It is neces-
sary to build a post-processor since there are about 
10% un-parsed words in each training set. We pro-
vide the un-parsed rate of each language in Table 2 
(the r.h.s. part).  

By applying previous two steps (constant-time 
parser and root parser) to the training data, the re-
maining un-parsed tokens were recorded. Not only 
using the forward parsing direction, the backward 
direction is also taken into account in this statistics. 
Averagely, the un-parsed rates of the forward and 
backward directions are 13% and 4% respectively. 
The back ward parsing often achieves lower un-
parsed rate among all languages (except for Japa-
nese and Turkish). 

To find the heads of the un-parsed words, we 
copy the whole sentence into the word list again, 
and re-compare the un-parsed tokens (in stack) and 
all of the words in the input list. Comparing with 
the same words is disallowed. The comparing 
process is going on until the actual head is found. 
Acquiescently, we use the nearest root words as its 
head. Although such a brute force way is time-
consuming. However, it only parses a small part of 
un-parsed tokens (usually, 2 or 3 words per sen-
tence).  

2.4 Features and Learners 

For the constant-time parser of the first stage, we 
employ the features as follows. 
 
Basic features:  

Top.word,Top.pos,Top.lchild.pos,Top.lchild.relation, 
Top.rchild.pos, Top.rchild.relation,Top.head.pos, 
Top.head.relation, 
Next.word, Next.pos, Next.lchild.pos, 
Next.lchild.relation, Next+1.pos, Next+2.pos, Next+3.pos 

Enhanced features: 
Top.bigram,Top.bicpos,Next.bigram,Next.bicpos, 
Next+1.word,Next+2.word,Next+3.word 

In this paper, we use the support vector machines 
(SVM) (Joachims, 1998) as the learner. SVM is 
widely used in many natural language processing 
(NLP) areas, for example, POS tagging (Wu et al., 
2006). However, the SVM is a binary classifier 
which only recognizes true or false. For multiclass 
problem, we use the so-called one-versus-one 
(OVO) method with linear kernel to combine the 
results of each pairwise subclassifier. The final 
class in testing phase is mainly determined by ma-
jority voting. 
  For all languages, our parser uses the same set-
tings and features. For all the languages (except 
Japanese and Turkish), we use backward parsing 
direction to keep the un-parsed token rate low. 

3 Experimental Result 

3.1 Dataset and Evaluation Metrics 

The testing data is provided by the (Buchholz et al., 
2006) which consists of 13 language treebanks. 
The experimental results are mainly evaluated by 
the unlabeled and labeled attachment scores. The 
CoNLL also provided a perl-scripter to automatic 
compute these rates. 

3.2 System Results 

Table 2 presents the overall parsing performance 
of the 13 languages. As shown in Table 2, we list 
two parsing results at the second and third columns 
(new and old). It is worth to note that the result B 
is produced by removing the enhanced features and 
the post-processing step from our parser, while the 
result A is the complete use of the enhanced fea-
tures and the overall three-step parsing. In this year, 
we submit result B to the CoNLL shared task due 
to the time limitation.  
  In addition, we also apply the Maltparser, which 
is implemented with the Nivre’s algorithm (Nivre, 
2003) to be compared. The Maltpaser also includes 
the SVM and memory-based learner (MBL). Nev-
ertheless, it does not optimize the SVM where the 
training and testing times are too long to be com-
pared even the linear kernel is used. Therefore we 
use the default MBL and feature model 3 (M3) in 
this experiment. We also perform the significant 
test to evaluate the statistical difference among the 
three results. If the answer is “Yes”, it means the 
two systems are significant difference under at 
least 95% confidence score (p < 0.05). 



Table 2: A general statistical table of labeled attachment score, test and un-parsed rate (percentage) 
Statistic test Un-Parsed Rate  A 

(New result) 
B 

(Old result) 
C 

(Maltparser) A vs. B B vs. C A vs. C Forward Backward
Arabic 63.75 63.81 54.11 No Yes Yes 10.3 1.4
Chinese 81.25 74.81 73.92 Yes No Yes 4.01 2.3
Czech 71.24 59.36 59.36 Yes No Yes 16.1 5.6
Danish 79.52 78.38 77.31 No No No 12.8 2.5
Dutch 68.45 68.45 63.61 No Yes Yes 18.4 9.8
German 79.57 76.52 76.52 Yes No Yes 12.7 9.2
Japanese 91.43 90.11 89.07 Yes No Yes 1.1 4.4
Portugese 81.33 81.47 75.38 No Yes Yes 24.3 3.17
Slovene 68.41 67.83 55.04 No Yes Yes 14.9 5.5
Spanish 74.65 72.99 72.81 Yes No Yes 20 0.5
Swedish 79.53 71.72 76.28 Yes Yes Yes 19.1 2.8
Turkish 55.33 55.09 52.18 No Yes Yes 2.5 4
Bulgarian 81.23 79.73 79.73 No No No 15.7 1.2
AVG 75.05 72.32 69.64 13.22 4.02

4 Discussion 

4.1 Analysis of Overview Aspect 

Although our method is efficient for parsing that 
achieves satisfactory result, it is still away from the 
state-of-the-art performance. Many problems give 
rise to not only the language-specific characteris-
tics, but also the parsing strategy. We found that 
our method is weak to the large-scale training size 
and large dependency class datasets, for example, 
German (Brants et al., 2002) and Czech. For Dutch, 
we observe that the large non-projective tokens 
and relations in this set. Overall, we conclude the 
four main limitations of our parsing model. 

1. Unbalanced and large dependency relation 
classes 

2. Too fine or coarse POS tag 
3. Long sentences and non-projective token rates 
4. Feature engineering and root accuracy 

The main reason of the first problem is still caused 
by the unbalanced distribution of the training data. 
Usually, the right-action categories obtain much 
fewer training examples. For example, in the Turk-
ish data, 50 % of the categories receive less than 
0.1% of the training examples, 2/3 are the right 
dependency group. For the Czech, 74.6% of the 
categories receive less than 0.1% of the training 
examples.  

Second, the too fine grained size of POS tag  set 
often cause the features too specific that is difficult 
to be generalized by the learner. Although we 
found the grained size is not the critical factor of 
our parser, it is closely related to the fourth prob-
lem, feature engineering. For example, in Chinese 
(Chen et al., 2003), there are 303 fine grained POS 
types which achieves better result on the labeled 
attachment score is higher than the coarse grained 

(81.25 vs. 81.17). Intuitively, the feature combina-
tions deeply affect the system performance (see A 
vs. C where we extend more features than the 
original Nivre’s algorithm). 

Problem 3 exposes the disadvantage of our 
method, which is weak to identify the long dis-
tance dependency. The main reason is resulted 
from the Nivre’s algorithm in step 1. This method 
is quite sensitive and non error-recovered since it is 
a deterministic parsing strategy. Abnormal or 
wrong push or pop actions usually cause the error 
propagation to the remaining words in the list. For 
example, there are large parts of errors are caused 
by too early reduce or missed left arc makes some 
words could not find the actual heads. On the con-
trary, one can use an N-best selection to choose the 
optimal dependency graph or applying MST or 
exhaustive parsing schema. Usually, these ap-
proaches are quite inefficient which requires at 
least O(n3). 

Finally, in this paper, we only take the surface 
lexical word and POS tag into account without 
employing the language-specific features, such as 
Lemma, Morph…etc. Actually, it is an open ques-
tion to compile and investigate the feature engi-
neering. On the other hand, we also find the 
performance of the root parser in some languages 
is poor. For example, for Dutch the root precision 
rate is only 38.52, while the recall rate is 76.07. It 
indicates most of the words in stack were wrongly 
recognized as root. This is because there are sub-
stantially un-parsed rate that left many un-parsed 
words remain in stack. One way to remedy the 
problem can adjust the root parser to independently 
identify root word by sequential word classifica-
tion at first step and then apply the Nivre’s algo-
rithm. We left the comparison of the issue as future 
work. 



4.2 Analysis of Specific View 

We select three languages, Arabic, Japanese, and 
Turkish to be more detail analysis. Figure 2 illus-
trates the learning curve of the three languages and 
Table 3 summarizes the comparisons of “fine vs. 
coarse” POS types and “forward vs. backward” 
parsing directions.  
  For the three languages, we found that most of the 
errors frequently appear to the noun POS tags 
which often denominate half of the training set. In 
Turkish, the lower performance on the noun POS 
attachment rate deeply influents the overall parsing. 
For example, the error rate of Noun in Turkish is 
39% which is the highest error rate. On the con-
trary, the head error rates fall in the middle rank 
for the other two languages.  
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Figure 2: Learning curve of the three datasets 

Table 3: Parsing performance of different grained 
POS tags and forward/backward parsing directions 
 Parsing 

direction LA-Score  POS 
grained LA-Score

Ja Forward 91.35 Fine 91.35 
 Backward 85.75 Forward Coarse 91.25 
Ar Forward 60.62 Fine 63.55 
 Backward 63.55 

Backward 
Coarse 63.63 

Tu Forward 55.47 Fine 55.47 
 Backward 55.59 

Forward 
Coarse 55.59 

  
  In Turkish, we also find an interesting result 
where the recall rate of the distance=2 parsing 
(56.87) is lower than distance=3-6, and >7 (62.65, 
57.83). In other words, for Turkish, our parser 
failed to recognize the distance=2 dependency rela-
tions. For the other languages, usually the identifi-
cation rate of the longer distance parsing should be 
lower than the smaller distance. Thus, a future 
work to parsing Turkish, should put more emphasis 
on improving not only the noun POS type, but also 
the distance=2 parsing.  
  Besides, the root parsing accuracy is also an im-
portant factor to most languages. In Japanese, al-

though our parser achieves more than 97% 
left/right arc rates. However, for the root word pre-
cision rate is quite lower (85.97). Among all de-
pendency relation classification rates, the root class 
usually locates in the lowest rank for the three lan-
guages.  

5 Conclusion and Future Remarks 

Dependency parsing is one of the most important 
issues in NLP community. This paper presents and 
analyzes the impact of the efficient parsing model 
that only combines with lexical and part-of-speech 
information. To go language-independent, we did 
not tune any parameter settings in our model and 
exclude most of the language-dependent feature set, 
which provided by the CoNLL (Buchholz et al., 
2006). The main focus of our work coincides with 
the target goal of the CoNLL shared task, i.e., go 
multilingual dependency parsing without taking 
the language-specific knowledge into account. A 
future work on the deterministic parsing strategy is 
to convert the existing model toward N-best pars-
ing. 
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