Maximum Spanning Tree Algorithm for Non-projective L abeled
Dependency Parsing

Nobuyuki Shimizu
Dept. of Computer Science
State University of New York at Albany
Albany, NY, 12222, USA
shim zu@s. al bany. edu

Abstract 2005). In this paper, we investigate the effective-
ness of (McDonald et al., 2005) in the various lan-

Following (McDonald et al., 2005), we guages given by the CoNLL 2006 shared task for
present an application of a maximum non-projective labeled dependency parsing.
spanning tree algorithm for a directed The paper is structured as follows: in section 2
graph to non-projective labeled depen- and 3, we review the decoding and learning aspects
dency parsing. Using a variant of the of (McDonald et al., 2005), and in section 4, we de-
voted perceptron (Collins, 2002; Collins scribe the extension of the algorithm and the features
and Roark, 2004; Crammer and Singer, needed for the CoNLL 2006 shared task.
2003), we discriminatively trained our
parser in an on-line fashion. After just one 2 Non-Projective Dependency Parsing
epoch of training, we were generally able
to attain average results in the CoNLL
2006 Shared Task. Let us definer to be a generic sequence of input to-
kens together with their POS tags and other morpho-
logical features, ang to be a generic dependency
structure, that is, a set of edges for We use the

Recently, we have seen dependency parsing grd\(,:;,rminology in (Taskar et al., 2004) for a generic
more popular. It is not rare to see dependency réiructured output prediction, and definpart.

lations used as features, in tasks such as relation ex-A part represents an edge together with its label.
traction (Bunescu and Mooney, 2005) and machin® part is a tuple(DEPREL i, j) wherei is the start
translation (Ding and Palmer, 2005). Although EnPoint of the edge; is the end point, anBEPRELIs
glish dependency relations are mostly projective, ifhe label of the edge. The tokenais the head of
other languages with more flexible word order, suckhe token ay.

as Czech, non-projective dependencies are more fre-Table 1 shows our formulation of building a non-
quent. There are generally two methods for learrProjective dependency tree as a prediction problem.
ing non-projective dependencies. You could map &he task is to predicy, the set of parts (column 3,
non-projective dependency tree to a projective ondable 1), givenr, the input tokens and their features
learn and predict the tree, then bring it back to thécolumn 1 and 2, Table 1).

non-projective dependency tree (Nivre and Nilsson, In this paper we use the common method of fac-
2005). Non-projective dependency parsing can aldoring the score of the dependency structure as the
be represented as search for a maximum spannisgm of the scores of all the parts.

tree in a directed graph, and this technique has beenA dependency structure is characterized by its
shown to perform well in Czech (McDonald et al.,features, and for each feature, we have a correspond-

2.1 Dependency Structure

1 Introduction

Token POS _ Edge Part Informally, the algorithm has each vertex

John NN (SUBJI2,1)) : .)

saw VBD (PREDO,2) in the graph greedily select the incoming

a DT (DET,4,3) edge with highest weight.

dog NN (OBJ, 2, 4)

yesterday RB (ADJU,?2,5) Note that the edge is coming from the parent to the

which — WhT gmgg\y&g Z> - child. This means that given a child noderd;, we

a DT (DET,10,8) are finding the parent, or the headrd; such that
orkshire , 10, e edge(i, j) has the highest weight among &

Yorksh NN (MODN,10,9) the ed has the highest ht Il

Terrier NN (OBJ, 7, 10) i

. . (,10,11) J:

If a tree results, then this must be the max-
imum spanning tree. If not, there must be
a cycle. The procedure identifies a cycle
ing weight. The score of a dependency structure and contracts it into a single vertex and
is the sum of these weights. Now, the dependency recalculates edge weights going into and
structures are factored by the parts, so that each fea- out of the cycle. It can be shown that a
ture is some type of a specialization of a part. Each maximum spanning tree on the contracted
part in a dependency structure maps to several fea- graph is equivalent to a maximum span-
tures. If we sum up the weights for these features, ning tree in the original graph (Leonidas,

we have the score for the part, and if we sum up the 2003). Hence the algorithm can recur-
scores of the parts, we have the score for the depen- sively call itself on the new graph.

dency structure. . .

For example, let us say we would like to find the3 OnlineL earning
score of the parfOBJ, 2,4). This is the edge going Again following (McDonald et al., 2005), we have
to the 4th token "dog” in Table 1. Suppose there arased the single best MIRA (Crammer and Singer,
two features for this part. 2003), which is a variant of the voted perceptron

)) ~ (Collins, 2002; Collins and Roark, 2004) for struc-
e There is an edge labeled with "OBJ" that pointsyreq prediction. In short, the update is executed
to the right. (=DEPREL dir (i, j)) when the decoder fails to predict the correct parse,
@nd we compare the correct pargeand the incor-
rect parsey’ suggested by the decoding algorithm.
The weights of the features iriwill be lowered, and
the weights of the features i/ will be increased ac-
If a statement is never true during the training, theordingly.
weight for it will be 0. Otherwise there will be a
positive weight value. The score will be the sum o
all the weights of the features given by the part. Our experiments were conducted on CoNLL-X

In the upcoming section, we explain a decodinghared task, with various datasets (Haji¢ et al., 2004;
algorithm for the dependency structures, and late$imov et al., 2005; Simov and Osenova, 2003; Chen
we give a method for learning the weight vector usedt al., 2003; Bohmova et al., 2003; Kromann, 2003;

Table 1: Example Parts

e There is an edge labeled with "OBJ" starting a
the token "saw” which points to the right. (=
DEPREL dir(i, j), word;)

Experiments

in the decoding. van der Beek et al., 2002; Brants et al., 2002;
29 Maxi ina Tree Algorith Kawata and Bartels, 2000; Afonso et al.,, 2002;
' aximum Spanning Tree Algorithm DZeroski et al., 2006; Civit Torruella and Marti An-

As in (McDonald et al., 2005), the decoding algotonin, 2002; Nilsson et al., 2005; Oflazer et al.,

rithm we used is the Chu-Liu-Edmonds (CLE) al-2003; Atalay et al., 2003) .

gorithm (Chu and Liu, 1965; Edmonds, 1967) for .

finding the Maximum Spanning Tree in a directed+1 Dependency Relation

graph. The following is a nice summary by (Mc-The CLE algorithm works on a directed graph with

Donald et al., 2005). unlabeled edges. Since the CoNLL-X shared task

Given a par{ DEPREL 1, j) " " " .)
DEPREL 47 (7) the "additional features” listed in Table 2 for all lan

DEPREL dir(i, j), word; guages except for Danish and Swedish. The reason
DEPREL dir(i, j), posi for this is simply that the model with the additional

DEPREL dir(i, j), word;
DEPREL dir(i, j), pos; .
DEPREL dir (i, j), word;, pos; the training.

DEPREL dir (i, j), wordy, pos; Although we could do batch learning by running
DEPREL dir(i, j), word;—1

features did not fit in the 4 GB of memory used in

(4,

(4

(4

(4

(4

E ;
DEPRELW(Z:]) posi_1 t_he onhng aIgo_nthm multiple times, we run the_on—
DEPREL dir (i, j), word;_1, posi_1 line algorithm just once. The hardware used is an
gEESEtZWEw; word;—1 Intel Pentinum D at 3.0 Ghz with 4 GB of memory,

1r(2,7), posj—1 . . .
DEPREL dir(i.). word; 1, pos; 1 a}nd the spftware was vyrltten |n.C++. The tralnlpg
DEPREL dir (i, j), wordii1 time required was Arabic 204 min, Slovene 87 min,
gEESEtZWEW; posi Spanish 413 min, Swedish 1192 min, Turkish 410
1r(2,7), WOrai41, POSi41 . . .

DEPREL dir (i,), wordy 1 min, Danish 381 min.
DEPREL dir(i, j), pos;+1
DEPREL dir(i, j), word;+1, posj+1 5 Results
DEPREL dir (i, j), posi—2
DEPREL dir(i, j), posiv2 The results are shown in Table 3. Although our fea-
Efdl?tﬁ;dfza(fufgsdlsmnce 47 — il ture set is very simple, the results were around the
DEPREL dir(i, j), word;, word, averages. We Wi!| do error analysis of. three notable
DEPREL dir(i, j), posi+1, posi, posit1 languages: Arabic, Swedish and Turkish.
DEPREL dzr(u]) POSit1, word;, poSit1
DEPREL dir(, j), words, posi, pos; 5.1 Arabic
DEPREL dir(i, j), posi, word;, pos;

) Of 4990 words in the test set, 800 are prepositions.
Table 2: Binary Features for Each Part The prepositions are the most frequently found to-
kens after nouns in this set. On the other hand,

0
requires the labeling of edges, as a preprocessn? r head attachment error was 44% for prepositions.

stage, we created a directed complete graph witly iven the relatively large number of prepositions
out multi-edges, that is, given two distinct nodes found in the test set, it is important to get the prepo-

and j, exactly two edges exist between them, Or]élt_lon attachment right _to achlevg a_hlgher mark in
from i to j, and the other fronj to 7. There is no this language. The obvious solution is to r_lgve afea-
self-pointing edge. Then we labeled each edge wit"rkl"_e that connects f[he head of a preposition 1o the
the highest scoring dependency relation. This con?h”d of the preposition. Hoyvever, such a fe?‘t“re
plete graph was given to the CLE algorithm and thgffects the edge based factoring and the decoding al-
edge labels were never altered in the course of fmé’-or'thm and we will be forced to modify the MST

ing the maximum spanning tree. The result is thé‘Igorlthm in some ways.
non-projective dependency tree with labeled edges; o gyedish

Due to the memory constraint on the computer, we
did not use the additional features for Swedish and
The features we used to score each part (edgg)r feature heavily relied on the CPOS tag. At the
(DEPREL G, j) are shown in Table 2. The indéx same time, we have noticed that relatively higher
is the position of the parent ands that of the child. performance of our parser compared to the average

4.2 Features

word; = the word token at the position coincides with the bigger tag set for CPOS for this
pos; = the coarse part-of-speechjat corpus. This suggests that we should be using more
dir(i, j) = Rif i < j, and L otherwise. fine grained POS in other languages.

No other features were used beyond the combina-
tions of the CPOS tag and the word token in Table 2-3 Turkish

We have evaluated our parser on Arabic, DanislT he difficulty with parsing Turkish stems from the
Slovene, Spanish, Turkish and Swedish, and usdarge unlabeled attachment error rate on the nouns

Language LAS AV SD

AE =] terminer, (2) noun, (3) preposition, (4) verb would

Danish 75.81% 78.31% 5.45 be one such ordering. We propose the following al-
Slovene 64.57% 65.61% 6.78 gorithm:

Spanish 73.17% 73.52% 8.41

Swedish 79.49% 76.44% 6.46 e Assume we have tokens as nodes in a graph and no edges
Turkish 54.23% 55.95% 7.71 are present at first. For example, we have tokens "I”,
Language UAS AV SD "ate”, "with”, "a”, "spoon”, and no edges between them.
Arabic 74.27% 73.48% 4.94

Danish 81.72% 84.52% 4.29 e Take the POS tag that needs to be decided next. Find all
Slovene 74.88% 76.53% 4.67 edges that go to each token labeled with this POS tag,
Spanish 77.58% 77.76% 7.81 and put them in the graph. For example, if the POS is
Swedish 86.62% 84.21% 5.45 noun, put edges from "ate” to "I”, from "ate” to "spoon”,
Turkish 68.77% 69.35% 5.51 from "with” to "I”, from "with” to "spoon”, from "I” to

"spoon”, and from "spoon” to "I".

Table 3: Labeled and Unlabeled Attachment Score
e Run the CLE algorithm on this graph. This selects the

highest i_ncoming edge to each tokgn with the POS tag we
(39%). Since the nouns are the most frequently oc- are looking at, and remove cycles if any are present.
curring words in the test set (2209 out of 5021 to- o Take the resulting forests and for each edge, bring the in-
tal), this seems to make Turkish the most challeng- formation on the child node to the parent node. For ex-

. . ample, if this time POS was noun, and there is an edge to
ing language for any system in the shared task. On a preposition "with” from a noun “spoon’”, then "spoon”

the average, there are 1.8 or so verbs per sentence, is absorbed by "with”. Note that since no remaining de-
and nouns have a difficult time attaching to the cor- ~ pendency fe'?}igon will attach to "spoon”, we can safely
rect verb or postposition. This, we think, indicates ~ '9"°"¢ Spoon from nowon.

that there are morphological features or word order- e Go back and repeat until no POS is remaining and we

ing features that we really need in order to disam- ~ have a dependency tree. Now in the next round, when
. deciding the score of the edge from "ate” to "with”, we
biguate them.

can use the all information at the token "with”, including
"spoon”.
6 Future Work _
_ _ _ 7 Conclusion
As well as making use of fine-grained POS tags and o
other morphological features, given the error analy¥Ve have extended non-projective unlabeled de-

sis on Arabic, we would like to add features that ar@endency parsing (McDonald et al., 2005) to a

dependent on two or more edges. very simple non-projective labeled dependency and
showed that the parser performs reasonably well
6.1 Bottom-Up Non-Projective Parsing with small nhumber of features and just one itera-

In order to incorporate features which depend offO" Of training. Based on the analysis of the Ara-

other edges, we propose Bottom-Up Non—ProjectiVBIC parsing re;ults, we have proposed a_bottom-
Parsing. It is often the case that dependency rel4P Non-projective labeled dependency parsing algo-
tions can be ordered by how close one relation is tgihm that allows us to use features dependent on
the root of dependency tree. For example, the g&1°re than one edge, with very little disadvantage
pendency relation between a determiner and a no&ﬁ)mpared to the original algorithm.

should be decided before that between a preposition

and a noun, and that of a verb and a preposition, a'ﬁleferences

so on. We can use this information to do bottom-up _ _ .
parsing. A. Abeille, editor. 2003.Treebanks: Building and Us-

. ing Parsed Corporavolume 20 ofText, Speech and
Suppose all words have a POS tag assigned t0| angyage TechnologyKluwer Academic Publishers,

them, and every edge labeled with a dependency re-Dordrecht.
lation is attached to a specific POS tag at the end

: : ; . Afonso, E. Bick, R. Haber, and D. Santos. 2002. “Flo-
point. Also assume that there is an ordering of PO§ resta sinta(c)tica”: a treebank for PortuguesePioc.

tags such that the edge going to the POS tag needsyf the Third Intern. Conf. on Language Resources and
be decided before other edges. For example, (1) de-Evaluation (LREC)pages 1698-17083.

N. B. Atalay, K. Oflazer, and B. Say. 2003. The annotad. Haji¢, O. Smrz, P. Zemanek Shaidauf, and E. Beska.
tion process in the Turkish treebank.Proc. of the 4th 2004. Prague Arabic dependency treebank: Develop-
Intern. Workshop on Linguistically Interpreteted Cor- ment in data and tools. IRroc. of the NEMLAR In-
pora (LINC). tern. Conf. on Arabic Language Resources and Tools

pages 110-117.

A. Bohmova, J. Hajic, E. HajiCova, and B. Hladka. 2003
The PDT: a 3-level annotation scenario. In AbeilleY- Kawata and J. Bartels. 2000. Stylebook for the

(Abeille, 2003), chapter 7. Japanese treebank in VERBMOBIL. Verbmobil-
Report 240, Seminar fir Sprachwissenschaft, Univer-

S. Brants, S. Dipper, S. Hansen, W. Lezius, and G. Smith. Sitat Tubingen.

2002. The TIGER treebank. IProc. of the .

. LR .M. T. Kromann. 2003. The Danish dependency treebank

I(f;_rg_)\Norkshop on Treebanks and Linguistic Theories and the underlying linguistic theory. IRroc. of the

: Second Workshop on Treebanks and Linguistic Theo-
ries (TLT)

R. Bunescu and R. Mooney. 2005. A shortest path de-
pendency kernel for relation extraction. Rroc. of G, Leonidas. 2003. Arborescence optimization problems
the Joint Conf. on Human Language Technology and solvable by edmonds algorithm. Trheoretical Com-
Empirical Methods in Natural Language Processing puter Sciencgpage 301:427 437.

(HLT/EMNLP)
R. McDonald, F. Pereira, K. Ribarov, and J. Haji¢. 2005.

K. Chen, C. Luo, M. Chang, F. Chen, C. Chen, C. Huang, Non-projective dependency parsing using spanning
and Z. Gao. 2003. Sinica treebank: Design criteria, tree algorithms. IrProc. of the Joint Conf. on Hu-
representational issues and implementation. In Abeille man Language Technology and Empirical Methods in
(Abeillé, 2003), chapter 13, pages 231-248. Natural Language Processing (HLT/EMNLP)

Y.J. Chu and T.H. Liu. 1965. On the shortest arbores?- Nilsson, J. Hall, and J. Nivre. 2005. MAMBA meets
cence of a directed graph. Mcience Sinicapage TIGER: Reconstructing a Swedish treebank from an-

14:13961400 tiquity. In Proc. of the NODALIDA Special Session on
' ' Treebanks

M. Civit Torruella and M' A. Marti Antonin. 2002. De- 5 Njivre and J. Nilsson. 2005. Pseudo-projective depen-

sign principles for a Spanish treebank.Rroc. of the ; ;
First Workshop on Treebanks and Linguistic Theories f[jheen?épl_arsmg. IiProc. of the 43rd Annual Meeting of

(TLT).
K. Oflazer, B. Say, D. Zeynep Hakkani-Tur, and G. Tdur.
M. Collins and B. Roark. 2004. Incremental parsingwith 2003. Building a Turkish treebank. In Abeillé
the perceptron algorithm. IRroc. of the 42rd Annual (Abeille, 2003), chapter 15.
Meeting of the ACL
K. Simov and P. Osenova. 2003. Practical annotation
M. Collins. 2002. Discriminative training methods for ~scheme for an HPSG treebank of Bulgarian.Phoc.
hidden markov models: Theory and experiments with Of the 4th Intern. Workshop on Linguistically Inter-
perceptron algorithms. IRroc. of Empirical Methods ~ preteted Corpora (LING)pages 17-24.

in Natural Language Processing (EMNLP) K. Simov, P. Osenova, A. Simov, and M. Kouylekov.

2005. Design and implementation of the Bulgarian
HPSG-based treebank. Journal of Research on Lan-
guage and Computation — Special Isspages 495—
522. Kluwer Academic Publishers.

K. Crammer and Y. Singer. 2003. Ultraconservative on-
line algorithms for multiclass problems. IMLR

Y. Ding and M. Palmer. 2005. Machine translation using

probabilistic synchronous dependency insertion grang Taskar. D. Klein. M. Collins. D. Koller. and C. Man-
mars. InProc. of the 43rd Annual Meeting of the ACL " pjing. '5004. i\/lax-margir; parsing., IRroc. of

_])) Empirical Methods in Natural Language Processing

S. Dzeroski, T. Erjavec, N. Ledinek, P. Pajas, (EMNLP)

Z. Zabokrtsky, and AZele. 2006. Towards a Slovene

dependency treebank. IRroc. of the Fifth Intern. L. van der Beek, G. Bouma, R. Malouf, and G. van No-

Conf. on Language Resources and Evaluation (LREC) ord. 2002. The Alpino dependency treebankClom-

putational Linguistics in the Netherlands (CLLN)

J. Edmonds. 1967. Optimum branchings.Jburnal of

Research of the National Bureau of Standamage

71B:233240.

