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Abstract is typically one s.d. below the average across sys-
tems and 10-20 points below the best system. On
We describe our entry in the CoNLL-X shared taskihe positive side, its decoding algorithms have guar-
The system consists of three phases: a probabilistiteed0 () runtime, and training takes only a cou-
vine parser (Eisner and N. Smith, 2005) that prop|e of hours. Having designed primarily fepeed
duces unlabeled dependency trees, a probabilistigd robustness we sacrifice accuracy. Bettesti-
relation-labeling model, and a discriminative mini-matjon, reranking on larger datasets, and more fine-

mum risk reranker (D. Smith and Eisner, 2006). Th@rained parsing constraints are expected to boost ac-
system s designed for fast training and decoding ang,racy while maintaining speed.

for high precision. We describe sources of cross-

lingual error and ways to ameliorate them. We the? Notation
provide a detailed error analysis of parses producq_qet a sentence —
for sentences in German (much training data) angtuple containing
Arabic (little training data).

(x1,x9,...,xy), Where each; is
a part-of-speech tagnd a word
w;, and possibly more informatiohz is a special
wall symbol, $, on the left. A dependency trge
1 Introduction is defined by three functions;.;; andy ;g (both
0,1,2,....,n} — 2{1:2--n}y that map each word to

Standard state-of-the-art parsing systems (e. ke sets of left and riaht d dent tivel d
Charniak and Johnson, 2005) typically involve two > Sels ofieftand night dependents, respectively, an

passes. First, parser produces a list of the most ¥ ‘abel : {1,2, ""n},—> D, which labels the relation-
likely n parse trees under a generative, probabilistﬁhIIO bgtween wordand |ts_ parent frpm label sét.

model (usually some flavor of PCFG). A discrim-, Iq this work, the grgph is constrained to bpra- .
inative reranker then chooses among trees in thigectlvetree rooted at $: each word except $ has a sin-

list by using an extended feature set (Collins, 20005gle parent, and there are no cycles or crossing depen-

This paradigm has many advantages: PCFGs aggnC|es. Using a simple dynamic program to find the

fast to train, can be very robust, and perform peflinNimum-error projective parse, we find that assum-

. . ing projectivity n not harm r very much
ter as more data is made available; and reranke projectivity need not harm accuracy very muc

train quickly (compared to discriminative models),( ab. 1, col. 3).

require few parameters, and permit arbitrary feas  ynlabeled Parsing

tur\jzvse. describe such a system ftependencypars- The first component of our system is an unlabeled
ing. Our shared task enfrys a preliminary system Parser that, given a sentence, finds thévest un-

, bottom-up dynamic programming algorithinThe
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Arabic 10 4| 998 90.7] 715 68.1 68.7] 50.7 52.0] 53.4 68.5 63.4 76.(
Bulgarian | 5 4| 996 90.7| 864 80.1 80.5/ 851 73.0| 748 82.0 743 86.3
Chinese 4 4] 100.0 931|899 794 777|886 726|716 77.6 614 80.8
Czech 6 4| 978 905|792 70.3 715/ 728 58.1| 60.5 70.7 64.8 75.7
Danish 5 4| 992 0914|846 77.7 78.6| 793 65.5|66.6 77.5 714 834
Dutch 6 5| 946 883|775 67.9 68.8| 736 59.4| 61.6 68.3 604 73.0
German 8 7| 988 909|834 755 76.2| 823 70.1| 71.0 77.0 70.2 829
Japanese | 4 1| 992 922|907 86.3 85.1| 894 816|829 86.0 685 915
Portuguese 5 5| 988 915|859 814 82.5| 837 73.4| 753 824 76.2 87.0
Slovene 6 4| 985 917|805 72.0 73.3| 728 57.5|58.7 729 66.3 785
Spanish 5 61000 912|773 715 72.6| 749 66.2| 67.6 729 69.3 80.7
Swedish 4 5| 997 940|875 79.3 79.6/ 81.0 65.5| 67.6 795 726 83.3
Turkish 6 1| 986 895|730 61.0 61.8| 644 449| 46.1 60.5 485 61.6
parser reranker labeler reranker
1 2 3 4 5 6 7 8 9 10 11 12 13

Table 1. Parameters and performance on test datand B, were chosen to retain 90% of dependencies

in training data. We show oracle, 1-best, and reranked performance on the test set at different stages of the
system. Boldface marks oracle performance that, given perfect downstream modules, would supercede the
best system. Italics mark the few cases where the reranker increased error rate. Columns 8-10 show labeled
accuracy; column 10 gives the final shared task evaluation scores.

model is a probabilistic head automaton gramma3.1 Vine parsing (dependency length bounds)
(Alshawi, 1996) that assumes conditional indepen-

dence between the left yield and the right yield of

a given head, given the head (Eisner, 1997he
best known parsing algorithm for such a model i
O(n?) (Eisner and Satta, 1999). Thébest list is
generated using Algorithm 3 of Huang and Chian
(2005).

‘Ictollowing Eisner and N. Smith (2005), we also im-
ose a bound on the string distance between every
hild and its parent, with the exception of nodes at-

taching to $. Bounds of this kind are intended to im-

- _ o prove precision of non-$ attachments, perhaps sac-
gﬁ&g{'}? algorithms are implemented concisely in the Dynqigicing recall. Fixing boundBy, no left dependency

“To empirically test this assumption across languages, w12y exist between child; and parent:; such that
measured the mutual information between different features of—; > B, (similarly for right dependencies arig}.).

Viest (3) andyrigne (5), givenz;. (Mutual information is a statis- _ ; ; ;
tic that equals zero iff conditional independence holds.) A de'—A‘S aresult, edge-factored parsing runtime is reduced

tailed discussion, while interesting, is omitted for space, but wlom O(n3) to O(n(BgQ + Brz)) For each language,
highlight some of our findings. First, unsurprisingly, the split-yye chooseB, (B,) to be the minimum value that

head assumption appears to be less valid for languages wj 0 . )
freer word order (Czech, Slovene, German) and more valid fo%II a!lovy reco"er}’ Qf 90% of the left (right) depen
more fixed-order languages (Chinese, Turkish, Arabic) or codencies in the training corpus (Tab. 1, cols. 1, 2, and
pora (Japanese). The children of verbs and conjunctions are tﬂ;_ In order to match the training data to the parsing

most frequent violators. The mutual information between the del ttach disall d d d .
sequence of dependency labels on the left and on the right,givgﬂO el, we re-attach disallowed long dependencies

the head's (coarse) tag, only once exceeded 1 bit (Slovene). to $ during training.



3.2 Estimation The performance of our unlabeled model’s top

The probability model predicts, for each parent worghoice and the top-20 oracle are shown in Tab. 1,
25, {2 }iey, ) and{z;}icy..,.;)- An advantage cols. 5-6. In 5 languages (boldface), perfect label-
eft 7 right

of head automaton grammars is that, for a given pai,r]g and reranking at_this stage would have resulted in
ent nodez;, the children on the same sidg.; (), performance superior to the language’s best labeled
for example, can depend on each other (cf. McDorfyStem, although the oracle is never on par with the
ald etal., 2005). Child nodes in our model are geneRestunlabeledperformance.

ated outward, conditional on the parent and the most
recent same-side sibling (MRSSS). This increase

our parser’s theoretical runtime @(n(B} + B;)),  The second component of our system is a labeling

which we found was quite manageable. model thaindependentlgelects a label fror for
Letpary : {1,2,..,n} — {0,1,...,n} map each each parent/child pair in a tree. Given tiebest

node to its parentily. Letpredy : {1,2,...n} — ynlabeled trees for a sentence, the labeler produces

{0,1,2,...,n} map each node to the MRSSSyifif  {he 1, best labeled trees for each unlabeled one.

it exists and) otherwise. Let\; = |i — j| if jiSi's  The computation involves a@(|D|n) dynamic pro-

parent. Our (probability-deficient) model defines gramming algorithm, the output of which is passed

to Huang and Chiang’s (2005) algorithm to generate

Labeling

. the L-best list.
= 17AL jy Lpred,, (4 7l t
o) ng (ieyzHﬂmp(x |32 Pprey 0, 1ef )) We separate the labeler from the parser for two
«p(STOP | 2;, 2 S left) reasons: speed and candidate diversity. In prin-
)My (3) T

ciple the vine parser could jointly predict depen-
o [T ples A | 2y, predy (i), right) dgncy Iabel§ along with structures, but parsing run-
time would increase by at least a factor|®|. The
right) (1) two stage process also forces diversity in the candi-
date list (20 structures with 50 labelings each); the

Due to the familiar sparse data problem, a maxiy oq_pest list ofointly-decoded parses often con-
mum likelihood estimate for thes in Eq. 1 performs tained many (bad) relabelings of the same tree.

very badly (2-23% unlabeled accuracy). Good sta- In retrospect, assuming independence among de-

tistical parsers smooth those distributions by malﬁjendency labels damages performance substantially

ing_conditiqnal inerendence assumpti.ona'mong for some languages (Turkish, Czech, Swedish, Dan-
variables, |nclu_d|ng backoff a_nd factorlzatlo_n. Ar'ish, Slovene, and Arabic); note the often large drop
guably the chplce of assumptions made (or '”te”‘?% oracle performance between Tab. 1, cols. 5 and
!ated among) is central to the success of many eXIS This assumption is necessary in our framework,
INg parsers. because the®(|D|M+1n) runtime of decoding with

Noting that (a) there are expone_ntia!ly many suclan Mth-order Markov model of labélss in general
options, and (b) the best-performing 'ndependen?ﬂohibitive—in some casé®| > 80. Pruning and

assumption§ will almost certainly vary by languageqe e heuristics might ameliorate runtime.
we use a mixture among 8 such models. The Same, ¢ x; is a child ofz; in direction D, andx,.q is
mixture is used for all languages. The models Werg o MRSSS (possiblg), whereA,; = |i — j], we es-
not chosen with particular caPeand the mixture is timatep(¢, s, 2, Zpreq ’A- | D) i)y a mixtijre (un-

H e . : s Ly Ly Lprear =
nqt tramegl—the coeflicients are fixed at uniform, trained, as in the parser) of four backed-off, factored
with a unigram coarse-tag model for backoff. Inestimates
principle, this mixture should be trained (e.g., to After parsing and labeling, we have for each sen-
maximize likelihood or minimize error on a devel—tence a list oft/ x I, candid:sltes Both the oracle

opment dataser). performance of the best candidate in {Ré x 50)-

LEY right (7)

Xp(STOP | Tj, Tmax

Yright [O)EN

S0ur infrastructure provides a concise, interpreted langua
for expressing the models to be mixed, so large-scale combina- ®We tested first-order Markov models that conditioned on
tion and comparison are possible. parent or MRSSS dependency labels.



best list and the performance of the top candidate afeatures are used in reranking. Subsets of differ-
shown in Tab. 1, cols. 8-9. It should be clear fronent sizes (10, 20, and 40, plus “all”) are identified
the drop in both oracle and 1-best accuracy that odior each language using two'iva feature-selection

labeling model is a major source of error. heuristics based on independent performance of fea-
tures. The feature subset with the highest accuracy
5 Reranking on the 200 heldout sentences is selected.

We train a log-linear model combining many featurd’erformance Accuracy of the top parses after
scores (see below), including the log-probabilitieseranking is shown in Tab. 1, cols. 10-11. Reranking
from the parser and labeler. Training minimizesiimost always gave some improvement over 1-best
the expected error under the model; we use detgparsing® Because of the vine assumption and the
ministic annealing to smooth the error surface angreprocessing step that re-attaches all distant chil-
avoid local minima (Rose, 1998; D. Smith and Eisdren to $, our parser learns to over-attach to $, treat-
ner, 2006). ing $-attachment as a default/agnostic choice. For
We reserved 200 sentences in each language fvany applications a local, incomplete parse may be
training the reranker, plus 200 for choosing amongufficiently useful, so we also measured non-$ unla-
rerankers trained on different feature sets and diffepeled precision and recall (Tab. 1, cols. 12-13); our

ent(U x L)-best lists’ parser has> 80% precision on 8 of the languages.
We also applied reranking (with unlabeled features)

Features Our reranking features predict tags, lato the 20-best unlabeled parse lists (col. 7).
bels, lemmata, suffixes and other information given

all or some of the following non-local conditioning 6 ~ Error Analysis: German
context: bigrams and trigrams of tags or dependencpl

. he plurality of errors (38%) in German were er-
labels; pargnt _and grandp_arent dependency Iabe} heous $ attachments. For ROOT dependency la-
subcategorization frames (in terms of tags or depe%—eIS we have a high recall (92.7%), but low pre-
dency labels); the occurrence of certain tags between .’ '

) 0 .
head and child; surface features like the lerfiayad cision (72.4%), due most likely to the dependency

, ) length bounds. Among the most frequent tags, our
the 3-character suffix. In some cases the children oef 9 g - q 9
seystem has most trouble finding the correct heads of

?ezoadnza:;hctoanzdsir;;r:ttﬁgether’ and in other C‘F’lsprsepositions (APPR), adverps (ADV), finite auxil-
: i . iary verbs (VAFIN), and conjunctions (KON), and
The highest-ranked features during training, fofinding the correct dependency labels for preposi-
all languages, are the parser and labeler probab”bnS nouns, and finite auxiliary verbs.
ities, followed byp(A; | tparent), p(direction | ' ’

tparent), p(label | labelpred, labelsuce, subcat), @nd i the most frequent head attachment errors. In
p(coarse(t) | D,coarse(tparent), Betw), where

B . i an | fh many of these cases, our system does not learn
etw IS TRUE iff an Instance of the coarse tag typey, o ¢ e difference between enumerations that are

with the highest mutual information between its Ie(%

The German conjunctioaond is the single word

. ) X " ‘headed byA in A und B with two childrenund and
:23 ir;gr;]tec;(;ldren (usually verb) is between the chil on the right, and those headed Bywith undand

A as children on its left.

Feature and Model Selection For training speed ~ Unlike in some languages, our labeled oracle ac-

and to avoid overfitting, only a subset of the abov&Uracy is nearly as good as our unlabeled oracle ac-
curacy (Tab. 1, cols. 8, 5). Among the ten most fre-

"In training our system, we made a serious mistake in trainquent dependency labels, our system has the most

ing the reranker on only 200 sentences. As a result, our p:ﬁffﬁculty with accusative objects (OA), genitive at-
testing estimates of performance (on data reserved for mo el !

selection) were very bad. The reranker, depending on conditiofibutes (AG), and postnominal modifiers (MNR).

had only 2-20 times as many examples as it had parametersAgcusative objects are often mistagged as subject
estimate, with overfitting as the result. -

8The first 4 characters of a word are used where the lemma °The exception is Chinese, where the training set for rerank-
is not available. ing is especially small (see fn. 7).



(SB), noun kernel modifiers (NK), or AG. About 8 Conclusion

32% of the postnominal modifier relatioreiif Platz

in der Geschichte‘a place in history’) are labeled The tradeoff between speed and accuracy is famil-
as modifiersiq die Stadt fliegenfly into the city’). iar to any parsing researcher. Rather than starting
Genitive attributes are often tagged as NK since bothith an accurate system and then applying corpus-
are frequently realized as nouns. specific speedups, we start by imposing carefully-
chosen constraints (projectivity and length bounds)
for speed, leaving accuracy to the parsing and
reranking models. As it stands, our system performs
poorly, largely because the estimation is not state-

As with German, the greatest portion of Arabic €rof-the-art, but also in part due to dependency length

rors (40%) involved attachments to 3. Prepositiongq, nqs which are rather coarse at present. Better re-

are consistently attached too low and accounted Q15 are achievable by picking different bounds for
26% of errors. For example, if a form in construCljiterent head tags (Eisner and N. Smith, 2005). Ac-
(idafa) governed both a following noun phrase anq,; ey should not be difficult to improve using bet-

a prepositional phrase, the preposition usually aa; |earning methods, especially given our models’
taches to the lower noun phrase. Similarly, PrepQinear-time inference and decoding.
sitions usually attach to nearby noun phrases when

they should attach to verbs farther to the left.

7 Error Analysis: Arabic
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