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Abstract achieves moderate but encouraging results, with an

overall labeled attachment accuracy of 74.72% on
We describe an online learning depen-  the CoNLL-X test set.

dency parser for the CoNLL-X Shared
Task, based on the bottom-up projective 2 Parsing and Learning Algorithms

algorithm of Eisner (2000). We experi-  This section describes the three main components of
ment with a large feature set that mod-  the dependency parsing: the parsing model, the pars-

els: the tokens involved in dependencies  ing algorithm, and the learning algorithm.
and their immediate context, the surface-

text distance between tokens, and the syn- 2.1 Model

tactic context dominated by each depen-  |et1,..., L be the dependency labels, defined be-
dency. In experiments, the treatment of  forehand. Letr be a sentence of words,z; . .. z,,.
multilingual information was totally blind. Finally, let)(z) be the space of well-formed depen-
dency trees for. A dependency treg € Y(z) is a
1 Introduction set ofn dependencies of the forfh, m, ], where

: . is the index of the head word) (< h < n,
We describe a learning system for the CONI'L-)</Lvhere 0 means root)p is the index of the modi-

Shared Task on multilingual o!ependency parsinﬁer word (L < m < n), andl is the dependency
(Buchholz et al., 2006), for 13 different languages. label (L < I <_L) E_ach ,vvord of: participates as a
Our system is a bottom-up projective dependen%odifier_in e;actl'y one dependencymf

parser, based on the cubic-time algorithm by Eisner Our dependency parselp, returns the maximum

(1996; 2000). The parser uses a learning functiogCored dependency tree for a senterce
that scores all possible labeled dependencies. This P y

function is trained globally with online Perceptron,
. n o dp(z,w) = arg max Z sco([h, m, 1], z,y,w)
by parsing training sentences and correcting its pa- yeV(x)
i . [h,m,l]ey

rameters based on the parsing mistakes. The features
used to score, while based on the previous work in In the formula, w is the weight vector of the
dependency parsing (McDonald et al., 2005), introparser, that is, the set of parameters used to score de-
duce some novel concepts such as better codificatipendencies during the parsing process. It is formed
of context and surface distances, and runtime infoby a concatenation of L weight vectors, one for each
mation from dependencies previously parsed. dependency labely = (w',... ,w!,...,wl). We

Regarding experimentation, the treatment of mulassume a feature extraction functien,that repre-
tilingual data has been totally blind, with no spesents an unlabeled dependemkym| in a vector of
cial processing or features that depend on the la> features. Each of the/ has D parameters or
guage. Considering its simplicity, our systendimensions, one for each feature. Thus, the global



weight vectorw maintainsL x D parameters. The w=0
fort=1toT

scoring function is defined as follows: foreachtraining examplez, y) do
g = dp(z,w) )
SCO([h7m7 l]axay7w) = d)(hvmaxay) 'Wl foreach [h’m’l] € y\y do

Wl = Wl + ¢(h7 mvxvg)
foreach [h,m,l] € §\y do
Wl = Wl - ¢(h‘7 m,x, g)
returnw

Note that the scoring of a dependency makes use
of y, the tree that contains the dependency. As de-
scribed next, at scoring timgjust contains the de-
pendencies found betweérandm.

Figure 1: Pseudocode of the Perceptron Algorithffi.is a
parameter that indicates the number of epochs that the algorithm
cycles the training set.

We use the cubic-time algorithm for dependency
parsing proposed by Eisner (1996; 2000). This parE—

2.2 Parsing Algorithm

: : C artial parsing (Carreras et al., 2005) or even depen-
ing algorithm assumes that trees are projective, th

i d denci . While thi Ency parsing (McDonald et al., 2005).
IS, dependencies never cross in a tree. lle this as-Perceptron is an online learning algorithm that

sumptlor! clearly does nothold in the CONLL-.X d_ata1earns by correcting mistakes made by the parser
(only Chinese trees are actually 100% prqectwe}Nhen visiting training sentences. The algorithm is

we chose this algorithm for simplicity. As it will be extremely simple, and its cost in time and memory

shown, the percentage of non-projective dependef}findependent from the size of the training corpora.

Clk?ts IS hot very hc;gg]’ ar;d clea|_fly ';he error rates weg, terms of efficiency, though, the parsing algorithm
obtain are caused by other major factors. must be run at every training sentence.

The parser is a bottom-up dynamic programming Our system uses the regular Perceptron working

algorithm that visits sentence spans of increasirm primal form. Figure 1 sketches the code. Given

length. In a given shan, from wordto worde, it the number of languages and dependency types in
completes two partial dependency trees that COVRLe CONLL-X exercise, we found prohibitive to

all words within the span: one rooted a@nd the work with a dual version of Perceptron, that would

oth_er rooted at. This is done in _tWO steps. First, theallow the use of a kernel function to expand features.
optimal dependency structure internal to the span is

chosen, by combining partial solutions from inter3 Features
nal spans. This structure is completed with a depeq_

) ) . he feature extraction functiom(h, m, z,y), rep-
dency covering the whole span, in two ways: from .
. __resents in a feature vector a dependency from word
s to e, and frome to s. In each case, the scoring

O PSitiOﬂSm to h, in the context of a sentenesand a
function is used to select the dependency label thg L T
ependency treg. As usual in discriminative learn-

maximizes the score. ing, we work with binary indicator features: if a cer-
We take advantage of this two-step processing og’ y |

. . . ain feature is observed in an instance, the value of
introduce features for the scoring function that rep- o . :

. . that feature is 1; otherwise, the value is 0. For con-

resentsomeof the internal dependencies of the span . , "

. . venience, we describgas a composition of several

(see Section 3 for details). It has to be noted th%{ . .

) . ase feature extraction functions. Each extracts a

the parsing algorithm we use does not score depen- L .

. S number of disjoint features. The feature extraction

dencies on top of every possible internal structur

Thus, by conditioning on features extracted frgm ?unctloncz)(h, m, z,y) is calculated as:

we are making the search approximative. Ptoken (T, h, “head”) + Grera(z, h, “head”) +
thoken (.%', m, “mOd”) + thct:v (-1'7 m, “mOd”) +
2.3 Perceptron Learning Gdep(T, mmdp ) + Gdetz (T, mmdp, ) +

As learning algorithm, we use Perceptron tailored Pdist (T, MMdpm) + Gruntime (€, Y, by M, dpm)

for structured scenarios, proposed by Collins (2002vhere ¢k, €Xtracts context-independent token
In recent years, Perceptron has been used in a nufeatures, ¢:.;. computes context-based token fea-
ber of Natural Language Learning works, such as itures, ¢4, computes context-independent depen-



¢token (X, i7 type)

type - w(x:)
type - 1(z;)
type - cp(w;)
type - fp(z:)

(z)diSt (X7 ia.j? dir)

foreach(ke (i, §)): dir - cp(z:) - cp(xr) - cp(;)

number of tokens betweerand;
number of verbs betweerand;
number of coordinations betweemndj

foreachtns): type - ms(z;)
type - w(wi) - cp(xi)
foreachtns): type - w(x;) - ms(x;)

number of punctuations signs betweeand;

Table 3:Surface distance features between paimtsd;. Nu-

¢tctx(x, i, type) meric features are discretized using “binning” to a small number
¢t0ken( -1 typ@ : StT’L’ILg(’l: - 1)) of intervals.
Ptoken(T,1 — 2, type - string(i — 2))
qﬁwken(x i —|— 1, type - strz:ng(Z: +1)) Gruntime(X,y, h, m, dir)
GPtoken (T, + 2, type - string(i + 2)) letly,...,ls be the labels of dependencies
type - cp(w,) ep(wiz1)

in y that attach td: and are found fromn to h.
foreachi, 1 <i<S : dir - cp(zn) - cp(xm) - ls

type - cp(xi) - ep(xi—1) - cp(zi—2)
type-cp(;u) ep(z;

+1 if S>1,dir-cp(xn) - eplxzm) -1
type - cp(@i) - cp(Tit1) - cp(Tiv2) if $>2, dir - pgng pémmg li Iy
if S>3 ,dir-cp(xn) - cp(xm) 11 -1la-1
Table 1: Token features, both context-independeit,fc) it S>4. diT.cng’% Ezmg li lz 12 Iy
and context-basedp{.:»). type - token type, i.e. “head” or it S=0,dir - cp(zn) - cp(zm) - null
“mod”, w - token word/ - token lemmagp - token coarse part- if0<S<4,dir-

of-speech (POS) tagfp - token fine-grained POS tagns -
token morpho-syntactic feature. Theperator stands for string
concatenation.

cp(xh) cp(zm) - regular
if S>4,dir-cp(xp) - cp(xm) - big

Table 4:Runtime features of betweenn andh.

Odep (X, 1, j, dir)
dir ’d;‘;,(?;;) (JCCP)("”Z)('LU )( )(;p)( ) tant for the work presented here is that we construct
dir - w(xf) w(z;) - p(xj) explicit feature combinations (see above tables) be-
dir - w(;) - cp(x:) - cp(z;) cause we configured our linear predictors in primal
dir - dﬁ(?i(';l)’(f”;)(;‘;(xj ) form, in order to keep training times reasonable.
dir - cp(mz-) : cp(zzjj) While the features presented in Tables 1, 2, and 3
Pdctx (X, 1, j, dir) are straightforward exploitations of the training data,

-ep(wj—1) - ep(wy)
CP(% 1) - ep(x))
ep(y) - ep(j41)
ep(y) - ep(wjt1)

dir - cp(x:) - ep(zit1

dir - op(re 1) - eplen the runtime featuresi...+ime) take a different, and
(
(

to our knowledge novel in the proposed framework,
approach: for a dependency framto h, they rep-
) resent the dependencies found betweerand i
Table 2: Dependency features, both context-lndepe‘nder}hat attach also td. The d ibed in detail
(¢4ep) and context-basedf.¢..), between two points and j, y are described in detai
i < j. dir - dependency direction: left to right or right to left. in Table 4. As we have noted above, these fea-
tures are possible because of the parsing scheme,
which scores a dependency only after all dependen-
dency features,¢q., €xtracts contextual depen-cies spanned by it are scored.
dency featurespy;s; calculates surface-distance fea-
tures between the two tokens, and finally,..ine 4 EXPeriments and Results
computes dynamic features at runtime based on thge experimented on the 13 languages proposed
dependencies previously built for the given intervain the CoNLL-X Shared Task (Hdjiet al., 2004;
during the bottom-up parsingnmdy, ,,, is a short-  Simov et al., 2005; Simov and Osenova, 2003; Chen
hand for a triple of numbersnin(h, m), max(h, m) et al., 2003; Bhmo\a et al., 2003; Kromann, 2003;
anddy, ., (a sign indicating the direction, i.e1if van der Beek et al.,, 2002; Brants et al., 2002;
m < h, and—1 otherwise). Kawata and Bartels, 2000; Afonso et al., 2002;
We detail the token features in Table 1, the deperzeroski et al., 2006; Civit and Mar2002; Nilsson
dency features in Table 2, and the surface-distanet¢al., 2005; Oflazer et al., 2003; Atalay et al., 2003).
features in Table 3. Most of these features are ir@ur approach to deal with many different languages
spired by previous work in dependency parsing (Mcwas totally blind: we did not inspect the data to mo-
Donald et al., 2005; Collins, 1999). What is impor-tivate language-specific features or processes.

dir - cp
dir - ep(zi—1) - ep(x;) -




GOLD UAS LAS

We did feature filtering based on frequency

counts. Our feature extraction patterns, that ex- 2?;%?5'% 33 '752 783 '§51 23;32
ploit both lexicalization and combination, gener- Chinese 100.0 88.65 83.68
ate millions of feature dimensions, even with small ggﬁfshh gg'zg ;;-g? 38'3421
datasets. Our criterion was to use at most 500,000 Dutch 9456 71.39 67.25
different dimensions in each label weight vector. For German 98.84  85.90 82.41
each language, we generated all possible features, g%?&%iseie 33.'515 89?'77233:5
and then filtered out most of them according to the Slovene 098.38 77.72 68.43
counts. Depending on the number of training sen- Spanish 99.96 80.77 77.16
tences, our counts cut-offs vary from 3 to 15. %‘;ﬁgﬁh 993 ff’ %&4 ;g:gg

For each language, we held out from training data “Overall 98.68 81.19 74.72

a portion of sentences (300, 500 or 1000 depend-
ing on the total number of sentences) and trained K:0I€ 5: Results of the system on test data. GOLD: labeled
. attachment score using gold scoring functions; the loss in ac-
model for up to 20 epochs in the rest of the data. Weuracy is caused by the projectivity assumption made by the
evaluated each model on the held out data for diffeparser. UAS : unlabeled attachment score. LAS : labeled at-
fa ichment score, the measure to compare systems in CoNLL-X.
e_nt numb_er of training epochs, and selected the Ogulgarian is excluded from overall scores.
timum point. Then, we retrained each model on the
whole training set for the selected number of epochs. o % % ” %
Table 5 shows the attachment scores obtained Turkish 33.02 4800 ©55.33 57.16 58.06
by our system, both unlabeled (UAS) and labeled ggft[‘]';:‘ese 1280 5380 0818 A LR
(LAS_). The_first column (GQLD) pres_ents the LA$ Japanese 3878 7813 8687 8827 88.13
obtained with a perfect scoring function: the loss in
accuracy is related to the projectivity assumption ofable 6:Labeled attachment scores at increasing feature con-
. . igurations. ¢ uses onlyg:.ken at the head and modifiets,
our parsing a_lgorlthm' Dutch tu'ms out tO' be th xtendsp, with ¢q.p. ¢3 incorporates context features, namely
most non-projective language, with a loss in accug,... at the head and modifier, amgh.... 4 extendsps with
racy of 5.44%. |In our opinion the loss in other lan<dist- Finally, the final feature extraction functiahincreases
. . ! . . .. with runtime -
guages is relatively small, and is not a major I|m|ta5254 Prunt
tion to achieve a high performance in the task. Our
i 0, i . .
system achieves an overall LAS of 74.72%, withoyr generic factors that we believe caused the most
subs_tantlal vgrlatlon from one language to anotheg, ors across all languages:
Turkish, Arabic, Dutch, Slovene and Czech turn out

to be the most difficult languages for our system>12€ Of training sets the relation between the

with accuracies below 70%. The easiest languagdnount of training data and performance is strongly
is clearly Japanese, with a LAS of 88.13%, followeUPPorted in learning theory. We saw the same re-

by Chinese, Portuguese, Bulgarian and German tion in this evaluation: for Turkish, Arabic, and
with LAS above 80%. ' Slovene, languages with limited number of train-

Jng sentences, our system obtains accuracies below

traction functions. For four languages, we trained 0%0- HOWwever, one can not argue that the training

models that increasingly incorporate base functionS12€ IS the only cause of errors: Czech has the largest
It can be shown that all functions contribute to a betr@iNing set, and our accuracy is also below 70%.

ter score. Contextual featuressj bring the system Modeling large distance dependencies even

to the final order of performance, while distangg)( though we include features to model the distance

and runtime ¢) features still yield substantial im- between two dependency words,{;;), our analy-

Table 6 shows the contribution of base feature e

provements. sis indicates that these features fail to capture all the
] ) intricacies that exist in large-distance dependencies.
5 Analysis and Conclusions Table 7 shows that, for the two languages analyzed,

Itis difficult to explain the difference in performancethe system performance decreases sharply as the dis-
across languages. Nevertheless, we have identifieghce between dependency tokens increases.



to root 1 2 3—6 | >=7 Fully One token Fully
Spanish 83.04 | 93.44 | 86.46 | 69.97 | 61.48 lexicalized | unlexicalized | unlexicalized
Portuguese| 90.81 | 96.49 | 90.79 | 74.76 | 69.01 Spanish 34.80% 54.77% 10.43%
Portuguese  42.94% 49.26% 7.80%

Table 7:Fs-; score related to dependency token distance.
Table 8:Degree of dependency lexicalization.

Modeling context many attachment decisions, e.g.

prepositional attachment, depend on additional co@ccuracy of 74.81% LAS for Spanish (2.33&twer
text outside of the two dependency tokens. To adhan the overall score) and of 83.77% LAS for Por-
dress this issue, we have included in our model feduguese (0.40% higher than the overall score). This

tures to capture context, both statig, andre) analysis indicates that our model has limited gains
’ X ClT . . . .

and dynamic @,..;mc). Nevertheless, our error (If @ny) from lexicalization.

analysis indicates that our model is not rich enough N order to improve the quality of our dependency

to capture the context required to address compld@ser we will focus on previously reported issues

dependencies. All the top 5 focus words with thdhat can be addressed by a parsing model: large-
majority of errors for Spanish and Portuguese — »distance dependencies, better modeling of context,

“de”, “a”, “en”, and “que” for Spanish, and “em”, and non-projective parsing algorithms.
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and the accuracy we obtain is below 70%.
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