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Abstract

We present a simple context-free gram-
matical inference algorithm, and prove
that it is capable of learning an inter-
esting subclass of context-free languages.
We also demonstrate that an implementa-
tion of this algorithm is capable of learn-
ing auxiliary fronting in polar interroga-
tives (AFIPI) in English. This has been
one of the most important test cases in
language acquisition over the last few
decades. We demonstrate that learning
can proceed even in the complete absence
of examples of particular constructions,
and thus that debates about the frequency
of occurrence of such constructions are ir-
relevant. We discuss the implications of
this on the type of innate learning biases
that must be hypothesized to explain first
language acquisition.

1 Introduction

For some years, a particular set of examples has
been used to provide support for nativist theories
of first language acquisition (FLA). These exam-
ples, which hinge around auxiliary inversion in the
formation of questions in English, have been con-
sidered to provide a strong argument in favour of
the nativist claim: that FLA proceeds primarily
through innately specified domain specific mecha-
nisms or knowledge, rather than through the oper-
ation of general-purpose cognitive mechanisms. A

key point of empirical debate is the frequency of oc-
currence of the forms in question. If these are van-
ishingly rare, or non-existent in the primary linguis-
tic data, and yet children acquire the construction in
question, then the hypothesis that they have innate
knowledge would be supported. But this rests on the
assumption that examples of that specific construc-
tion are necessary for learning to proceed. In this
paper we show that this assumption is false: that this
particular construction can be learned without the
learner being exposed to any examples of that par-
ticular type. Our demonstration is primarily mathe-
matical/computational: we present a simple experi-
ment that demonstrates the applicability of this ap-
proach to this particular problem neatly, but the data
we use is not intended to be a realistic representation
of the primary linguistic data, nor is the particular
algorithm we use suitable for large scale grammar
induction.

We present a general purpose context-free gram-
matical algorithm that is provably correct under a
certain learning criterion. This algorithm incorpo-
rates no domain specific knowledge: it has no spe-
cific information about language; no knowledge of
X-bar schemas, no hidden sources of information to
reveal the structure. It operates purely on unanno-
tated strings of raw text. Obviously, as all learn-
ing algorithms do, it has an implicit learning bias.
This very simple algorithm has a particularly clear
bias, with a simple mathematical description, that al-
lows a remarkably simple characterisation of the set
of languages that it can learn. This algorithm does
not use a statistical learning paradigm that has to be
tested on large quantities of data. Rather it uses a
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symbolic learning paradigm, that works efficiently
with very small quantities of data, while being very
sensitive to noise. We discuss this choice in some
depth below.

For reasons that were first pointed out by Chom-
sky (Chomsky, 1975, pages 129–137), algorithms
of this type are not capable of learning all of nat-
ural language. It turns out, however, that algorithms
based on this approach are sufficiently strong to
learn some key properties of language, such as the
correct rule for forming polar questions.

In the next section we shall describe the dispute
briefly; in the subsequent sections we will describe
the algorithm we use, and the experiments we have
performed.

2 The Dispute

We will present the dispute in traditional terms,
though later we shall analyse some of the assump-
tions implicit in this description. In English, po-
lar interrogatives (yes/no questions) are formed by
fronting an auxiliary, and adding a dummy auxiliary
“do” if the main verb is not an auxiliary. For exam-
ple,

Example 1a The man is hungry.

Example 1b Is the man hungry?
When the subject NP has a relative clause that also

contains an auxiliary, the auxiliary that is moved is
not the auxiliary in the relative clause, but the one in
the main (matrix) clause.

Example 2a The man who is eating is hungry.

Example 2b Is the man who is eating hungry?
An alternative rule would be to move the first oc-

curring auxiliary, i.e. the one in the relative clause,
which would produce the form

Example 2c Is the man who eating is hungry?
In some sense, there is no reason that children

should favour the correct rule, rather than the in-
correct one, since they are both of similar com-
plexity and so on. Yet children do in fact, when
provided with the appropriate context, produce sen-
tences of the form of Example 2b, and rarely if ever
produce errors of the form Example 2c (Crain and
Nakayama, 1987). The problem is how to account
for this phenomenon.

Chomsky claimed first, that sentences of the type
in Example 2b are vanishingly rare in the linguis-
tic environment that children are exposed to, yet
when tested they unfailingly produce the correct
form rather than the incorrect Example 2c. This is
put forward as strong evidence in favour of innately
specified language specific knowledge: we shall re-
fer to this view as linguistic nativism.

In a special volume of the Linguistic Review, Pul-
lum and Scholz (Pullum and Scholz, 2002), showed
that in fact sentences of this type are not rare at all.
Much discussion ensued on this empirical question
and the consequences of this in the context of ar-
guments for linguistic nativism. These debates re-
volved around both the methodology employed in
the study, and also the consequences of such claims
for nativist theories. It is fair to say that in spite
of the strength of Pullum and Scholz’s arguments,
nativists remained completely unconvinced by the
overall argument.

(Reali and Christiansen, 2004) present a possible
solution to this problem. They claim that local statis-
tics, effectively n-grams, can be sufficient to indi-
cate to the learner which alternative should be pre-
ferred. However this argument has been carefully re-
butted by (Kam et al., 2005), who show that this ar-
gument relies purely on a phonological coincidence
in English. This is unsurprising since it is implausi-
ble that a flat, finite-state model should be powerful
enough to model a phenomenon that is clearly struc-
ture dependent in this way.

In this paper we argue that the discussion about
the rarity of sentences that exhibit this particular
structure is irrelevant: we show that simple gram-
matical inference algorithms can learn this property
even in the complete absence of sentences of this
particular type. Thus the issue as to how frequently
an infant child will see them is a moot point.

3 Algorithm

Context-free grammatical inference algorithms are
explored in two different communities: in gram-
matical inference and in NLP. The task in NLP is
normally taken to be one of recovering appropri-
ate annotations (Smith and Eisner, 2005) that nor-
mally represent constituent structure (strong learn-
ing), while in grammatical inference, researchers
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are more interested in merely identifying the lan-
guage (weak learning). In both communities, the
best performing algorithms that learn from raw posi-
tive data only 1, generally rely on some combination
of three heuristics: frequency, information theoretic
measures of constituency, and finally substitutabil-
ity. 2 The first rests on the observation that strings
of words generated by constituents are likely to oc-
cur more frequently than by chance. The second
heuristic looks for information theoretic measures
that may predict boundaries, such as drops in condi-
tional entropy. The third method which is the foun-
dation of the algorithm we use, is based on the distri-
butional analysis of Harris (Harris, 1954). This prin-
ciple has been appealed to by many researchers in
the field of grammatical inference, but these appeals
have normally been informal and heuristic (van Za-
anen, 2000).

In its crudest form we can define it as follows:
given two sentences “I saw a cat over there”, and “I
saw a dog over there” the learner will hypothesize
that “cat” and “dog” are similar, since they appear
in the same context “I saw a __ there”. Pairs of
sentences of this form can be taken as evidence that
two words, or strings of words are substitutable.

3.1 Preliminaries

We briefly define some notation.
An alphabet Σ is a finite nonempty set of sym-

bols called letters. A string w over Σ is a finite se-
quence w = a1a2 . . . an of letters. Let |w| denote
the length of w. In the following, letters will be in-
dicated by a, b, c, . . ., strings by u, v, . . . , z, and the
empty string by λ. Let Σ∗ be the set of all strings,
the free monoid generated by Σ. By a language we
mean any subset L ⊆ Σ∗. The set of all substrings
of a language L is denoted Sub(L) = {u ∈ Σ+ :
∃l, r, lur ∈ L} (notice that the empty word does not
belong to Sub(L)). We shall assume an order ≺ or
� on Σ which we shall extend to Σ∗ in the normal
way by saying that u ≺ v if |u| < |v| or |u| = |v|
and u is lexicographically before v.

A grammar is a quadruple G = 〈V, Σ, P, S〉
where Σ is a finite alphabet of terminal symbols, V

1We do not consider in this paper the complex and con-
tentious issues around negative data.

2For completeness we should include lexical dependencies
or attraction.

is a finite alphabet of variables or non-terminals, P
is a finite set of production rules, and S ∈ V is a
start symbol.

If P ⊆ V × (Σ∪V )+ then the grammar is said to
be context-free (CF), and we will write the produc-
tions as T → w.

We will write uTv ⇒ uwv when T → w ∈ P .
∗

⇒ is the reflexive and transitive closure of ⇒.
In general, the definition of a class L relies on

a class R of abstract machines, here called rep-
resentations, together with a function L from rep-
resentations to languages, that characterize all and
only the languages of L: (1) ∀R ∈ R,L(R) ∈ L
and (2) ∀L ∈ L, ∃R ∈ R such that L(R) = L.
Two representations R1 and R2 are equivalent iff
L(R1) = L(R2).

3.2 Learning

We now define our learning criterion. This is identi-
fication in the limit from positive text (Gold, 1967),
with polynomial bounds on data and computation,
but not on errors of prediction (de la Higuera, 1997).

A learning algorithm A for a class of represen-
tations R, is an algorithm that computes a function
from a finite sequence of strings s1, . . . , sn toR. We
define a presentation of a language L to be an infinite
sequence of elements of L such that every element
of L occurs at least once. Given a presentation, we
can consider the sequence of hypotheses that the al-
gorithm produces, writing Rn = A(s1, . . . sn) for
the nth such hypothesis.

The algorithm A is said to identify the class R in
the limit if for every R ∈ R, for every presentation
of L(R), there is an N such that for all n > N ,
Rn = RN and L(R) = L(RN ).

We further require that the algorithm needs only
polynomially bounded amounts of data and compu-
tation. We use the slightly weaker notion defined by
de la Higuera (de la Higuera, 1997).

Definition A representation class R is identifiable
in the limit from positive data with polynomial time
and data iff there exist two polynomials p(), q() and
an algorithm A such that S ⊆ L(R)

1. Given a positive sample S of size m A returns
a representation R ∈ R in time p(m), such that

2. For each representation R of size n there exists
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a characteristic set CS of size less than q(n)
such that if CS ⊆ S, A returns a representation
R′ such that L(R) = L(R′).

3.3 Distributional learning

The key to the Harris approach for learning a lan-
guage L, is to look at pairs of strings u and v and to
see whether they occur in the same contexts; that is
to say, to look for pairs of strings of the form lur and
lvr that are both in L. This can be taken as evidence
that there is a non-terminal symbol that generates
both strings. In the informal descriptions of this that
appear in Harris’s work, there is an ambiguity be-
tween two ideas. The first is that they should appear
in all the same contexts; and the second is that they
should appear in some of the same contexts. We can
write the first criterion as follows:

∀l, r lur ∈ L if and only if lvr ∈ L (1)

This has also been known in language theory by the
name syntactic congruence, and can be written u ≡L

v.
The second, weaker, criterion is

∃l, r lur ∈ L and lvr ∈ L (2)

We call this weak substitutability and write it as
u

.
=L v. Clearly u ≡L v implies u

.
=L v when u is

a substring of the language. Any two strings that do
not occur as substrings of the language are obviously
syntactically congruent but not weakly substitutable.

First of all, observe that syntactic congruence is a
purely language theoretic notion that makes no ref-
erence to the grammatical representation of the lan-
guage, but only to the set of strings that occur in
it. However there is an obvious problem: syntac-
tic congruence tells us something very useful about
the language, but all we can observe is weak substi-
tutability.

When working within a Gold-style identification
in the limit (IIL) paradigm, we cannot rely on statis-
tical properties of the input sample, since they will
in general not be generated by random draws from a
fixed distribution. This, as is well known, severely
limits the class of languages that can be learned un-
der this paradigm. However, the comparative sim-
plicity of the IIL paradigm in the form when there
are polynomial constraints on size of characteristic

sets and computation(de la Higuera, 1997) makes it
a suitable starting point for analysis.

Given these restrictions, one solution to this prob-
lem is simply to define a class of languages where
substitutability implies congruence. We call these
the substitutable languages: A language L is substi-
tutable if and only if for every pair of strings u, v,
u

.
=L v implies u ≡L v. This rather radical so-

lution clearly rules out the syntax of natural lan-
guages, at least if we consider them as strings of
raw words, rather than as strings of lexical or syn-
tactic categories. Lexical ambiguity alone violates
this requirement: consider the sentences “The rose
died”, “The cat died” and “The cat rose from its bas-
ket”. A more serious problem is pairs of sentences
like “John is hungry” and “John is running”, where
it is not ambiguity in the syntactic category of the
word that causes the problem, but rather ambigu-
ity in the context. Using this assumption, whether
it is true or false, we can then construct a simple
algorithm for grammatical inference, based purely
on the idea that whenever we find a pair of strings
that are weakly substitutable, we can generalise the
hypothesized language so that they are syntactically
congruent.

The algorithm proceeds by constructing a graph
where every substring in the sample defines a node.
An arc is drawn between two nodes if and only if
the two nodes are weakly substitutable with respect
to the sample, i.e. there is an arc between u and v if
and only if we have observed in the sample strings
of the form lur and lvr. Clearly all of the strings in
the sample will form a clique in this graph (consider
when l and r are both empty strings). The connected
components of this graph can be computed in time
polynomial in the total size of the sample. If the
language is substitutable then each of these compo-
nents will correspond to a congruence class of the
language.

There are two ways of doing this: one way, which
is perhaps the purest involves defining a reduction
system or semi-Thue system which directly captures
this generalisation process. The second way, which
we present here, will be more familiar to computa-
tional linguists, and involves constructing a gram-
mar.
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3.4 Grammar construction

Simply knowing the syntactic congruence might not
appear to be enough to learn a context-free gram-
mar, but in fact it is. In fact given the syntactic con-
gruence, and a sample of the language, we can sim-
ply write down a grammar in Chomsky normal form,
and under quite weak assumptions this grammar will
converge to a correct grammar for the language.

This construction relies on a simple property of
the syntactic congruence, namely that is in fact a
congruence: i.e.,

u ≡L v implies ∀l, r lur ≡L lvr

We define the syntactic monoid to be the quo-
tient of the monoid Σ∗/ ≡L. The monoid operation
[u][v] = [uv] is well defined since if u ≡L u′ and
v ≡L v′ then uv ≡L u′v′.

We can construct a grammar in the following triv-
ial way, from a sample of strings where we are given
the syntactic congruence.

• The non-terminals of the grammar are iden-
tified with the congruence classes of the lan-
guage.

• For any string w = uv , we add a production
[w] → [u][v].

• For all strings a of length one (i.e. letters of Σ),
we add productions of the form [a] → a.

• The start symbol is the congruence class which
contains all the strings of the language.

This defines a grammar in CNF. At first sight, this
construction might appear to be completely vacu-
ous, and not to define any strings beyond those in
the sample. The situation where it generalises is
when two different strings are congruent: if uv =
w ≡ w′ = u′v′ then we will have two different rules
[w] → [u][v] and [w] → [u′][v′], since [w] is the
same non-terminal as [w′].

A striking feature of this algorithm is that it makes
no attempt to identify which of these congruence
classes correspond to non-terminals in the target
grammar. Indeed that is to some extent an ill-posed
question. There are many different ways of assign-
ing constituent structure to sentences, and indeed

some reputable theories of syntax, such as depen-
dency grammars, dispense with the notion of con-
stituent structure all together. De facto standards,
such as the Penn treebank annotations are a some-
what arbitrary compromise among many different
possible analyses. This algorithm instead relies on
the syntactic monoid, which expresses the combina-
torial structure of the language in its purest form.

3.5 Proof

We will now present our main result, with an outline
proof. For a full proof the reader is referred to (Clark
and Eyraud, 2005).

Theorem 1 This algorithm polynomially identi-
fies in the limit the class of substitutable context-free
languages.

Proof (Sketch) We can assume without loss of
generality that the target grammar is in Chomsky
normal form. We first define a characteristic set, that
is to say a set of strings such that whenever the sam-
ple includes the characteristic set, the algorithm will
output a correct grammar.

We define w(α) ∈ Σ∗ to be the smallest word,
according to ≺, generated by α ∈ (Σ ∪ V )+. For
each non-terminal N ∈ V define c(N) to be the
smallest pair of terminal strings (l, r) (extending ≺
from Σ∗ to Σ∗ × Σ∗, in some way), such that S

∗

⇒
lNr.

We can now define the characteristic set CS =
{lwr|(N → α) ∈ P, (l, r) = c(N), w = w(α)}.
The cardinality of this set is at most |P | which
is clearly polynomially bounded. We observe that
the computations involved can all be polynomially
bounded in the total size of the sample.

We next show that whenever the algorithm en-
counters a sample that includes this characteristic
set, it outputs the right grammar. We write Ĝ for
the learned grammar. Suppose [u]

∗

⇒
Ĝ

v. Then
we can see that u ≡L v by induction on the max-
imum length of the derivation of v. At each step
we must use some rule [u′] ⇒ [v′][w′]. It is easy
to see that every rule of this type preserves the syn-
tactic congruence of the left and right sides of the
rules. Intuitively, the algorithm will never generate
too large a language, since the languages are sub-
stitutable. Conversely, if we have a derivation of a
string u with respect to the target grammar G, by
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construction of the characteristic set, we will have,
for every production L → MN in the target gram-
mar, a production in the hypothesized grammar of
the form [w(L)] → [w(M)][w(N)], and for every
production of the form L → a we have a produc-
tion [w(L)] → a. A simple recursive argument
shows that the hypothesized grammar will generate
all the strings in the target language. Thus the gram-
mar will generate all and only the strings required
(QED).

3.6 Related work

This is the first provably correct and efficient gram-
matical inference algorithm for a linguistically in-
teresting class of context-free grammars (but see for
example (Yokomori, 2003) on the class of very sim-
ple grammars). It can also be compared to An-
gluin’s famous work on reversible grammars (An-
gluin, 1982) which inspired a similar paper(Pilato
and Berwick, 1985).

4 Experiments

We decided to see whether this algorithm without
modification could shed some light on the debate
discussed above. The experiments we present here
are not intended to be an exhaustive test of the learn-
ability of natural language. The focus is on deter-
mining whether learning can proceed in the absence
of positive samples, and given only a very weak gen-
eral purpose bias.

4.1 Implementation

We have implemented the algorithm described
above. There are a number of algorithmic issues
that were addressed. First, in order to find which
pairs of strings are substitutable, the naive approach
would be to compare strings pairwise which would
be quadratic in the number of sentences. A more
efficient approach maintains a hashtable mapping
from contexts to congruence classes. Caching hash-
codes, and using a union-find algorithm for merging
classes allows an algorithm that is effectively linear
in the number of sentences.

In order to handle large data sets with thousands
of sentences, it was necessary to modify the al-
gorithm in various ways which slightly altered its
formal properties. However for the experiments
reported here we used a version which performs

the man who is hungry died .
the man ordered dinner .
the man died .
the man is hungry .
is the man hungry ?
the man is ordering dinner .
is the man who is hungry ordering dinner ?
∗is the man who hungry is ordering dinner ?

Table 1: Auxiliary fronting data set. Examples
above the line were presented to the algorithm dur-
ing the training phase, and it was tested on examples
below the line.

exactly in line with the mathematical description
above.

4.2 Data

For clarity of exposition, we have used extremely
small artificial data-sets, consisting only of sen-
tences of types that would indubitably occur in the
linguistic experience of a child.

Our first experiments were intended to determine
whether the algorithm could determine the correct
form of a polar question when the noun phrase had a
relative clause, even when the algorithm was not ex-
posed to any examples of that sort of sentence. We
accordingly prepared a small data set shown in Ta-
ble 1. Above the line is the training data that the
algorithm was trained on. It was then tested on all of
the sentences, including the ones below the line. By
construction the algorithm would generate all sen-
tences it has already seen, so it scores correctly on
those. The learned grammar also correctly generated
the correct form and did not generate the final form.

We can see how this happens quite easily since the
simple nature of the algorithm allows a straightfor-
ward analysis. We can see that in the learned gram-
mar “the man” will be congruent to “the man who
is hungry”, since there is a pair of sentences which
differ only by this. Similarly, “hungry” will be con-
gruent to “ordering dinner”. Thus the sentence “is
the man hungry ?” which is in the language, will be
congruent to the correct sentence.

One of the derivations for this sentence would be:
[is the man hungry ?] → [is the man hungry] [?] →
[is the man] [hungry] [?] → [is] [the man] [hungry]
[?] → [is] [the man][who is hungry] [hungry] [?] →

130



it rains
it may rain
it may have rained
it may be raining
it has rained
it has been raining
it is raining
it may have been raining
∗it may have been rained
∗it may been have rain
∗it may have been rain

Table 2: English auxiliary data. Training data above
the line, and testing data below.

[is] [the man][who is hungry] [ordering dinner] [?].
Our second data set is shown in Table 2, and is a

fragment of the English auxiliary system. This has
also been claimed to be evidence in favour of na-
tivism. This was discussed in some detail by (Pilato
and Berwick, 1985). Again the algorithm correctly
learns.

5 Discussion

Chomsky was among the first to point out the limi-
tations of Harris’s approach, and it is certainly true
that the grammars produced from these toy exam-
ples overgenerate radically. On more realistic lan-
guage samples this algorithm would eventually start
to generate even the incorrect forms of polar ques-
tions.

Given the solution we propose it is worth look-
ing again and examining why nativists have felt that
AFIPI was such an important issue. It appears that
there are several different areas. First, the debate
has always focussed on how to construct the inter-
rogative from the declarative form. The problem
has been cast as finding which auxilary should be
“moved”. Implicit in this is the assumption that the
interrogative structure must be defined with refer-
ence to the declarative, one of the central assump-
tions of traditional transformational grammar. Now,
of course, given our knowledge of many differ-
ent formalisms which can correctly generate these
forms without movement we can see that this as-
sumption is false. There is of course a relation be-
tween these two sentences, a semantic one, but this

does not imply that there need be any particular syn-
tactic relation, and certainly not a “generative” rela-
tion.

Secondly, the view of learning algorithms is very
narrow. It is considered that only sentences of that
exact type could be relevant. We have demonstrated,
if nothing else, that that view is false. The distinction
can be learnt from a set of data that does not include
any example of the exact piece of data required: as
long as the various parts can be learned separately,
the combination will function in the natural way.

A more interesting question is the extent to which
the biases implicit in the learning algorithm are do-
main specific. Clearly the algorithm has a strong
bias. It overgeneralises massively. One of the advan-
tages of the algorithm for the purposes of this paper
is that its triviality allows a remarkably clear and ex-
plicit statement of its bias. But is this bias specific to
the domain of language? It in no way refers to any-
thing specific to the field of language, still less spe-
cific to human language – no references to parts of
speech, or phrases, or even hierarchical phrase struc-
ture. It is now widely recognised that this sort of re-
cursive structure is domain-general (Jackendoff and
Pinker, 2005).

We have selected for this demonstration an algo-
rithm from grammatical inference. A number of sta-
tistical models have been proposed over the last few
years by researchers such as (Klein and Manning,
2002; Klein and Manning, 2004) and (Solan et al.,
2005). These models impressively manage to ex-
tract significant structure from raw data. However,
for our purposes, neither of these models is suitable.
Klein and Manning’s model uses a variety of differ-
ent cues, which combine with some specific initial-
isation and smoothing, and an explicit constraint to
produce binary branching trees. Though very im-
pressive, the model is replete with domain-specific
biases and assumptions. Moreover, it does not learn
a language in the strict sense (a subset of the set of
all strings), though it would be a simple modification
to make it perform such a task. The model by Solan
et al. would be more suitable for this task, but again
the complexity of the algorithm, which has numer-
ous components and heuristics, and the lack of a the-
oretical justification for these heuristics again makes
the task of identifying exactly what these biases are,
and more importantly how domain specific they are,
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a very significant problem.
In this model, the bias of the algorithm is com-

pletely encapsulated in the assumption u
.
= v im-

plies u ≡ v. It is worth pointing out that this does
not even need hierarchical structure – the model
could be implemented purely as a reduction system
or semi-Thue system. The disadvantage of using
that approach is that it is possible to construct some
bizarre examples where the number of reductions
can be exponential.

Using statistical properties of the set of strings,
it is possible to extend these learnability results to
a more substantial class of context free languages,
though it is unlikely that these methods could be ex-
tended to a class that properly contains all natural
languages.

6 Conclusion

We have presented an analysis of the argument that
the acquisition of auxiliary fronting in polar inter-
rogatives supports linguistic nativism. Using a very
simple algorithm based on the ideas of Zellig Har-
ris, with a simple domain-general heuristic, we show
that the empirical question as to the frequency of oc-
currence of polar questions of a certain type in child-
directed speech is a moot point, since the distinction
in question can be learned even when no such sen-
tences occur.
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