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Abstract

Distributional approaches to grammar in-
duction are typically inefficient, enumer-
ating large numbers of candidate con-
stituents. In this paper, we describe a
simplified model of distributional analy-
sis which uses heuristics to reduce the
number of candidate constituents under
consideration. We apply this model to
a large corpus of over 400000 words of
written English, and evaluate the results
using EVALB. We show that the perfor-
mance of this approach is limited, provid-
ing a detailed analysis of learned structure
and a comparison with actual constituent-
context distributions. This motivates a
more structured approach, using a process
of attachment to form constituents from
their distributional components. Our find-
ings suggest that distributional methods
do not generalize enough to learn syntax
effectively from raw text, but that attach-
ment methods are more successful.

1 Introduction

Distributional approaches to grammar induction ex-
ploit the principle of substitutability: constituents of
the same type may be exchanged with one another
without affecting the syntax of the surrounding con-
text. Reversing this notion, if we can identify “sur-
rounding context” by observation, we can hypothe-
size that word sequences occurring in that context

will be constituents of the same type. Thus, distri-
butional methods can be used to segment text into
constituents and classify the results. This work fo-
cuses on distributional learning from raw text.

Various models of distributional analysis have
been used to induce syntactic structure, but most
use probabilistic metrics to decide between candi-
date constituents. We show that the efficiency of
these systems can be improved by exploiting some
properties of probable constituents, but also that this
reliance on probability is problematic for learning
from text. As a consequence, we propose an exten-
sion to strict distributional learning that incorporates
more information about constituent boundaries.

The remainder of this paper describes our expe-
riences with a heuristic system for grammar induc-
tion. We begin with a discussion of previous dis-
tributional approaches to grammar induction in Sec-
tion 2 and describe their implications in Section 3.
We then introduce a heuristic distributional system
in Section 4, which we analyze empirically against
a treebank. Poor system performance leads us to ex-
amine actual constituent-context distributions (Sec-
tion 5), the implications of which motivate a more
structured extension to our learning system, which
we describe and analyze in Section 6.

2 Previous approaches

Distributional methods analyze text byalignment,
aiming to find equivalence classes covering substi-
tutable units. We align common portions of texts
termedcontexts, leaving distinct contiguous word-
sequences, termedexpressions. An expression and
its context form analignment pattern, which is de-
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fined as:

Cleft | Expression | Cright (AP1)

From this alignment pattern, we can extract context-
free grammar rules:

NT → Expression1 ∨ ... ∨ Expressionn (1)

While the definition of expression is straightfor-
ward, the definition of context is problematic. We
would like as much context as possible, but word-
sequence contexts become less probable as their
length increases, making learning harder. Therefore,
simple models of context are preferred, although the
precise definition varies between systems.

Distributional approaches to grammar induction
fall into two categories, depending on their treat-
ment of nested structure. The first category cov-
ers Expectation-Maximization (EM) systems. These
systems propose constituents based on analysis of
text, then select anon-contradictory combination
of constituents for each sentence that maximizes a
given metric, usually parsing probability. EM has
the advantage that constituent probabilities are only
compared when constituents compete, which re-
moves the inherent bias towards shorter constituents,
which tend to have higher probability. However, EM
methods are more susceptible to data sparsity issues
associated with raw text, because there is no gener-
alization during constituent proposal.

Examples of EM learning systems are Context
Distribution Clustering (CDC) (Clark, 2001) and
Constituent-Context Model (CCM) (Klein, 2005,
Chapter 5), which avoid the aforementioned data-
sparsity issues by using a part-of-speech (POS)
tagged corpus, rather than raw text. Alignment
Based Learning (ABL) (van Zaanen, 2000) is the
only EM system applied directly to raw text. ABL
uses minimal String-Edit Distance between sen-
tences to propose constituents, from which the most
probable combination is chosen. However, ABL is
relatively inefficient and has only been applied to
small corpora.

The second category is that of incremental learn-
ing systems. An incremental system analyzes a cor-
pus in a bottom-up fashion: each time a new con-
stituent type is found, it is inserted into the corpus

to provide data for later learning. This has the ad-
vantage of easing the data-sparsity issues described
above because infrequent sequences are clustered
into more frequent non-terminal symbols. However,
in incremental systems, constituents are compared
directly, which can lead to a bias towards shorter
constituents.

The EMILE system (Adriaans, 1999) learnsshal-
low languages in an incremental manner, and has
been applied to natural language under the assump-
tion that such languages are shallow. Shallowness
is the property whereby, for any constituent type in
a language, there exist well-supported minimal units
of that type. EMILE aligns complete sentences only,
attempting to isolate minimal units, which are then
used to process longer sequences. This method is
efficient because alignment is non-recursive. How-
ever, as a consequence, EMILE offers only a limited
treatment of nested and recursive structures.

A more comprehensive approach to learning
nested structure is found in the ADIOS sys-
tem (Solan et al., 2003). ADIOS enumerates all pat-
terns of a given length, under the condition that each
sequence must have non-empty contexts and expres-
sions. These patterns are ranked using an informa-
tion gain metric, and the best pattern at each iteration
is rewritten into the graph, before pattern scanning
begins again. ADIOS learns context-sensitive equiv-
alence classes, but does not induce grammars, and
has not been formally evaluated against treebanks.

Grammar induction systems are evaluated using
standard metrics for parser evaluation, and in par-
ticular, the EVALB algorithm1. The above sys-
tems have been evaluated with respect to the ATIS
treebank. Compared with supervised parsers, these
systems perform relatively poorly, with the strictly
unsupervised EMILE and ABL systems recovering
16.8% and 35.6% of constituent structure respec-
tively. The partially-supervised systems of CDC and
CCM perform better, with the latter retrieving 47.6%
of the constituent structure in ATIS. However, the
strictly unsupervised systems of ABL, EMILE and
ADIOS have not been evaluated on larger corpora,
in part due to efficiency constraints.

1There are known issues with parser evaluation, although a
discussion of these issues is outside the scope of this paper, and
the reader is referred to (Klein, 2005, Chapter 2). We assume
the standard evaluation for comparison with previous work.
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3 Issues for distributional learning

There are many issues with distributional learning,
especially when learning from raw text. First, previ-
ous systems hypothesize and select constituents ac-
cording to the probability of their contexts: ABL,
EMILE and CCM use the probability of proposed
equivalence classes, or the equivalent context prob-
ability; ADIOS uses an information gain metric,
again favouring probable contexts. However, when
learning from raw text, this preference for hypothe-
ses with more probable contexts means that open-
class words will seldom be considered as contexts.
In POS-based learners, it is possible to align open-
class POS contexts. These contexts are demonstra-
bly important despite low word probabilities, which
suggests that selecting contexts on the basis of prob-
ability will be limited in success.

The second problem relates to word-senses.
Alignment proceeds by matching orthographic
types, but these types can have numerous associated
syntactic senses. For example, ‘to’ plays two distinct
roles: infinitive marker or preposition. If we align
using the orthographic type, we will often misalign
words, as seen in the following alignment:

I gave it to the man in the grey jacket
John agreed to see me in 20 minutes

Here, we are (mis)aligning a prepositional ‘to’, with
an infinitive marker. The result would be a correctly
identified noun-phrase, ‘the man’, and an incorrect
structure, contradicting both the verb-group ‘to see’
and the noun-phrase ‘me’. This problem does not
affect POS-based learning systems, as POS tags are
unambiguously assigned.

Finally, grammar induction systems are typically
inefficient, which prohibits training over large cor-
pora. Distributional analysis is an expensive proce-
dure, and must be performed for large numbers of
word sequences. Previous approaches have tended
to enumerate all alignment patterns, of which the
best are selected using probabilistic metrics. How-
ever, given the preference for probable alignments,
there is considerable wasted computation here, and
it is on this issue that we shall focus.

4 A heuristic approach to alignment

Rather than enumerating all word sequences in a
corpus, we propose a heuristic for guiding distribu-

tional systems towards more favourable alignment
patterns, in a system calledDirected Alignment. In
this system, we define context as the ordered pair
of left- and right-context for a given constituent,
〈Cleft − Cright〉, whereCleft andCright are single-
units. The atomic units of this system are words, but
learned constituents may also act as context-units.

The probability of a pattern depends primarily on
its contexts, since they are common to all matching
sequences. We can reduce the task of finding proba-
ble alignments to simply finding probable context-
pairs. However, we can reduce this further: for
a context-pair to be probable, its components must
also be probable. Therefore, rather than enumerat-
ing all patterns in the corpus, we direct the alignment
procedure towards patterns whereCleft andCright

are probable.
The first stage of direction creates an index for the

corpus, compiling a list of unit types, where units
are initially words. From this list of types, the most
probable 1% are selected ascontext-units. These
context-units are the only types allowed to fill the
rolesCleft andCright in alignment patterns.

Alignments are created directly from the context-
unit index. For each context-unit tokencu in the
index, we locatecu in the corpus and create an
alignment pattern, such thatcu is the left context
(Cleft). Next, we scan the sequence of words fol-
lowing cu, extending the alignment pattern until an-
other context-unitcu′ is found, or a fixed length
threshold is exceeded. Ifcu′ is found, it fills the role
of right context (Cright), and the completed align-
ment pattern is cached; otherwise, the pattern is dis-
regarded.

Direction permits two forms of valid expressions
in the context〈cu − cu′〉:

1. nc1 . . . ncn, where eachnci is a non-context

2. c1 . . . cn, where eachci is a context-unit

The first of these forms allows us to examine non-
nested alignments. The second allows us to analyze
nested alignments only after inner constituents have
been learned. These constraints reduce the number
of constituents under consideration at any time to
a manageable level. As a result, we can scan very
large numbers of alignment patterns with relatively
little overhead.
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As an example, consider the following sequence,
with context units underlined:

put thewhole egg ,all the seasonings andvegeta-
bles intothebowl andprocess for10 seconds until
smoothly pured .

This would be broken into non-recursive expres-
sions2:

(put) the (whole egg) , all the (seasonings) and (veg-
etables) into the (bowl) and (process) for (10 sec-
onds) until (smoothly pureed) .

These expressions will be replaced by non-terminal
unit representing the class of expressions, such that
each class contains all units across the corpus that
occur in the same context:

NT0 the NT1 , all the NT2 and NT3 into the NT2
and NT4 for NT5 until NT6 .

Following this generalization nested structures can
be discovered using the same process.

This approach has some interesting parallels with
chunking techniques, most notably that of function-
word phrase identification (Smith and Witten, 1993).
This similarity is enforced by disallowing nested
structures. Unlike chunking systems, however, this
work will also attempt to recover nested structures
by means of incremental learning.

4.1 Selecting alignment patterns

The direction process extracts a set of candidate
alignments, and from this set we select the best
alignment to rewrite as an equivalence class. Previ-
ous approaches offer a number of metrics for rank-
ing constituents, based around constituent or context
probability (ABL and CCM), Mutual Information
(CDC), and information gain (ADIOS). We have im-
plemented several of these metrics, but our expe-
riences suggest that context probability is the most
successful.

The probability of an alignment is effectively the
sum of all path probabilities through the alignment:

P (Cleft, Cright) = ΣP (pathleft,right) (2)

where eachpathleft,right is a unique word sequence
starting withleft and ending withright, under the

2For clarity, we have shown all alignments for the given sen-
tence simultaneously. However, the learning process is incre-
mental, so each alignment would be proposed during a distinct
learning iteration.

constraints on expressions described above. There is
an important practical issue here: probability sums
such as that in Equation 2 do not decrease when ex-
pressions are replaced with equivalence classes. To
alleviate this problem, we rewrite the units when up-
dating the distribution, but discard paths that match
the current alignment. This prevents looping while
allowing the rewritten paths to contribute to nested
structures.

4.2 Generalizing expression classes

The model outlined above is capable of learning
strictly context-sensitive constituents. While this
does allow for nested constituents, it is problematic
for generalization. Consider the following equiva-
lence classes, which are proposed relatively early in
Directed Alignment:

the NT1 of
the NT2 in

Here, the non-terminals have been assigned on the
basis of context-pairs: NT1 is defined by〈the− of〉
and NT2 is defined by〈the − in〉. These types are
distinct, although intuitively they account for simple
noun-phrases. If we then propose an alignment pat-
tern with NT1 asCleft, it must be followed by ‘of’,
which removes any possibility of generalizing ‘of’
and ‘in’.

We alleviate this problem by generalizing equiv-
alence classes, using a simple clustering algorithm.
For each new alignment, we compare the set of ex-
pressions with all existing expression classes, rank-
ing the comparisons by the degree of overlap with
the current alignment. If this degree of overlap ex-
ceeds a fixed threshold, the type of the existing class
is assumed; otherwise, a new class is created.

4.3 Experiments, results and analysis

To evaluate our algorithm, we follow the standard
approach of comparing the output of our system
with that of a treebank. We use the EVALB algo-
rithm, originally designed for evaluating supervised
parsing systems, with identical configuration to that
of (van Zaanen, 2000). However, we apply our algo-
rithms to a different corpus: the written sub-corpus
of the International Corpus of English, Great Britain
Component (henceforth ICE-GB), with punctuation
removed. This consists of 438342 words, in 22815
sentences. We also include a baseline instantiation
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System UP UR F1 CB
FWB 30.0 11.0 16.0 0.36
DA 23.3 8.0 11.9 0.30
DAcluster 23.6 8.1 12.0 0.30

Table 1: EVALB results after 500 iterations of Di-
rected Alignment applied to ICE-GB, showing both
context-sensitive (DA) and clustered (DAcluster)
alignment. The columns represent Unlabeled Preci-
sion, Unlabeled Recall, Unlabeled F-Score and the
proportion of sentence with crossing brackets re-
spectively.

of our algorithm, which chunks text into expres-
sions between function words, which we refer to as
Function-Word Bracketing (FWB).

Table 1 summarizes the EVALB scores for two
500-iteration runs of Directed Alignment over ICE-
GB: DA is the standard context-sensitive version of
the algorithm;DAcluster is the version with context
clustering. FWB precision is relatively low, with
only 30% of proposed structures appearing in the
treebank. Recall is even lower, with only 11% of
structure retrieved. This is unsurprising, as no nested
constructions are considered.

In comparison, both versions of Directed Align-
ment perform significantly worse, withDAcluster

being only fractionally better than standardDA. Ex-
periments over more learning iterations suggest that
the performance ofDA converges onFWB, with
few nested constituents discovered. Both variants
of the system produce very poor performance, with
very little nested structure recovered. While these
results seem discouraging, it is worth investigating
system performance further.

Table 2, summarizes the success of the algorithm
at discovering different types of constituent. Note
that these results are unlabeled, so we are examining
the proportion of each type of constituent in ICE-
GB that has been identified. Here, Directed Align-
ment exhibits the most success at identifying non-
clauses, of which the primary source of success is
short sentence fragments. Around 10% of noun-
phrases (NP), verb-phrases (VP) and subordinate-
phrases (SUBP) were recovered, this limited suc-
cess reflects the nature of the constituents: all three
have relatively simple constructions, whereby a sin-
gle word represents the constituent. In contrast, con-

Recall (%)
Category Frequency FWB DA DAcluster

NP 117776 11.81 10.83 10.79
CL 28641 0.50 1.21 1.14
VP 50280 20.88 9.58 9.89
PP 42134 0.10 0.67 0.73

SUBP 7474 1.10 11.05 11.15
NONCL 1919 4.27 22.98 22.98

Table 2: Constituent retrieval results for Function-
Word Bracketing (FWB) and Directed Alignment
(DA andDAcluster), categorized by gold-type

(a) DA, top 5 noun-matches of
271

Learned Recall Precision
NT0 4.61 84.53
NT5 1.58 93.44
NT7 1.36 87.14
NT4 1.09 75.10
NT10 0.82 84.54

(b) DAcluster, top 5 noun-
matches of 135

Learned Recall Precision
NT0 6.93 87.09
NT4 6.48 89.91
NT8 2.62 40.48
NT11 0.86 68.60
NT10 0.58 16.95

Table 3: The top five expression classes to match N
(noun) in ICE-GB, ranked by recall.

stituent types that comprise multiple units, such as
prepositional-phrases (PP), are seldom recovered.

4.3.1 Class generalization

During learning inDAcluster, we induce gener-
alized classes using the expression clustering algo-
rithm. This generalization can be evaluated, com-
paring induced classes with those in the treebank us-
ing precision and recall. Table 2(a) shows the top
five proposed classes matching the type noun (N)
in ICE-GB during 500 iterations of context-sensitive
Directed Alignment. There are 271 types matching
noun, and as can be seen, the top five account for
a very small proportion of all nouns, some 9.46%
(recall).

Table 2(b) shows the same analysis for Directed
Alignment with class generalization. For noun
matches, we can see that there are far fewer pro-
posed classes (135), and that those classes are much
more probable, the top five accounting for 17.47%
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(a) Noun Phrases (frequency=123870)
LEFT START END RIGHT

SYMB REC SYMB REC SYMB REC SYMB REC
PREP 0.36 ART 0.29 N 0.53 PUNC 0.36
V 0.19 PRON 0.29 PRON 0.19 V 0.18
#STA# 0.12 N 0.2 N 2 0.11 AUX 0.13
CONJ 0.11 N 1 0.06 PUNC 0.06 CONJ 0.09
PUNC 0.09 ADJ 0.06 NUM 0.04 PREP 0.07

(b) Verb Phrases (frequency=50693)
Left Start End Right

SYMB REC SYMB REC SYMB REC SYMB REC
PRON 0.32 V 0.68 V 0.98 PREP 0.20
N 0.26 AUX 0.29 PUNC 0.01 ART 0.16
PTCL 0.11 AUX 1 0.02 AUX 0.00 PRON 0.14
PUNC 0.06 V 1 0.00 V 2 0.00 ADV 0.13
CONJ 0.05 ADV 0.00 ADV 0.00 ADJ 0.09

(c) Prepositional Phrases (frequency=45777)
Left Start End Right

SYMB REC SYMB REC SYMB REC SYMB REC
N 0.46 PREP 0.96 N 0.63 PUNC 0.56
V 0.23 PREP1 0.02 N 2 0.12 CONJ 0.09
ADV 0.05 ADV 0.01 PUNC 0.08 PREP 0.09
PUNC 0.05 NUM 0.00 PRON 0.05 V 0.07
ADJ 0.04 ADV 1 0.00 NUM 0.03 AUX 0.05

Table 4: The five most frequent left/start/end/right
POS contexts for NP, VP and PP constituents.

of nouns in ICE-GB. The algorithm seems to be
achieving some worthwhile generalization, which
is reflected in a slight increase in EVALB scores
for DAcluster. However, this increase is not a sig-
nificant one, suggesting that this generalization is
not sufficient to support distributional learning. We
might expect this: attempting to cluster based on
the low-frequency and polysemous words in expres-
sions seems likely to produce unreliable clusters.

5 A closer look at distributional contexts

The results discussed so far seem discouraging for
the approach. However, there are good reasons why
these results are so poor, and why we can expect
little improvement in the current formulation. We
can show some of these reasons by examining ac-
tual constituent-context distributions.

Table 4 shows an analysis of the constituent
types NP, VP and PP in ICE-GB, against the five
most frequent POS tags3 occurring as left-context,
constituent-start, constituent-end, and right-context.
We distinguish the following POS categories as be-
ing primarily functional, as they account for the ma-
jority of context-units considered by Directed Align-
ment: prepositions (PREP), articles (ART), aux-

3The same trends can be shown for words, but a POS analy-
sis is preferred for clarity and brevity.

iliaries (AUX), sentence-starts (#STA#), pronouns
(PRON), conjunctions (CONJ), particles (PTCL)
and punctuation (PUNC).

From Table 4, we can see that noun-phrases and
verb-phrases are relatively well-suited to our ap-
proach. First, both types have strong functional
left- and right-contexts: 58% of NP left-contexts and
50% of NP right-contexts are members of our func-
tional POS; similarly, 43% of VP left-contexts and
49% of VP right-contexts are functional. This means
that a probability-based model of context, such as
ours, will find relatively strong support for these
types. Second, both NP and VP have minimal unit
types: nouns and pronouns for NP; verbs for VP. As
a consequence, these types tend to carry more proba-
bility mass, since shorter sequences tend to be more
frequent. We should expect our system to perform
reasonably on NP and VP as a result.

In contrast, prepositional-phrases are much less
amenable to distributional analysis. First, PP tend
to be longer, since they contain NP, and this has
obvious repercussions for alignment probabilities.
More damagingly, PP contexts are dominated by
open-class words - the top 74% of PP left-contexts
are nouns, verbs and adverbs. Therefore, a purely
probabilistic distributional approach cannot account
for prepositional-phrases, since learning data is too
sparse. Previous approaches have relied upon open-
class generalization to reduce this problem, but these
methods suffer from the same problems of data spar-
sity, and as such are not reliable enough to resolve
the issue.

6 Attachment

We have seen that strictly probabilistic distribu-
tional analysis is not sufficient to learn constituents
from raw text. If we are to improve upon this, we
must find a way to identify constituents from their
component parts, as well as by contextual analy-
sis. The constituent-context distributions in Table 4
give us some clues as to where to start: both noun-
phrases and prepositional-phrases show very signif-
icant constituent-starts, with articles and pronouns
starting 58% of NP, and prepositions starting 94%
of all PP. These functional types would be identified
as contexts in Directed Alignment, but the strong re-
lation to their containing constituents would be ig-
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nored.
One method for achieving such an internal rela-

tionship might be to attach contexts to the expres-
sions with which they co-occur, and we propose us-
ing such a method here. However, this requires that
we have some criterion for deciding when and how
expressions should be attached to their contexts. We
use a measure based on STOP arguments (Collins,
1999), which allows us to condition the decision to
insert a constituent boundary on the evidence we see
for doing so. For raw text, the only boundaries that
are explicitly marked are at the start and end of sen-
tences, and it is this information we use to decide
when to attach contexts to expressions4. In other
words, if a context is likely to start a sentence, we
assume it is also likely to start a constituent at other
positions within a sentence.

In order to calculate the likelihood of a particu-
lar context wordw occurring at the start or end of a
sentence, we simply use the bigram probabilities be-
tweenw and the special symbols START and END,
which denote the start and end of a sentence respec-
tively. From these probabilities, we calculate Mutual
Information MI(START,w) andMI(w,END).
We prefer MI because it describes the strength of
the relation betweenw and these special symbols
without bias towards more probable words. From
these MI values, we calculate aDirectional Prefer-
ence (DP) for the context word:

dp(w) = MI(w,END) −MI(START,w) (3)

This yields a number representing whetherw is
more likely to start or end a sentence. This num-
ber will be zero if we are equally likely to seew at
the start or end of a sentence, negative ifw is more
likely to start a sentence, and positive ifw is is more
likely to end a sentence.

Using DP, we can decide how to attach an expres-
sion to its contexts. For a given alignment, we con-
sider the possibility of attaching the expression to
neither context, the left-context, or the right-context,
by comparing the DP for the left- and right-contexts.
If the left-context shows a strong tendency to start
sentences, and the right-context does not show a

4For this method to work, we assume that our corpus is seg-
mented into sentences. This is not the case for speech, but for
learning from text it seems a reasonable assumption.

System UP UR F1 CB
DASTOP 33.6 14.1 19.8 0.42

Table 5: EVALB results after 500 iterations of Di-
rected Alignment with STOP attachment applied to
ICE-GB (DASTOP ).

Category Frequency Recall (%)
NP 117776 18.11
VP 50280 9.78
PP 42134 18.19
CL 28641 2.97

SUBP 7474 12.82
NONCL 1919 22.62

Table 6: Constituent retrieval results forDASTOP ,
categorized by gold-type

strong tendency to end sentences (i.e. there is an
overall DP is negative), we attach the expression to
its left-context; if the reverse situation is true, we at-
tach the expression to its right context. Should the
difference between these DP fall below a threshold,
neither context is preferred, and the expression re-
mains unattached.

Let us consider a specific example of attachment.
The first alignment considered by the system (when
applied to ICE-GB) is:

the NT1 of

Here, we need to compare the likelihood of seeing a
constituent start with ‘the’ with with the likelihood
of seeing a constituent end with ‘of’. Intuitively,
‘the’ occurs frequently at the start of a sentence, and
never at the end. Consequently, it has a high neg-
ative DP. Meanwhile ‘of’ has a small negative DP.
In combination, there is a high negative DP, so we
attach the expression to the left-context, ‘the’.

6.1 Experimental Analysis

We applied Directed Alignment with attachment
based on STOP arguments (DASTOP ) to ICE-GB
as before, running for 500 iterations. These results
are shown in Table 5. The results are encouraging.
Unlabeled precision increased by almost 50%, from
23.6% forDAcluster to 33.6%. Likewise, system re-
call increased dramatically, from 8.1% to 14.1%, up
some 75%. Crossing-brackets increased slightly, but
remained relatively low at 0.42.

Table 6 shows the breakdown of EVALB scores
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for the major non-terminal types, as before. The
improvement in EVALB scores is attributable
to a marked increase in success at identifying
prepositional-phrases, with a lesser increase in
noun-phrase identification.

6.2 Discussion

The attachment procedure described above is more
successful at discovering nested constituents than
distributional methods. There are good reasons why
this should be the case. First, attachment compresses
the corpus, removing the bias towards shorter se-
quences. Indeed, the algorithm seems capable of
retrieving complex constituents of up to ten words
in length during the first 500 iterations.

Second, the STOP-conditioning criterion, while
somewhatad hoc in relation to distributional meth-
ods, allows us to assess where constituent bound-
aries are likely to occur. As such, this can be seen
as a rudimentary method for establishing argument
relations, such as those observed in (Klein, 2005,
Chapter 6).

Despite these improvements, the attachment pro-
cess also makes some systematic mistakes. Some of
these may be attributed to discrepancies between the
syntactic theory used to annotate the treebank and
the attachment process. For example, verbs are rou-
tinely attached to their subjects before objects, con-
tradicting the more traditional interpretation present
in treebanks. Some of the remaining mistakes can
be attributed to the misalignment, due to the ortho-
graphic match problem described in Section 3.

7 Future Work

The major problem when applying distributional
methods to raw text is that of orthographic match-
ing, which causes misalignments between alterna-
tive senses of a particular word-form. To reduce this
problem, context-units must be classified in some
way to disambiguate these different senses. Such
classification could be used as a precursor to align-
ment in the system we have described.

In addition, to better evaluate the quality of at-
tachment, dependency representations and treebanks
could be used, which do not have an explicit order on
attachment. This would give a more accurate evalu-
ation where subject-verb attachment is concerned.

8 Conclusions

We have presented an incremental grammar induc-
tion system that uses heuristics to improve the effi-
ciency of distributional learning. However, in tests
over a large corpus, we have shown that it is capable
of learning only a small subset of constituent struc-
ture. We have analyzed actual constituent-context
distributions to explain these limitations. This anal-
ysis provides the motivation for a more structured
learning method, which incorporates knowledge of
verifiable constituent boundaries - the starts and
ends of sentences. This improved system performs
significantly better, with a 75% increase in recall
over distributional methods, and a significant im-
provement at retrieving structures that are problem-
atic for distributional methods alone.
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