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Abstract

This paper presents a new application of
the recently proposed machine learning
method Alternating Structure Optimiza-
tion (ASO), to word sense disambiguation
(WSD). Given a set of WSD problems
and their respective labeled examples, we
seek to improve overall performance on
that set by using all the labeled exam-
ples (irrespective of target words) for the
entire set in learning a disambiguator for
each individual problem. Thus, in effect,
on each individual problem (e.g., disam-
biguation of “art”) we benefit from train-
ing examples for other problems (e.g.,
disambiguation of “bar”, “canal”, and so
forth). We empirically study the effective
use of ASO for this purpose in the multi-
task and semi-supervised learning config-
urations. Our performance results rival
or exceed those of the previous best sys-
tems on several Senseval lexical sample
task data sets.

1 Introduction

Word sense disambiguation (WSD) is the task of
assigning pre-defined senses to words occurring in
some context. An example is to disambiguate an oc-
currence of “bank” between the “money bank” sense
and the “river bank” sense. Previous studies e.g.,
(Lee and Ng, 2002; Florian and Yarowsky, 2002),
have applied supervised learning techniques to WSD
with success.

A practical issue that arises in supervised WSD
is the paucity of labeled examples (sense-annotated
data) available for training. For example, the train-
ing set of the Senseval-21 English lexical sample

1http://www.cs.unt.edu/~rada/senseval/. WSD systems have

task has only 10 labeled training examples per sense
on average, which is in contrast to nearly 6K training
examples per name class (on average) used for the
CoNLL-2003 named entity chunking shared task2.
One problem is that there are so many words and so
many senses that it is hard to make available a suf-
ficient number of labeled training examples for each
of a large number of target words.

On the other hand, this indicates that the total
number of available labeled examples (irrespective
of target words) can be relatively large. A natural
question to ask is whether we can effectively useall
the labeled examples (irrespective of target words)
for learning on each individual WSD problem.

Based on these observations, we study a new
application of Alternating Structure Optimization
(ASO)(Ando and Zhang, 2005a; Ando and Zhang,
2005b) to WSD. ASO is a recently proposed ma-
chine learning method for learning predictive struc-
ture (i.e., information useful for predictions) shared
by multiple prediction problems via joint empiri-
cal risk minimization. It has been shown that on
several tasks, performance can be significantly im-
proved by a semi-supervised application of ASO,
which obtains useful information fromunlabeled
data by learning automatically created prediction
problems. In addition to such semi-supervised learn-
ing, this paper explores ASOmulti-task learning,
which learns a number of WSD problems simul-
taneously to exploit the inherent predictive struc-
ture shared by these WSD problems. Thus, in ef-
fect, each individual problem (e.g., disambiguation
of “art”) benefits fromlabeled training examples for
other problems(e.g., disambiguation of “bar”, dis-
ambiguation of “canal”, and so forth).

The notion of benefiting from training data for
other word senses is not new by itself. For instance,

been evaluated in the series of Senseval workshops.
2http://www.cnts.ua.ac.be/conll2003/ner/
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on the WSD task with respect to WordNet synsets,
Kohomban and Lee (2005) trained classifiers for the
top-level synsets of the WordNet semantic hierar-
chy, consolidating labeled examples associated with
the WordNet sub-trees. To disambiguate test in-
stances, these coarse-grained classifiers are first ap-
plied, and then fine-grained senses are determined
using a heuristic mapping. By contrast, our ap-
proach does not require pre-defined relations among
senses such as the WordNet hierarchy. Rather, we
let the machine learning algorithm ASO automati-
cally and implicitly find relations with respect to the
disambiguation problems (i.e., finding shared pre-
dictive structure). Interestingly, in our experiments,
seemingly unrelated or only loosely related word-
sense pairs help to improve performance.

This paper makes two contributions. First, we
present a new application of ASO to WSD. We em-
pirically study the effective use of ASO and show
that labeled examples of all the words can be effec-
tively exploited in learning each individual disam-
biguator. Second, we report performance results that
rival or exceed the state-of-the-art systems on Sen-
seval lexical sample tasks.

2 Alternating structure optimization

This section gives a brief summary of ASO. We first
introduce a standard linear prediction model for a
single task and then extend it to a joint linear model
used by ASO.

2.1 Standard linear prediction models

In the standard formulation of supervised learning,
we seek apredictor that maps an input vector (or
feature vector) x 2 X to the corresponding outputy 2 Y. For NLP tasks, binary features are often used
– for example, if the word to the left is “money”, set
the corresponding entry ofx to 1; otherwise, set it to
0. A k-way classification problem can be cast ask
binary classification problems, regarding outputy =+1 and y = �1 as “in-class” and “out-of-class”,
respectively.

Predictors based onlinear prediction modelstake
the form:f(x) = wTx, wherew is called aweight
vector. A common method to obtain a predictorf̂ is regularizedempirical risk minimization, which
minimizes an empirical loss of the predictor (with

regularization) on then labeled training examplesf(Xi; Yi)g:f̂ = argminf  nXi=1 L(f(Xi); Yi) + r(f)! : (1)

A loss functionL(�) quantifies the difference be-
tween the predictionf(Xi) and the true outputYi,
andr(�) is a regularization term to control the model
complexity.

2.2 Joint linear models for ASO

Considerm prediction problems indexed bỳ 2f1; : : : ;mg, each withn` samples(Xì ; Y `i ) for i 2f1; : : : ; n`g, and assume that there exists a low-
dimensional predictive structure shared by thesem
problems. Ando and Zhang (2005a) extend the
above traditional linear model to a joint linear model
so that a predictor for problem̀is in the form:f`(�;x) = wT̀x+ vT̀�x ; ��T = I ; (2)

where I is the identity matrix. w` and v` are
weight vectors specific to each problem̀. Predic-
tive structure is parameterized by thestructure ma-
trix � shared by all them predictors. The goal of
this model can also be regarded as learning a com-
mon good feature map�x used for all them prob-
lems.

2.3 ASO algorithm
Analogous to (1), we compute� and predictors so
that they minimize the empirical risk summed over
all the problems:[�̂; ff̂`g℄ = argmin�;ff`g mX̀=1 nX̀i=1 L(f`(�;Xì); Yì )n` + r(f`)! :

(3)

It has been shown in (Ando and Zhang, 2005a) that
the optimization problem (3) has a simple solution
usingsingular value decomposition (SVD)when we
choose square regularization:r(f`) = �kw`k22
where� is a regularization parameter. Letu` =w` + �Tv` : Then (3) becomes the minimization
of the joint empirical risk written as:mX̀=1 nX̀i=1 L(uT̀Xì ; Yì )n` + �ku` ��Tv`k22! : (4)

This minimization can be approximately solved by
repeating the following alternating optimization pro-
cedure until a convergence criterion is met:
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Nouns art, authority, bar, bum, chair, channel, child, church, circuit, day, detention, dyke, facility, fatigue, feeling,
grip, hearth, holiday, lady, material, mouth, nation, nature, post, restraint, sense, spade, stress, yew

Verbs begin, call, carry, collaborate, develop, draw, dress, drift, drive, face, ferret, find, keep, leave, live, match,
play, pull, replace, see, serve strike, train, treat, turn,use, wander wash, work

Adjectives blind, colourless, cool, faithful, fine, fit, free, graceful, green, local, natural, oblique, simple, solemn, vital

Figure 1:Words to be disambiguated; Senseval-2 English lexical sample task.

1. Fix (�; fv`g), and findm predictorsfu`g that
minimizes the joint empirical risk (4).

2. Fixm predictorsfu`g, and find(�; fv`g) that
minimizes the joint empirical risk (4).

The first step is equivalent to trainingm predictors
independently. The second step, which couples all
the predictors, can be done by setting the rows of� to the most significantleft singular vectorsof the
predictor (weight) matrixU = [u1; : : : ;um℄, and
settingv` = �u`. That is, the structure matrix� is
computed so that the projection of the predictor ma-
trix U onto the subspace spanned by�’s rows gives
the best approximation (in the least squares sense)
of U for the given row-dimension of�. Thus, in-
tuitively, � captures the commonality of them pre-
dictors.

ASO has been shown to be useful in itssemi-
supervised learningconfiguration, where the above
algorithm is applied to a number ofauxiliary prob-
lems that areautomatically createdfrom the unla-
beled data. By contrast, the focus of this paper is the
multi-task learningconfiguration, where the ASO
algorithm is applied to a number ofreal problems
with the goal of improving overall performance on
these problems.

3 Effective use of ASO on word sense
disambiguation

The essence of ASO is to learn information useful
for prediction (predictive structure) shared by mul-
tiple tasks, assuming the existence of such shared
structure. From this viewpoint, consider the target
words of the Senseval-2 lexical sample task, shown
in Figure 1. Here we have multiple disambiguation
tasks; however, at a first glance, it is not entirely
clear whether these tasks share predictive structure
(or are related to each other). There is no direct se-
mantic relationship (such as synonym or hyponym
relations) among these words.

word uni-grams in 5-word window,
Local word bi- and tri-grams of(w�2; w�1),

context (w+1; w+2); (w�1; w+1),(w�3; w�2; w�1); (w+1; w+2; w+3),(w�2; w�1; w+1); (w�1; w+1; w+2).
Syntactic full parser output; see Section 3 for detail.
Global all the words excluding stopwords.
POS uni-, bi-, and tri-grams in 5-word window.

Figure 2: Features. wi stands for the word at positioni
relative to the word to be disambiguated. The 5-word win-
dow is [�2;+2℄. Local context and POS features are position-
sensitive. Global context features are position insensitive (a bag
of words).

The goal of this section is to empirically study
the effective use of ASO for improving overall per-
formance on these seemingly unrelated disambigua-
tion problems. Below we first describe the task set-
ting, features, and algorithms used in our imple-
mentation, and then experiment with the Senseval-
2 English lexical sample data set (with the offi-
cial training / test split) for the development of our
methods. We will then evaluate the methods de-
veloped on the Senseval-2 data set by carrying out
the Senseval-3 tasks, i.e., training on the Senseval-3
training data and then evaluating the results on the
(unseen) Senseval-3 test sets in Section 4.

Task setting In this work, we focus on the Sense-
val lexical sample task. We are given a set of target
words, each of which is associated with several pos-
sible senses, and their labeled instances for training.
Each instance contains an occurrence of one of the
target words and its surrounding words, typically a
few sentences. The task is to assign a sense to each
test instance.

Features We adopt the feature design used by Lee
and Ng (2002), which consists of the following
four types: (1)Local context: n-grams of nearby
words (position sensitive); (2)Global context: all
the words (excluding stopwords) in the given con-
text (position-insensitive; a bag of words); (3)POS:
parts-of-speechn-grams of nearby words; (4)Syn-
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tactic relations: syntactic information obtained from
parser output. To generate syntactic relation fea-
tures, we use the Slot Grammar-based full parser
ESG (McCord, 1990). We use as features syntactic
relation types (e.g., subject-of, object-of, and noun
modifier), participants of syntactic relations, and bi-
grams of syntactic relations / participants. Details of
the other three types are shown in Figure 2.

Implementation Our implementation follows
Ando and Zhang (2005a). We use a modifi-
cation of the Huber’s robust loss for regression:L(p; y) = (max(0; 1�py))2 if py � �1; and�4py
otherwise; with square regularization (� = 10�4),
and perform empirical risk minimization by
stochastic gradient descent (SGD)(see e.g., Zhang
(2004)). We perform one ASO iteration.

3.1 Exploring the multi-task learning
configuration

The goal is to effectively apply ASO to the set of
word disambiguation problems so that overall per-
formance is improved. We consider two factors:fea-
ture splitandpartitioning of prediction problems.

3.1.1 Feature split and problem partitioning

Our features described above inherently consist of
four feature groups: local context (LC), global con-
text (GC), syntactic relation (SR), and POS features.
To exploit such a natural feature split, we explore the
following extension of the joint linear model:f`(f�jg;x) = wT̀x+Xj2F v(j)` T�jx(j) ; (5)

where�j�Tj = I for j 2 F , F is a set of dis-

joint feature groups, andx(j) (or v(j)` ) is a portion
of the feature vectorx (or the weight vectorv`) cor-
responding to the feature groupj, respectively. This
is a slight modification of the extension presented
in (Ando and Zhang, 2005a). Using this model,
ASO computes the structure matrix�j for each fea-
ture group separately. That is, SVD is applied to
the sub-matrix of the predictor (weight) matrix cor-
responding to each feature groupj, which results
in more focused dimension reduction of the predic-
tor matrix. For example, suppose thatF = fSRg.
Then, we compute the structure matrix�SR from

the corresponding sub-matrix of the predictor ma-
trix U, which is the gray region of Figure 3 (a). The
structure matrices�j for j =2 F (associated with the
white regions in the figure) should be regarded as
being fixed to the zero matrices. Similarly, it is pos-
sible to compute a structure matrix from a subset of
the predictors (such as noun disambiguators only),
as in Figure 3 (b). In this example, we apply the
extension of ASO withF = fSRg to three sets of
problems (disambiguation of nouns, verbs, and ad-
jectives, respectively) separately.

LC

GC

SR

POS

(a) Partitioned by features: 
F = { SR }

mpredictors

ΘΘΘΘSR

predictors   
for nouns

predictors 
for verbs

predictors 
for adjectives

ΘΘΘΘSR,Adj

ΘΘΘΘSR,Verb

ΘΘΘΘSR,Noun
(b) Partitioned by F = { SR }

and problem types.

LC

GC

SR

POS

Predictor matrix U Predictor matrix U

Figure 3:Examples of feature split and problem partitioning.

To see why such partitioning may be useful for
our WSD problems, consider the disambiguation of
“bank” and the disambiguation of “save”. Since a
“bank” as in “money bank” and a “save” as in “sav-
ing money” may occur in similar global contexts,
certain global context features effective for recog-
nizing the “money bank” sense may be also effective
for disambiguating “save”, and vice versa. However,
with respect to the position-sensitive local context
features, these two disambiguation problems may
not have much in common since, for instance, we
sometimes say “the bank announced”, but we rarely
say “the save announced”. That is, whether prob-
lems share predictive structure may depend on fea-
ture types, and in that case, seeking predictive struc-
ture for each feature group separately may be more
effective. Hence, we experiment with the configu-
rations with and without various feature splits using
the extension of ASO.

Our target words are nouns, verbs, and adjec-
tives. As in the above example of “bank” (noun)
and “save” (verb), the predictive structure of global
context features may be shared by the problems ir-
respective of the parts of speech of the target words.
However, the other types of features may be more
dependent on the target word part of speech. There-
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fore, we explore two types of configuration. One
applies ASO to all the disambiguation problems at
once. The other applies ASO separately to each of
the three sets of disambiguation problems (noun dis-
ambiguation problems, verb disambiguation prob-
lems, and adjective disambiguation problems) and
uses the structure matrix�j obtained from the noun
disambiguation problems only for disambiguating
nouns, and so forth.

Thus, we explore combinations of two parame-
ters. One is the set of feature groupsF in the model
(5). The other is the partitioning of disambiguation
problems.

3.1.2 Empirical results

64.5

65

65.5

66

66.5

67

67.5

68

1 2 3 4 5 6 7 8

all problems at

once

nouns, verbs,

adjectives,

separately

Baseline {LC} {GC} {SR}{POS} {LC,SR,GC} 

{LC+SR+GC} 

no feature 
split 

Feature group set F

Problem partitioning

Figure 4: F-measure on Senseval-2 English test set. Multi-
task configurations varying feature group setF and problem
partitioning. Performance at the best dimensionality of�j (inf10; 25; 50; 100; � � � g) is shown.

In Figure 4, we compare performance on the
Senseval-2 test set produced by training on the
Senseval-2 training set using the various configura-
tions discussed above. As the evaluation metric, we
use the F-measure (micro-averaged)3 returned by the
official Senseval scorer. Our baseline is the standard
single-taskconfiguration using the same loss func-
tion (modified Huber) and the same training algo-
rithm (SGD).

The results are in line with our expectation. To
learn the shared predictive structure of local context
(LC) and syntactic relations (SR), it is more advanta-
geous to apply ASO to each of the three sets of prob-
lems (disambiguation of nouns, verbs, and adjec-
tives, respectively), separately. By contrast, global
context features (GC) can be more effectively ex-
ploited when ASO is applied to all the disambigua-

3Our precision and recall are always the same since our sys-
tems assign exactly one sense to each instance. That is, our
F-measure is the same as ‘micro-averaged recall’ or ‘accuracy’
used in some of previous studies we will compare with.

tion problems at once. It turned out that the con-
figurationF = fPOSg does not improve the per-
formance over the baseline. Therefore, we exclude
POS from the feature group setF in the rest of our
experiments. Comparison ofF = fLC+SR+GCg
(treating the features of these three types as one
group) andF = fLC;SR;GCg indicates that use
of this feature split indeed improves performance.
Among the configurations shown in Figure 4, the
best performance (67.8%) is obtained by applying
ASO to the three sets of problems (corresponding
to nouns, verbs, and adjectives) separately, with the
feature splitF = fLC;SR;GCg.

ASO has one parameter, the dimensionality of the
structure matrix�j (i.e., the number of left singular
vectors to compute). The performance shown in Fig-
ure 4 is the ceiling performance obtained at the best
dimensionality (inf10; 25; 50; 100; 150; � � � g). In
Figure 5, we show the performance dependency on�j ’s dimensionality when ASO is applied to all the
problems at once (Figure 5 left), and when ASO is
applied to the set of the noun disambiguation prob-
lems (Figure 5 right). In the left figure, the config-
urationF = fGCg (global context) produces bet-
ter performance at a relatively low dimensionality.
In the other configurations shown in these two fig-
ures, performance is relatively stable as long as the
dimensionality is not too low.
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dimensionality

{LC,GC,SR}

{LC+GC+SR}

{LC}

{GC}

{SR}

baseline

Figure 5: Left: Applying ASO to all the WSD problems at
once. Right: Applying ASO to noun disambiguation problems
only and testing on the noun disambiguation problems only.x-
axis: dimensionality of�j .
3.2 Multi-task learning procedure for WSD

Based on the above results on the Senseval-2 test set,
we develop the following procedure using the fea-
ture split and problem partitioning shown in Figure
6. LetN ;V, andA be sets of disambiguation prob-
lems whose target words are nouns, verbs, and ad-
jectives, respectively. We write�(j;s) for the struc-
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predictors   
for nouns

predictors 
for verbs

predictors 
for adjectives

LC
GC

SR

POS

We compute seven structure 
matrices Θj,s each from the 
seven shaded regions of the 
predictor matrix U. 

Figure 6:Effective feature split and problem partitioning.

ture matrix associated with the feature groupj and
computed from a problem sets. That is, we replace�j in (5) with�(j;s).� Apply ASO to the three sets of disambigua-

tion problems (corresponding to nouns, verbs,
and adjectives), separately, using the extended
model (5) withF = fLC;SRg. As a result,
we obtain�(j;s) for every(j; s) 2 fLC;SRg�fN ;V;Ag.� Apply ASO to all the disambiguation problems
at once using the extended model (5) withF =fGCg to obtain�(GC;N[V[A).� For a problem̀ 2 P 2 fN ;V;Ag, our final
predictor is based on the model:f`(x) = wT̀x+ X(j;s)2T v(j;s)` T�(j;s)x(j) ;
whereT = f(LC; P ); (SR; P ); (GC;N [ V [A)g. We obtain predictor̂f` by minimizing the
regularized empirical risk with respect tow`
andv`.

We fix the dimension of the structure matrix cor-
responding to global context features to 50. The di-
mensions of the other structure matrices are set to
0.9 times the maximum possible rank to ensure rela-
tively high dimensionality. This procedure produces68:1% on the Senseval-2 English lexical sample test
set.

3.3 Previous systems on Senseval-2 data set

Figure 7 compares our performance with those of
previous best systems on the Senseval-2 English lex-
ical sample test set. Since we used this test set for the
development of our method above, our performance
should be understood as thepotential performance.
(In Section 4, we will present evaluation results on

ASO multi-task learning (optimum config.)68.1
classifier combination [FY02] 66.5
polynomial KPCA [WSC04] 65.8
SVM [LN02] 65.4
Our single-task baseline 65.3
Senseval-2 (2001) best participant 64.2

Figure 7: Performance comparison with previous best sys-
tems on Senseval-2 English lexical sample test set. FY02 (Flo-
rian and Yarowsky, 2002), WSC04 (Wu et al., 2004), LN02 (Lee
and Ng, 2002)

the unseenSenseval-3 test sets.) Nevertheless, it is
worth noting that our potential performance (68.1%)
exceeds those of the previous best systems.

Our single-task baseline performance is almost
the same as LN02 (Lee and Ng, 2002), which
uses SVM. This is consistent with the fact that we
adopted LN02’s feature design. FY02 (Florian and
Yarowsky, 2002) combines classifiers by linear av-
erage stacking. The best system of the Senseval-2
competition was an early version of FY02. WSC04
used a polynomial kernel via the kernel Principal
Component Analysis (KPCA) method (Schölkopf et
al., 1998) with nearest neighbor classifiers.

4 Evaluation on Senseval-3 tasks

In this section, we evaluate the methods developed
on the Senseval-2 data set above on the standard
Senseval-3 lexical sample tasks.

4.1 Our methods in multi-task and
semi-supervised configurations

In addition to the multi-task configuration described
in Section 3.2, we test the following semi-supervised
application of ASO. We first create auxiliary prob-
lems following Ando and Zhang (2005a)’s partially-
supervised strategy (Figure 8) with distinct fea-
ture maps	1 and	2 each of which uses one offLC;GC;SRg. Then, we apply ASO to these auxil-
iary problems using the feature split and the problem
partitioning described in Section 3.2.

Note that the difference between the multi-task
and semi-supervised configurations is the source of
information. The multi-task configuration utilizes
the label informationof the training examples that
are labeled for the rest of the multiple tasks, and
the semi-supervised learning configuration exploits
a large amount ofunlabeled data.
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1. Train a classifierC1 only using feature map	1 on the
labeled data for the target task.

2. Auxiliary problems are to predict the labels assigned byC1 to the unlabeled data, using the other feature map	2.
3. Apply ASO to the auxiliary problems to obtain�.
4. Using the joint linear model (2), train the final

predictor by minimizing the empirical risk for fixed�
on the labeled data for the target task.

Figure 8: Ando and Zhang (2005a)’s ASO semi-supervised
learning method using partially-supervised procedure forcreat-
ing relevant auxiliary problems.

4.2 Data and evaluation metric

We conduct evaluations on four Senseval-3 lexical
sample tasks (English, Catalan, Italian, and Spanish)
using the official training / test splits. Data statis-
tics are shown in Figure 9. On the Spanish, Cata-
lan, and Italian data sets, we use part-of-speech in-
formation (as features) and unlabeled examples (for
semi-supervised learning) provided by the organizer.
Since the English data set was not provided with
these additional resources, we use an in-house POS
tagger trained with the PennTree Bank corpus, and
extract 100K unlabeled examples from the Reuters-
RCV1 corpus. On each language, the number of un-
labeled examples is 5–15 times larger than that of the
labeled training examples. We use syntactic relation
features only for English data set. As in Section 3,
we report micro-averaged F measure.

4.3 Baseline methods

In addition to the standard single-task supervised
configuration as in Section 3, we test the following
method as an additional baseline.

Output-based method The goal of our multi-task
learning configuration is to benefit from having the
labeled training examples of a number of words. An
alternative to ASO for this purpose is to use directly
as features the output values of classifiers trained
for disambiguating the other words, which we call
‘output-based method’ (cf. Florian et al. (2003)).
We explore several variations similarly to Section
3.1 and report the ceiling performance.

4.4 Evaluation results

Figure 10 shows F-measure results on the four
Senseval-3 data sets using the official training / test
splits. Both ASO multi-task learning and semi-
supervised learning improve performance over the

#words #train avg #sense avg #train
per word per sense

English 73 8611 10.7 10.0
Senseval-3 data sets

English 57 7860 6.5 21.3
Catalan 27 4469 3.1 53.2
Italian 45 5145 6.2 18.4

Spanish 46 8430 3.3 55.5

Figure 9:Data statistics of Senseval-2 English lexical sample
data set (first row) and Senseval-3 data sets. On each data set, #
of test instances is about one half of that of training instances.

single-task baseline on all the data sets. The best
performance is achieved when we combine multi-
task learning and semi-supervised learning by using
all the corresponding structure matrices�(j;s) pro-
duced by both multi-task and semi-supervised learn-
ing, in the final predictors. This combined configu-
ration outperforms the single-task supervised base-
line by up to 5.7%.

Performance improvements over the supervised
baseline are relatively small on English and Span-
ish. We conjecture that this is because the supervised
performance is already close to the highest perfor-
mance that automatic methods could achieve. On
these two languages, our (and previous) systems out-
perform inter-human agreement, which is unusual
but can be regarded as an indication that these tasks
are difficult.

The performance of the output-based method
(baseline) is relatively low. This indicates that out-
put values or proposed labels are not expressive
enough to integrate information from other predic-
tors effectively on this task. We conjecture that for
this method to be effective, the problems are re-
quired to be more closely related to each other as
in Florian et al. (2003)’s named entity experiments.

A practical advantage of ASO multi-task learning
over ASO semi-supervised learning is that shorter
computation time is required to produce similar
performance. On this English data set, training
for multi-task learning and semi-supervised learning
takes 15 minutes and 92 minutes, respectively, using
a Pentium-4 3.20GHz computer. The computation
time mostly depends on the amount of the data on
which auxiliary predictors are learned. Since our ex-
periments use unlabeled data 5–15 times larger than
labeled training data, semi-supervised learning takes
longer, accordingly.
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methods English Catalan Italian Spanish
multi-task learning 73.8 (+0.8) 89.5 (+1.5) 63.2 (+4.9) 89.0 (+1.0)

ASO semi-supervised learning 73.5 (+0.5) 88.6 (+0.6) 62.4 (+4.1) 88.9 (+0.9)
multi-task+semi-supervised 74.1 (+1.1) 89.9 (+1.9) 64.0 (+5.7) 89.5 (+1.5)

baselines output-based 73.0 (0.0) 88.3 (+0.3) 58.0 (-0.3) 88.2 (+0.2)
single-task supervised learning 73.0 88.0 58.3 88.0

previous SVM with LSA kernel [GGS05] 73.3 89.0 61.3 88.2
systems Senseval-3 (2004) best systems 72.9[G04] 85.2[SGG04] 53.1[SGG04] 84.2 [SGG04]

inter-annotator agreement 67.3 93.1 89.0 85.3

Figure 10:Performance results on the Senseval-3 lexical sample test sets. Numbers in the parentheses are performance gains
compared with the single-task supervised baseline (italicized). [G04] Grozea (2004); [SGG04] Strapparava et al. (2004).

GGS05 combined various kernels, which includes
the LSA kernel that exploits unlabeled data with
global context features. Our implementation of the
LSA kernel with our classifier (and our other fea-
tures) also produced performance similar to that of
GGS05. While the LSA kernel is closely related
to a special case of the semi-supervised application
of ASO (see the discussion of PCA in Ando and
Zhang (2005a)), our approach here is more general
in that we exploit not only unlabeled data and global
context features but also the labeled examples of
other target words and other types of features. G04
achieved high performance on English using regu-
larized least squares with compensation for skewed
class distributions. SGG04 is an early version of
GGS05. Our methods rival or exceed these state-
of-the-art systems on all the data sets.

5 Conclusion

With the goal of achieving higher WSD perfor-
mance by exploiting all the currently available re-
sources, our focus was the new application of the
ASO algorithm in the multi-task learning configu-
ration, which improves performance by learning a
number of WSD problems simultaneously instead of
training for each individual problem independently.
A key finding is that using ASO with appropriate
feature / problem partitioning, labeled examples of
seemingly unrelated words can be effectively ex-
ploited. Combining ASO multi-task learning with
ASO semi-supervised learning results in further im-
provements. The fact that performance improve-
ments were obtained consistently across several lan-
guages / sense inventories demonstrates that our ap-
proach has broad applicability and hence practical
significance.
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