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Bart Decadt and Véronique Hoste and Walter Daelemans
CNTS – Language Technology Group – University of Antwerp

Universiteitsplein 1 – 2610 Wilrijk – Belgium
{bart.decadt,veronique.hoste,walter.daelemans}@ua.ac.be

Antal van den Bosch
Computational Linguistics – ILK – Tilburg University
P.O. Box 90153 – 5000 LE Tilburg – The Netherlands

antalb@uvt.nl

Abstract
GAMBL is a word expert approach to WSD in
which each word expert is trained using memory-
based learning. Joint feature selection and algo-
rithm parameter optimization are achieved with a
genetic algorithm (GA). We use a cascaded classi-
fier approach in which the GA optimizes local con-
text features and the output of a separate keyword
classifier (rather than also optimizing the keyword
features together with the local context features). A
further innovation on earlier versions of memory-
based WSD is the use of grammatical relation and
chunk features. This paper presents the architecture
of the system briefly, and discusses its performance
on the English lexical sample and all words tasks in
SENSEVAL-3.

1 Memory-Based WSD
We interpret WSD as a classification task distributed
over word experts: given an ambiguous word and
its context as input features, a classifier specialized
on that word assigns the contextually appropriate
sense to it. For each word-lemma–POS-tag combi-
nation, a separate classifier is trained. Information
about the words immediately surrounding the am-
biguous word (the local context), as well as infor-
mation about sense-related words in a wider context
(keywords) are provided as information sources,
coded in a feature vector. To train the word ex-
perts, memory-based learning (MBL) is used, an in-
stance of thelazy learning paradigm: all contexts in
which an ambiguous word occurs in the training text
are kept in memory and abstraction only occurs at
classification time by extrapolating a class from the
most similar item(s) in memory to the new test item.
This contrasts witheagerlearning methods such as
decision lists which abstract from the training data
at training time and forget about the examples them-
selves. For our experiments, we use the MBL al-
gorithms implemented inTIMBL 1. This software

1We usedTIMBL version 5.0.0, which is available from
http://ilk.kub.nl

Figure 1: An overview of our architecture for word
sense disambiguation.
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allows a choice between different statistical and
information-theoretic feature and value weighting
methods, different neighborhood size and weighting
parameters, etc., that should be optimized for each
word expert independently. See (Daelemans et al.,
2003b) for more information. It has been claimed,
e.g. in (Daelemans et al., 1999), that lazy learn-
ing has the right bias for learning natural language
processing tasks as it makes possible learning from
atypical and low-frequency events that are usually
discarded by eager learning methods.

Architecture. Previous work on memory-based
WSD includes work from Ng and Lee (1996), Veen-
stra et al. (2000), Hoste et al. (2002) and Mihalcea
(2002). The current design of our WSD system is
largely based on Hoste et al. (2002).

Figure 1 gives an overview of the design of our
WSD system: the training text is first linguistically
analyzed. For each word-lemma–POS-tag combi-
nation, we check if it (i) is in our sense lexicon, (ii)
has more than one sense and (iii) has a frequency in
the training text above a certain threshold. For all
combinations matching these three conditions, we
train a word expert module. To all combinations
with only one sense, or with more senses and a fre-
quency below the threshold, we assign the default
sense, which is respectively the only or most fre-
quent sense in WordNet.

The word expert module consists of two cascaded
memory-based classifiers: the sense predicted by
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the first classifier is used as a feature in the second
classifier. The first classifier is trained on keywords
selected according to a statistical criterion, and the
second one is trained on the prediction of the first
and on the local context of the ambiguous word-
lemma–POS-tag combination.

In the remainder of this paper, we will describe
the feature construction process from the available
information sources (Section 2), the learning and
optimization approach (Section 3), and the results
(Section 4) and their interpretation.

2 Information sources

Preprocessing. The training corpus is a concate-
nation of various sense-tagged English texts: it con-
tains SemCor (included with WordNet 1.7.1), train-
ing and test data from the English lexical sam-
ple (LS) and all words (AW) tasks from previous
SENSEVAL workshops, the line-, hard- and serve-
corpora, and the example sentences in WordNet
1.7.1. This corpus contains 4.494.909 tokens of
which 555.269 are sense-tagged words.

To this corpus, we add the training data from
the SENSEVAL-3 English LS task, containing 7860
sense-tagged words. For the AW task, we sim-
ply append the LS training data after conversion
of the verb’s WordSmyth senses to WordNet 1.7.1
senses. For the LS task, however, we slightly
change the design of the word expert module be-
cause (i) WordSmyth senses are used for the verbs,
and (ii) for some words in the LS task, the sense dis-
tribution in our own training corpus is very different
from the distribution in the LS training data – we
did not want this difference to (heavily) influence
the results.

Figure 2 shows the word expert module used in
the LS task: we first generate a sense prediction us-
ing classifier 1A, trained on our own training data
using context keywords as features. This predic-
tion becomes an extra feature in classifier 1B, also
trained on our own training data but using local con-
text as information source. Finally, the predictions
of classifiers 1A and 1B become extra features for
classifier 2: this classifier is trained on the LS train-
ing data, and uses local context for disambiguating
senses.

The test data in the English LS task contains 3944
words to be sense-tagged (57 unique word-lemma–
POS-tag combinations), and in the English AW task
2041 words (1020 combinations). Training and test
data are linguistically analyzed: first, we tokenize,
POS-tag, and find chunks and grammatical relations
in the data with a shallow parser, and then we lem-
matize the data. These tools were developed locally.

Figure 2: The word expert module for the lexical
sample task.
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In our training data we find 3433 word-lemma–
POS-tag combinations that fulfilled the word expert
criteria: in the LS test data, these word experts cover
all 57 word-lemma–POS-tag combinations, and in
the AW test data, they cover 596 combinations, or
1448 particular instances (70.95%).

We will continue with a description of how we
create local context feature vectors, and extract key-
words to create binary feature vectors.

Local context. The second classifier uses the im-
mediate local context of a focus word-lemma–POS-
tag combination to disambiguate its senses: the fo-
cus word itself, and the three words before and after
it. For each of these seven words, we include in the
feature vector the POS-tag and the chunk+relation-
tag assigned to the word by the shallow parser. The
chunk+relation-tag contains information on the ba-
sic phrase type of the word (nominal, verbal, prepo-
sitional), and for nominal phrases also information
on the grammatical function (subject or object) of
the phrase.

We set the context window size to± 3 for prac-
tical reasons: in the optimization step, we use a
genetic algorithm for feature selection. This algo-
rithm will determine which features from the con-
text window will eventually be used in the classifi-
cation step. Increasing the initial context window
size, however, also increases the amount of com-
puter time needed for the optimization step. Using a
larger context window was computationally not fea-
sible.

Finally, to these local context features, we add the
prediction of thekeywords-in-contextclassifier as an
extra feature. We will now explain how we extract
the keywords and how we generate predictions for
our training items.



Keywords in context. The first classifier of each
word expert is trained on information about possi-
ble disambiguating keywords in a context of three
sentences: the sentence in which the ambiguous
word occurs, the previous sentence, and the follow-
ing sentence. The method we use to extract the key-
words for each sense is based on the work of Ng
and Lee (1996). They determine the probability of
a senses of a focus lemmaf given keywordk by di-
viding Ns,kloc (the number of occurrences of a pos-
sible local context keywordk with a particular focus
word-lemma–POS-tag combinationw with a partic-
ular senses) by Nkloc (the number of occurrences
of a possible local context keywordkloc with a par-
ticular focus word-lemma–POS-tag combinationw
regardless of its sense). In addition, we also take
into account the frequency of a possible keyword in
the complete training corpusNkcorp:

p(s|k) =
Ns,kloc

Nkloc
× (

1
Nkcorp

) (1)

Words were selected as keywords for a sense if (i)
they appeared at least three times in the context of
that sense, and (ii)p(s|k) was higher than or equal
to 0.001.

To this collection of local context keywords
we add possible disambiguating content words ex-
tracted from the WordNet sense definitions for each
focus word-lemma–POS-tag combination. All the
keywords are represented as binary features, of
which the value is 1 if the keyword is present in the
three-sentence-context, and 0 if not.

For each training item in the word experts, we
generate a keyword-based prediction. First, we split
the complete set of training items for each word ex-
pert in ten folds of equal size. We then use nine
folds to predict the sense of the remaining fold, af-
ter having found an optimal parameter setting for
TIMBL with heuristic optimization on the nine folds.
We repeat this procedure for each fold. Finally, for
each training item, we append its keyword-based
prediction to the local context feature vector.

3 Training and optimization
In previous work on memory-based WSD (Veenstra
et al., 2000; Hoste et al., 2002) we showed that op-
timization of features and algorithm parameters for
each word expert independently contributes consid-
erably to accuracy. For classifier 1 in the AW task,
and for classifiers 1A and 1B in the LS task, we
heuristically determine the optimal algorithm pa-
rameter settings: we exhaustively try out all pos-
sible combinations of (a selection of) distance met-
rics, feature-weightings, number of nearest neigh-

bors and nearest neighbor voting schemes, and re-
tain the best result. The testing of one setting is done
with ten-fold cross-validation.

For classifier 2, we use a genetic algorithm (GA,
e.g. (Goldberg, 1989)) to do joint parameter opti-
mization and feature selection. We refer to (Daele-
mans et al., 2003a) for a discussion of the effect
of joint parameter optimization and feature selec-
tion on accuracy of classifiers for NLP tasks. Joint
feature selection and parameter optimization is an
optimization problem which involves searching the
space of all possible feature subsets and parame-
ter settings to identify the combination that is op-
timal or near-optimal. Since exhaustive search in
large search spaces is computationally not feasi-
ble in practice, a GA is a more realistic approach
to search the space. Contrary to traditional hill-
climbing approaches, such as backward selection,
the GA explores different areas of the search space
in parallel.

For the experiments we use a generational GA
implemented in the DeGA (Distributed Evaluation
Genetic Algorithm) framework2. We use the GA
in its default settings. The GA optimization is per-
formed using 10-fold cross-validation on the avail-
able training data. The resulting optimal settings are
then applied to the test data. In the experiments,
the individuals are represented as bit strings (Fig-
ure 3). Each individual contains particular values
for all algorithm settings and for the selection of the
features. ForTIMBL , the large majority of these fea-
tures control the use of a feature (ignore, or a dis-
tance metric) and are encoded in the chromosome
as ternary alleles. At the end of the chromosome,
the 5-valued weighting parameter and the 4-valued
neighbor weighting parameter are encoded, together
with thek parameter which controls the number of
neighbors. The latter is encoded as a real value
which represents the logarithm of the number of
neighbors.

We will now present the results of our WSD ar-
chitecture on the LS and AW test sets.

4 Experimental results

English lexical sample task. Table 1 presents the
results of our WSD system for each word in the
LS task, and our overall score (theopt column).
We included the results ofTIMBL with default set-
tings (thedefcolumn) and the score of a statistical
baseline (themaj column), which assigns the sense

2We would like to thank Bart Naudts for developing the
DeGA environment, and addingTIMBL to this environment.
More information on DeGA can be found at:
http://www.islab.ua.ac.be/software



Figure 3: Example individual representing one
TIMBL experiment.
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with the highest frequency in the training set to the
test instances. For comparison, we also list ten-fold
cross-validation results (with default and optimized
settings) of the second classifier on the training set.

Looking at the overall score, we see thatTIMBL

with default settings already outperforms the base-
line with 5%, and that theTIMBL classifier opti-
mized with the GA, improves our score even more
with another 7%.

For most words, the improvement after optimiza-
tion with the genetic algorithm on the training set,
also holds on the test set, though for 15 words, the
optimal setting from the GA does not result in a bet-
ter score than the default score. For four words,
TIMBL and the GA cannot outperform the major-
ity sense baseline. We do not yet know what causes
TIMBL and the GA to perform badly, but a differ-
ence between the sense distributions in the training
and test set might be a factor. The distribution of the
majority sense in the training set ofsourceis 48.4%,
while in the test set this distribution increases to
62.6%. Forimportant there is a similar increase:
from 38.9% to 47.4%. However, sense distribution
differences in training and test set cannot be the only
cause, because foractivateandlosethere is no such
difference between the sense distributions.

Finally, Table 2 depicts the fine-grained classifi-
cation accuracies of our system per POS in the LS
task, again compared with the accuracies of the ma-
jority sense baseline andTIMBL with default set-
tings. The classification accuracy for nouns and
verbs is more or less the same as the overall score.
Adjectives, however, seem to be the harder to clas-
sify for our system: the classification accuracy is
13% lower than the overall score. This could be re-
lated to the on average higher number of senses for
the adjectives.

English all words task. The last column of Ta-
ble 3 presents our results on the AW test set: the
results of the classifier optimized with the GA are
compared with the results ofTIMBL with default
settings, and with a majority sense baseline, which

Table 2: Classification accuracy per POS in the En-
glish lexical sample task.

POS AVG . SENSES MAJ DEF OPT

adjectives 7.4 51.6 50.3 54.1
nouns 6.0 54.2 56.9 66.4
verbs 5.6 56.5 64.3 69.4

Table 3: Classification accuracy in the English all
words task.

TRAINING TEST

WORD EXPERT WORDS

WordNet default / 56.4
TIMBL default 60.89 55.7

GA optimized TIMBL 72.50 60.1
ALL WORDS

WordNet default / 62.4
TIMBL default / 62.0

GA optimized TIMBL / 65.2

predicts for each word to be sense-tagged the sense
that is listed in WordNet as the most frequent one.
The first half of the table lists the results when we
only take into account words for which a word ex-
pert is built. TIMBL with default settings cannot
outperform the already strong baseline, but after
optimization with the GA, we see a 4% improve-
ment. Unfortunately, this increase is not as high as
the performance boost we see in the ten-fold cross-
validation results on the training set, listed in the
first column of Table 3: there is a large increase of
12% after the optimization step.

Words for which no word expert is built are
tagged with their majority sense from WordNet.
When we also take these words into account, we see
similar results: again, defaultTIMBL cannot outper-
form the baseline, but GA optimization gives a 3%
increase.

5 Conclusion
From previous research on memory-based WSD,
we learned that both feature selection, algorithm pa-
rameter settings, and their interaction, play an im-
portant role in accuracy, and that good selections
and settings do not generalize over different word
experts. These should therefore be optimized indi-
vidually. We showed in this paper that using Ge-
netic Algorithms andTIMBL , this complex multiple
optimization problem can nevertheless be achieved,
even for the AW task in which 3433 word experts
have to be optimized.

Compared with our previous system (Hoste et al.,
2002), using chunks and grammatical relations as
a source of information is an innovation. This in-



Table 1: Classification accuracies for all lemmas in the English lexical sample task.
TRAINING SET TEST SET TRAINING SET TEST SET

LEMMA /POS DEF OPT MAJ DEF OPT LEMMA /POS DEF OPT MAJ DEF OPT

provide/v 84.56 94.85 85.50 88.40 92.75 rule/n 75.44 91.23 40.00 50.00 60.00
eat/v 79.04 89.22 88.50 78.16 91.95 image/n 49.00 62.69 36.48 48.64 56.75

remain/v 85.40 95.62 78.57 82.85 88.57 paper/n 37.95 54.46 25.64 38.46 55.55
arm/n 88.67 93.20 81.95 84.21 84.96 produce/v 50.54 65.22 52.12 53.19 55.31
plan/v 67.93 78.48 82.14 75.00 83.33 suspend/v 46.34 59.35 35.93 34.37 51.56
add/v 73.95 82.38 46.21 79.54 82.57 argument/n 42.04 57.58 51.35 43.24 51.35

degree/n 64.56 78.38 60.93 71.09 82.03 difficulty/n 35.48 58.06 17.39 34.78 39.13
hot/a 68.67 78.00 79.06 76.74 81.39 performance/n 38.21 52.85 26.43 28.73 39.08

watch/v 85.71 89.80 74.50 78.43 80.39 use/v 80.77 88.46 71.42 78.57 78.57
smell/v 70.41 85.27 40.00 74.54 78.18 hear/v 64.52 74.19 46.87 53.12 53.12
bank/n 61.36 79.22 67.42 59.84 78.03 win/v 50.65 68.83 43.58 48.71 48.71

expect/v 64.93 77.92 74.35 73.07 76.92 different/a 54.81 65.27 50.00 46.00 46.00
talk/v 77.37 83.21 72.60 73.97 75.34 miss/v 40.00 68.89 33.33 43.33 43.33

appear/v 79.24 87.17 44.36 71.42 75.18 solid/a 9.80 31.78 31.03 27.58 27.58
decide/v 72.95 86.89 67.74 70.96 74.19 receive/v 75.00 80.77 88.88 92.59 88.88

wash/v 32.26 62.90 67.64 52.94 73.52 mean/v 84.81 91.14 52.50 77.50 75.00
organization/n 67.66 77.51 73.21 69.64 73.21 audience/n 73.90 85.29 67.00 76.00 74.00

party/n 61.82 71.96 62.06 65.51 72.41 operate/v 72.73 84.85 38.88 66.66 55.55
interest/n 63.28 70.36 41.93 59.13 72.04 write/v 64.29 71.43 34.78 56.52 43.47
express/v 48.62 72.48 69.09 45.45 70.90 play/v 48.42 64.21 46.15 51.92 42.30

sort/v 61.09 78.60 65.62 66.66 70.83 difference/n 57.14 68.51 40.35 47.36 46.49
atmosphere/n 47.42 60.20 66.66 51.85 70.37 judgment/n 35.64 60.40 28.12 40.62 34.37

note/v 56.15 69.23 56.71 61.19 68.65 treat/v 37.84 55.86 28.07 40.35 38.59
disc/n 54.03 69.19 38.00 52.00 66.00 lose/v 44.78 62.69 52.77 36.11 52.77

climb/v 63.48 78.26 55.22 59.70 64.17 important/a 72.08 82.23 47.36 42.10 47.36
shelter/n 66.14 74.02 44.89 54.08 63.26 activate/v 70.40 80.27 82.45 64.91 80.70
simple/a 43.55 58.52 27.77 44.44 61.11 source/n 34.06 52.90 65.62 46.87 59.37

ask/v 49.80 62.06 28.24 60.30 61.06 OVERALL SCORE

begin/v 53.41 63.07 59.49 53.16 60.75 FINE-GR. 59.82 71.28 55.22 60.80 67.40
encounter/v 51.94 65.89 36.92 58.46 60.00 COARSE-GR. / / / / 74.00

Table 4: The GA’s selection of the different types of
features in percentages.

PREDICTION TYPE AW LS

predictions from keyword classifier 59 74
predictions from old data classifier / 65

words in local context 59 58
POS-tags of local context 55 65

chunk+relation tags of local context67 72

formation seems to contribute to the disambiguation
process: Table 4 list for each type of feature the per-
centage of times it was selected by the GA. Though
Table 4 is an not exhaustive comparison of the dif-
ferent types of features, we nevertheless see that the
GA selects syntactic and grammatical information
more often than plain words or POS-tags.

Finally, Table 4 also suggests that our cascaded
approach to combine two different information
sources is quite successful: the predictions from the
previous classifier(s) are very often selected, espe-
cially in the LS task, where the prediction from the
keyword classifier is most often selected.
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