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Abstract. Comparative machine learning experiments have become an
important methodology in empirical approaches to natural language pro-
cessing (i) to investigate which machine learning algorithms have the
‘right bias’ to solve specific natural language processing tasks, and (ii) to
investigate which sources of information add to accuracy in a learning ap-
proach. Using automatic word sense disambiguation as an example task,
we show that with the methodology currently used in comparative ma-
chine learning experiments, the results may often not be reliable because
of the role of and interaction between feature selection and algorithm
parameter optimization. We propose genetic algorithms as a practical
approach to achieve both higher accuracy within a single approach, and
more reliable comparisons.

1 Introduction

Supervised machine learning methods are investigated intensively in empirical
computational linguistics because they potentially have a number of advan-
tages compared to standard statistical approaches. For example, Inductive Logic
Programming (ILP) systems allow easy integration of linguistic background
knowledge in the learning system, induced rule systems are often more inter-
pretable, memory-based learning methods incorporate smoothing of sparse data
by similarity-based learning, etc.

Frequently, research in machine learning (ML) of natural language takes the
form of comparative ML experiments, either to investigate the role of different
information sources in learning a task, or to investigate whether the bias of some
learning algorithm fits the properties of natural language processing tasks better
than alternative learning algorithms.

For the former goal, results of experiments with and without a certain infor-
mation source are compared, to measure whether it is responsible for a statis-
tically significant increase or decrease in accuracy. An example is text catego-
rization: we may be interested in investigating whether part-of-speech tagging
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(adding the contextually correct morphosyntactic classes to the words in a docu-
ment) improves the accuracy of a Bayesian text classification system or not. This
can be achieved by comparing the accuracy of the classifier with and without
the information source.

In the latter goal, investigating the applicability of an algorithm for a type
of task, the bias of an algorithm refers to the representational constraints and
specific search heuristics it uses. Some examples of bias are the fact that decision
tree learners favor compact decision trees, and that ILP systems can represent
hypotheses in terms of first order logic in contrast to most other learning methods
which can only represent propositional hypotheses. In such experiments, two or
more ML algorithms are compared for their accuracy on the same data. One
example is a comparison between eager and lazy learning algorithms for language
tasks: we may want to show that abstracting from infrequent examples, as done
in eager learning, is harmful to generalization accuracy [5].

Apart from their inherent interest, the comparative machine learning ap-
proach has also gained importance because of the influence of competitive re-
search evaluations such as SENSEVAL? and the CoNLL shared tasks*, in which
ML and other systems are compared on the same train and test data. SENSEVAL
concerns research on word sense disambiguation, which we will use as a test case
in this paper.

Word Sense Disambiguation (WSD) is a natural language processing task
in which a word with more than one sense has to be disambiguated by using
information from the context in which the word occurs. E.g. knight can (among
others) refer to a chess piece or a medieval character. WSD is an essential sub-
component in applications such as machine translation (depending on the sense,
knight will be translated into French as either cavalier or chevalier), language
understanding, question answering, information retrieval, and so on. Over the
last five years, two SENSEVAL competitions have been run to test the strengths
and weaknesses of WSD systems with respect to different words, different as-
pects of language, and different languages in carefully controlled contexts [10,
8]. Machine learning methods such as decision list learning and memory-based
learning have been shown to outperform hand-crafting approaches in these com-
parisons, leading to a large body of comparative work of the two types discussed
earlier.

A seminal paper by Mooney on the comparison of the accuracy of different
machine learning methods [16] on the task of WSD is a good example of this
classifier comparison approach. He tested seven ML algorithms on their ability
to disambiguate the word line, and made several conclusions in terms of al-
gorithm bias to explain the results. Many more examples can be found in the
recent NLP literature of similar studies and interpretations [17,9, 15], often with
contradictory results and interpretations.

In the remainder of this paper, we will first describe standard methodology
in Section 2 and show empirically that this methodology leads to conclusions

3 http://www.senseval.org
* http:/ /www.aclweb.org/signll
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that are not reliable for our WSD problem and for other machine learning tasks
inside and outside computational linguistics (Section 3). In Section 4 we show
that the joint optimization of feature selection and algorithm parameters using
a genetic algorithm is computationally feasible, leads in general to good results,
and could therefore be used both to achieve higher accuracy and more reliable
comparisons. Section 5 discusses our results in the light of related research.

2 Limitations of Standard Methodology

Crucial for objectively comparing algorithm bias and relevance of information
sources is a methodology to reliably measure differences and compute their statis-
tical significance. A detailed methodology has been developed for this [21] involv-
ing approaches like k-fold cross-validation [11,1,7] to estimate classifier quality
(in terms of accuracy or derived measures like precision, recall, and F-score), as
well as statistical techniques like McNemar [7] and paired cross-validation t-tests
for determining the statistical significance of differences between algorithms or
between presence or absence of information sources. Although this methodol-
ogy is not without its problems [18], it is generally accepted and used both in
machine learning and in most work in statistical NLP.

Many factors potentially play a role in the outcome of a (comparative) ma-
chine learning experiment: the data used (the sample selection and the sample
size), the information sources used (the features selected) and their representa-
tion (e.g. as nominal or binary features), and the algorithm parameter settings
(most ML algorithms have various parameters that can be tuned).

In a typical comparative machine learning experiment, two or more algo-
rithms are compared for a fixed sample selection, feature selection, feature rep-
resentation, and (default) algorithm parameter setting over a number of trials
(cross-validation), and if the measured differences are statistically significant,
conclusions are drawn about which algorithm is better suited to the problem
being studied and why (mostly in terms of algorithm bias). Sometimes differ-
ent sample sizes are used to provide a learning curve, and sometimes parameters
of (some of the) algorithms are optimized on training data, or heuristic feature
selection is attempted, but this is exceptional rather than common practice in
comparative experiments. Interactions between different factors, like the effect of
interleaved feature selection and algorithm parameter optimization, have to the
best of our knowledge not yet been investigated systematically in comparative
machine learning experiments for language processing problems.

In the remainder of this paper, we test the hypotheses that (i) feature selec-
tion, algorithm parameter optimization, and their joint optimization cause larger
differences in accuracy within a single algorithm than differences observed be-
tween different algorithms using default parameter settings and feature input,
and (ii) that the effect of adding and removing an information source when using
default parameters can be reversed when re-optimizing the algorithm parame-
ters. The implication of evidence for these hypotheses is that a large part of

5 A similar approach is taken for the comparison of information sources.



v

the comparative machine learning of language literature may not be reliable.
Another implication is that joint optimization can lead to significantly higher
generalization accuracies, but this issue is not the focus of this paper.

3 Feature Selection, Parameter Optimization, and their
Interaction

In this Section, we analyze the impact of algorithm parameter optimization, fea-
ture selection, and the interaction between both on classifier accuracy in com-
parative experiments on WSD data and on the UCI benchmark datasets.

Feature (subset) selection is the process in which a subset of the available
predictor features defining the input of the classification task are removed if they
cannot be shown to be relevant in solving the learning task [11]. For computa-
tional reasons we used a backward selection algorithm. We start with all available
features and look at the effect on accuracy of deleting one of the features, and
continue deleting until no more accuracy increase is reported. Algorithm pa-
rameter optimization is the process in which parameters of a learning system
(e.g. learning rate for neural networks, or the number of nearest neighbors in
memory-based learning), are tuned for a particular problem. Although most ma-
chine learning systems provide sensible default settings, it is by no means certain
that they will be optimal parameter settings for some particular task. In both
cases (feature selection and parameter optimization), we are performing a model
selection task which is well-known in machine learning. But as we mentioned ear-
lier, whereas some published work in computational linguistics discusses either
feature selection for some task, or algorithm parameter optimization for oth-
ers, the effects of their interaction have, as far as we know, never been studied
systematically.

The general set-up of our experiments is the following. Each experiment is
done using a 10-fold cross-validation on the available data. This means that
the data is split in 10 partitions, and each of these is used once as test set,
with the other nine as corresponding train set. For each dataset, we provide
information about the accuracy of two different machine learning systems under
four conditions:

1. Using their respective default settings.

2. After optimizing the feature subset selection (backward selection) using de-
fault parameter settings, for each algorithm separately. (Optimization step
1).

3. After optimizing the algorithm parameters for each algorithm individually.
Each “reasonable” parameter setting is tested with a 10-fold cross-validation
experiment. (Optimization step 2).

4. After performing feature selection interleaved with optimization of the pa-
rameters for each algorithm in turn. (Optimization step 3).

We expect from our first hypothesis that each optimization step can increase
the accuracy of the best result (as measured by the average result over the 10
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experiments) considerably. In general, we expect the differences we record for the
same algorithm over the four conditions to be much larger than the difference
between the two learning algorithms when using default settings. As we are
primarily interested in showing the variability of results due to the different
optimizations, all results reported will be cross-validation results, and not results
on an additional held-out dataset (this would imply an additional cross-validation
loop within the cross-validation loop, which is computationally infeasible). For
the WSD data we will report results on test datasets used by SENSEVAL which
give an indication of the usefulness of the approach for improving accuracy.

3.1 Machine Learning Methods and Data

We chose two machine learning techniques for our experiments: the memory-
based learning package TIMBL [6]°, and the rule induction package RIPPER [3].
These two approaches provide extremes of the eagerness dimension in ML (the
degree in which a learning algorithm abstracts from the training data in forming
a hypothesis). TIMBL is an example of lazy learning, RIPPER of eager learning.

For TIMBL the following algorithm parameters were optimized: similarity met-
rics, feature weighting metrics, class voting weighting, and number of nearest
neighbors (varied between 1 and 45). For RIPPER the following parameter set-
tings were varied: class ordering, negative tests in the rule conditions, hypothe-
sis simplification magnitude, and example coverage. See [6, 3] for explanation of
these parameters.

The “line” data set has become a benchmark dataset for work on word sense
disambiguation. It was first produced and described by Leecock, Towell, and
Voorhees [14]. It consists of instances of the word line, taken from the 1987-89
Wall Street Journal and a 25 million word corpus from the American Printing
House for the Blind. 4,149 examples of occurrences of line were each tagged
with one of six WordNet senses: text, formation, division, phone, cord, product.
Because the “product” sense is 5 times more common than any of the other
senses, a sampled dataset was also used in which all senses are represented
equally. For each sense, 349 instances were selected at random, producing a total
of 2094 examples with each sense having an equal share. This kind of sampling
has been done before, and has also been reported in the literature [16]. However,
we made our own sample as the other samples were not readily available. This
means that our sampled data results cannot be compared directly to those of
other systems.

Here is an example of an instance representing one occurrence of the word
line in the corpus:

line-n.w9_15:17036:,pen,NN,writing, VBG,those,D T lines,line, NNS,was,

VBD,that,IN,of,IN,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

5 Available from http://ilk.kub.nl
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“line” (complete) TIMBL|RIPPER
WORDS (default) 60.2 | 63.9
(feat. sel.) 62.7 | 63.9
(param. opt.) | 63.4 | 70.2
(interleaved opt.)| 64.5 | 91.3
WORDS+POS (default) 57.8 | 63.8
(feat. sel.) 62.7 | 64.7
(param. opt.) | 64.3 | 71.6
(interleaved opt.)| 64.9 | 76.4

“line” (sampled) TIMBL|RIPPER
WORDS (default) 59.1 | 404
(feat. sel.) 60.3 | 40.9
(param. opt.) | 66.4 | 61.2
(interleaved opt.)| 66.7 | 63.3
WORDS+POS (default) 56.9 | 41.4
(feat. sel.) 61.5 | 41.6
(param. opt.) | 67.3 | 60.5
(interleaved opt.)| 68.1 | 61.1
Table 1. Results of TIMBL and RIPPER on different WSD data sets when using (i) de-
fault settings, (ii) backward selection, (iii) parameter optimization, and (iv) interleaved
backward selection and parameter optimization.

0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,text.

The first entry (line-n.w9-15:17056:) is an ID tag for the instance, and is
ignored in the learning process. Next are the three context words occurring
before the focus word, together with their parts of speech. Then follows the
form of the word line, in this case the plural, together with its base form (line),
and its part of speech (NNS). Then we can see the right context of the focus
words, also with parts of speech. The next 200 features are binary features, each
indicating the presence or absence of the 200 most salient context words of line.

3.2 Results on the WSD Datasets

In Table 1, if we focus on the variation for a single algorithm over the four con-
ditions, we can see that parameter optimization, feature selection, and combined
feature selection with parameter optimization lead to major accuracy improve-
ments compared to the results obtained with default parameter settings. These
‘vertical’ accuracy differences are much larger than the ‘horizontal’ algorithm-
comparing accuracy differences.

The fact that we could observe large standard deviations in the optimization
experiments, also confirms the necessity of parameter optimization (only the
best result is represented in Table 1 for each optimization step).

With respect to the selected parameter settings and feature combinations, we
found that parameter settings which are optimal when using all features are not
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Dataset [ | TIMBL|RIPPER]

database for fitting contact lenses (default) 75.0 | 79.2
(feat. sel.) 87.5 | 87.5
(param. opt.) | 87.5| 87.5
(interleaved opt.)| 87.5 | 87.5
contraceptive method choice (default) 48.5 | 46.8
(feat. sel.) 52.2 | 48.2
(param. opt.) | 54.2 | 49.8
(interleaved opt.)| 54.8 | 49.8
breast-cancer-wisconsin (default) 95.7 | 93.7
(feat. sel.) 96.3 | 95.3
(param. opt.) | 97.4 | 95.7
(interleaved opt.)| 97.6 | 95.7
car evaluation database (default) 94.0 | 87.0
(feat. sel.) 94.0 | 87.0
(param. opt.) | 96.9 | 98.4
(interleaved opt.)| 96.9 | 98.4
postoperative patient data (default) 55.6 | 71.1
(feat. sel.) 71.1| 71.1
(param. opt.) | 71.1| 71.1
(interleaved opt.)| 71.1 | 71.1
Table 2. Results of TIMBL and RIPPER on different UCI data sets when using (i) de-
fault settings, (ii) backward selection, (iii) parameter optimization, and (iv) interleaved
backward selection and parameter optimization.

necessarily optimal when performing feature selection. Furthermore, we could
observe that the feature selection considered to be optimal for TIMBL was often
different from the one optimal for RIPPER.

We conclude that we have found evidence for our hypothesis (i) that the
accuracy differences between different machine learning algorithms using stan-
dard comparative methodology will in general be lower than the differences in
accuracy resulting from interactions between algorithm parameter settings and
information source selection, at least for this task (see [4] for similar results on
other language datasets).

3.3 Results on the UCI Benchmarks

We investigated whether the effect is limited to natural language processing
datasets by applying the same optimalization to 5 UCI benchmark datasets:
“database for fitting contact lenses” (24 instances), “contraceptive method choice”
(1473 instances) , “breast-cancer-wisconsin” (699 instances), “car evaluation
database” (1728 instances) and “postoperative patient data” (90 instances).
Compared to our language processing datasets, these datasets are small. From
the results in Table 2, we nevertheless see the same effects: the default settings

" http://www.ics.uci.edu/ mlearn/MLRepository.html
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for the algorithms are not optimal; the difference in accuracy for a single al-
gorithm in the four conditions generally overwhelms accuracy differences found
between the algorithms, and in cases like the “car evaluation database”, we see
that the initial result (TIMBL outperforms RIPPER) is reversed after optimization.
Similar effects explain why in the ML of natural language literature, so many
results and interpretations about superiority of one algorithm over the other are
contradictory.

4 Genetic Algorithms for Optimization

Our results of the previous Section show that a proper comparative experiment
requires extensive optimization of a combinatorially explosive nature, and that
the obtainable accuracy increase by going to this trouble are considerable. Opti-
mization and model selection problems of the type described in this paper are of
course not unique to machine learning of language. Solutions like genetic algo-
rithms (GAs) have been used for a long time as domain-independent techniques
suitable for exploring optimization in large search spaces such as those described
in this paper. We applied this optimization technique to our datasets.

The evolutionary algorithm used to optimize the feature selection and pa-
rameter optimization employs an algorithmic scheme similar to that of evolution
strategies: a population of p individuals forms the genetic material from which A
new individuals are created using crossover and mutation. The p best individuals
of this bigger temporary population are selected to become the next generation
of the algorithm.

An individual contains particular values for all algorithm parameters and
for the selection of the features. E.g., for TIMBL, the large majority of these
parameters control the use of a feature (ignore, weighted overlap, modified value
difference), and are encoded in the chromosome as ternary alleles. At the end of
the chromosome the 5-valued weighting parameter w and the 4-valued neighbor
weighting parameter d are encoded, together with the k parameter which controls
the number of neighbors. The latter is encoded as a real value which represents
the logarithm of the number of neighbors. The quality or fitness of an individual
is the classification result returned by TIMBL with these particular parameter
settings. A similar approach is followed for encoding the RIPPER parameters
into an individual.

The initial population is filled with individuals consisting of uniformly sam-
pled values. The mutation operator replaces, independently for each position
and with a small probability, the current value with an arbitrary other value.
The mutation rates of the features are set independently of that of w and 4.
In the case of the k parameter, Gaussian noise is added to the current value.
The crossover operators used are the traditional 1-point, 2-point and uniform
crossovers. They operate on the whole chromosome. The selection strength can
be controlled by tuning the proportion u/\; an alternative strategy chooses the
1 best individuals from the combination of u parents and A children. The GA
parameters were set using limited explorative experimentation. We are aware
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[WE Words+POS

Def. Opt. GA
bar 48.1 55.3 66.3
channel 60.9 70.5 75.9
develop 19.3 29.6 29.6
natural 42.8 52.7 58.9
post 60.2 66.5 75.6
WE | Words + POS + Keywords

Def. GA
bar 44.8 (47.0) 66.9 (59.6)
channel 63.3 (50.7) 75.4 (53.4)
develop 17.0 (37.7) 29.6 (29.0)
natural 40.3 (31.1) 61.3 (43.7)
post 57.4 (51.9) 77.8 (58.2)

Table 3. Validation results for TIMBL on five word experts, for datasets with and
without keyword information. For the smaller datasets, interleaved backward keyword
selection and parameter optimization results are included and are shown to be worse
than those of the GA. For the larger dataset, only the GA could be used to perform
interleaved optimization because the other method had become too computationally
expensive. SENSEVAL test set results are between brackets for default vs. GA with
keywords.

that the algorithm parameter optimization problem we try to solve with GAs
also applies to the GAs themselves.

4.1 Results

The WSD data sets discussed in Table 3 were selected from the SENSEVAL-2 data,
which provided training and test material for different ambiguous words. Each
word was given a separate training and test set. We chose five of these words
randomly, taking into account the following restrictions: at least 150 training
items should be available, and the word should have at least 5 senses, each
sense being represented by at least 10 training items. This process came up
with the words bar, channel, develop, natural, post. Instances were made for each
occurrence of each word in the same way as for the line data.

We see that the GA succeeds in finding solutions that are significantly better
than the default solutions and the best solutions obtained by a heuristic com-
bined feature selection and algorithm parameter optimization approach. The
main advantage of the GA is that it allows us to explore much larger search
spaces, for this problem e.g., also the use of context keywords, which would be
computationally impossible with the heuristic methods in Section 3.

For the words with POS and keywords results we added between brackets for
the default and GA results the results on the SENSEVAL test sets, showing that
the optimization can indeed be used not only for showing the variability of the
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words+POS words+POS
dataset words words+POS +keywords |words words+POS +keywords
“bar ” 50.0 48.1 44.8 56.4 66.3 66.9
“channel” 62.3 60.9 63.3 72.0 73.9 75.4
“develop” 16.3 19.3 17.0 34.8 29.6 29.6
“natural” 41.6 42.8 40.3 55.6 58.9 61.3
“post” 62.5 60.2 57.4 71.0 75.6 77.8
“line” (sampled)| 59.1 56.9 57.0 66.9 66.9 66.9

Table 4. Results of TIMBL with default settings and after interleaved feature selection
and parameter optimization with a GA on the different WSD data sets for different
information sources.

results, but also for obtaining higher predictive accuracy (although this should
ideally be shown using two embedded cross-validation loops which turned out
to be computationally infeasible for our data).

4.2 Results on the Comparison of Information Sources

In Table 4, we find evidence for our second hypothesis (the effect of adding
an information source can switch between positive and negative depending on
the optimization). E.g. where results with the default settings would lead to
a conclusion that keyword features don’t help for most WSD problems except
“channel”, the GA optimization shows that combinations of parameter settings
and feature selection can be found for all WSD problems except “develop” which
show exactly the opposite.

5 Related Research and Conclusion

Most comparative ML experiments, at least in computational linguistics, explore
only one or a few points in the space of possible experiments for each algorithm
to be compared. We have shown that regardless of the methodological accuracy
with which the comparison is made, there is a high risk that other areas in the
experimental space may lead to radically different results and conclusions. In
general, the more effort is put in optimization (in this paper by exploring the
interaction between feature selection and algorithm parameter optimization), the
better the results will be, and the more reliable the comparison will be. Given the
combinatorially explosive character of this type of optimization, we have chosen
for GAs as a computationally feasible way to achieve this; no other heuristic
optimization techniques allow the complex interactions we want to optimize. As
a test case we used WSD datasets. In previous work [4] we showed that the same
effects also occur in other tasks, like part of speech tagging and morphological
synthesis.

The current paper builds on results obtained earlier on WSD [19, 20] in which
we found that independent optimization of algorithm parameters for each word
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to be disambiguated led to higher accuracy, which at one point we thought to
be a limitation of the method used (memory-based learning). In this paper, we
show that the problem is much more general than for a single algorithm (e.g.
RIPPER behaves similarly). We also showed in this paper that feature selection
and algorithm parameter optimization interact highly, and should be jointly
optimized. We also build on earlier, less successful attempts to use GAs for opti-
mization in memory-based learning [12,13]. GAs have been used for parameter
optimization in ML a great deal, including for memory-based learning. A dif-
ferent discussion point concerns the lessons we have to draw from the relativity
of comparative machine learning results. In an influential recent paper, Banko
and Brill [2] conclude that “We have no reason to believe that any comparative
conclusions drawn on one million words will hold when we finally scale up to
larger training corpora”. They base this point of view on experiments compar-
ing several machine learning algorithms on one typical NLP task (confusable
word disambiguation in context) with data selection sizes varying from 1 mil-
lion to 1 billion. We have shown in this paper that data sample size is only one
aspect influencing comparative results, and that accuracy differences due to al-
gorithm parameter optimization, feature selection, and especially the interaction
between both easily overwhelm the accuracy differences reported between algo-
rithms (or information sources) in comparative experiments. Like the Banko and
Brill study, this suggests that published results of comparative machine learning
experiments (and their interpretation) may often be unreliable.

The good news is that optimization of as many factors as possible (sample
selection and size, feature selection and representation, algorithm parameters),
when possible, will offer important accuracy increases and (more) reliable com-
parative results. We believe that, in the long term, a GA approach offers a
computationally feasible approach to this huge optimization problem.

References

1. Ethem Alpaydin. Combined 5 x 2 cv F test for comparing supervised classification
learning algorithms. Neural Computation, 11(8):1885-1892, 1999.

2. Michele Banko and Eric Brill. Scaling to very very large corpora for natural lan-
guage disambiguation. In Proceedings of the 39th Annual Meeting of the Associ-
ation for Computational Linguistics, pages 26—-33. Association for Computational
Linguistics, 2001.

3. William W. Cohen. Fast effective rule induction. In Proc. 12th International
Conference on Machine Learning, pages 115-123. Morgan Kaufmann, 1995.

4. Walter Daelemans and Véronique Hoste. Evaluation of machine learning methods
for natural language processing tasks. In Proceedings of the Third International
Conference on Language Resources and Evaluation (LREC 2002), pages 755760,
2002.

5. Walter Daelemans, Antal van den Bosch, and Jakub Zavrel. Forgetting exceptions
is harmful in language learning. Machine Learning, 34:11-41, 1999.

6. Walter Daelemans, Jakub Zavrel, Ko van der Sloot, and Antal van den Bosch.
Timbl: Tilburg memory based learner, version 4.0, reference guide. Technical re-
port, ILK Technical Report 01-04, 2001.



XII

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Thomas G. Dietterich. Approximate statistical tests for comparing supervised
classification learning algorithms. Neural Computation, 10(7):1895-1923, 1998.
Phil Edmonds and Adam Kilgarriff, editors. Journal of Natural Language Engi-
neering special issue based on Senseval-2, volume 9. Cambridge University Press,
2003.

Gerard Escudero, Lluis Marquez, and German Rigau. Boosting applied to word
sense disambiguation. In Furopean Conference on Machine Learning, pages 129—
141, 2000.

Adam Kilgarriff and Martha Palmer, editors. Computers and the Humanities spe-
cial issue based on Senseval-1, volume 34. 1999.

Ron Kohavi and George H. John. Wrappers for feature subset selection. Artificial
Intelligence, 97(1-2):273-323, 1997.

Anne Kool, Walter Daelemans, and Jakub Zavrel. Genetic algorithms for fea-
ture relevance assignment in memory-based language processing. In Claire Cardie,
Walter Daelemans, Claire Nédellec, and Erik Tjong Kim Sang, editors, Proceed-
ings of the Fourth Conference on Computational Natural Language Learning and
of the Second Learning Language in Logic Workshop, Lisbon, 2000, pages 103—106.
Association for Computational Linguistics, Somerset, New Jersey, 2000.

Anne Kool, Jakub Zavrel, and Walter Daelemans. Simultaneous feature selection
and parameter optimization for memory-based natural language processing. In
Ad Feelders, editor, Proceedings of the 10th BENELEARN meeting, pages 93—100.
Tilburg, The Netherlands, 2000.

Claudia Leacock, Geoffrey Towell, and Ellen Voorhees. Corpus-based statistical
sense resolution. In Proceedings of the ARPA Workshop on Human Language
Technology, pages 260-265, March 1993.

Yoong Keok Lee and Hwee Tou Ng. An empirical evaluation of knowledge sources
and learning algorithms for word sense disambiguation. In Proceedings of the 2002
Conference on Empirical Methods in Natural Language Processing (EMNLP-2002),
pages 41-48, 2002.

Raymond J. Mooney. Comparative experiments on disambiguating word senses:
An illustration of the role of bias in machine learning. In Eric Brill and Kenneth
Church, editors, Proceedings of the Conference on Empirical Methods in Natu-
ral Language Processing, pages 82-91. Association for Computational Linguistics,
Somerset, New Jersey, 1996.

Hwee Tou Ng and Hian Beng Lee. Integrating multiple knowledge sources to dis-
ambiguate word sense: An exemplar-based approach. In Arivind Joshi and Martha
Palmer, editors, Proceedings of the Thirty-Fourth Annual Meeting of the Associ-
ation for Computational Linguistics, pages 40-47, San Francisco, 1996. Morgan
Kaufmann Publishers.

Steven L. Salzberg. On comparing classifiers: Pitfalls to avoid and a recommended
approach. Data Mining and Knowledge Discovery, 1(3):317-327, 1997.

Jorn Veenstra, Antal Van den Bosch, Sabine Buchholz, Walter Daelemans, and
Jakub Zavrel. Memory-based word sense disambiguation. Computing and the
Humanities, 2000.

Walter Daelemans Véronique Hoste, Iris Hendrickx and Antal van den Bosch. Pa-
rameter optimization for machine-learning of word sense disambiguation. Natural
Language Engineering, pages 311-325, 2002.

Sholom Weiss and Nitin Indurkhya. Predictive Data Mining: A Practical Guide.
Morgan Kaufmann, San Francisco, 1998.



