A Comparison of Analogical Modeling of Language to
Memory-Based Language Processing

Walter Daelemans*
CNTS, Language Technology Group, University of Antwerp
ILK Research Group, Tilburg University

DRAFT, August 2000

Abstract

Memory-Based Language Processing (MBLP), like Analogical Modeling of Language
(AML), is an approach to modeling language learning and language processing that is
based on the idea that language behavior is guided by the direct reuse of memory traces
of earlier language experience rather than by rules extracted from such experience. Despite
their similarities, both approaches show important theoretical, algorithmic, and empirical
differences. MBLP uses algorithms and metrics taken from statistical pattern recognition
(nearest neighbor methods), and information theory. AML is based on a natural (psycho-
logically plausible) statistic. We will discuss these differences, focusing on new empirical
work comparing AML and MBLP on learning and processing plural formation in German.

1 Introduction

Memory-Based Language Processing is inspired by the hypothesis that in learning a cog-
nitive task from experience, people do not extract rules or other abstract representations
from their experience, but reuse their memory of that experience directly. For language
behavior modeling, this means that language acquisition is simply the storage of experi-
ences in memory, and language processing is the result of analogical reasoning on memory
structures. Whereas the inspiration and motivation for our approach to MBLP has come
mainly from statistical pattern recognition, and Artificial Intelligence, a similar approach
has also survived the Chomskyan revolution in linguistics, most notably in the work of
Royal Skousen on Analogical Modeling of Language. After presenting a short history
and characterisation of both MBLP and AML in this section, we will discuss the main al-
gorithmic differences in Section 2, and study their effects empirically in Section 3 in a
comparative study using the German plural as a benchmark task. Section 4 discusses
theoretical implications of the emprirical results.

1.1 Memory-Based Language Processing

As far as the algorithms used in MBLP are concerned, nearest neighbor methods (k — nn),
developed in statistical pattern recognition from the fifties onwards, have played an impor-
tant inspirational role (Fix and Hodges, 1951; Cover and Hart, 1967). In these methods,
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examples (labeled with their class) are represented as points in an example space with as
dimensions the numeric attributes used to describe them. A new example obtains its class
by finding its position as a point in this space, and extrapolating its class from the k near-
est points in its neighborhood. Nearness is defined as the reverse of Euclidean distance.
This literature has also generated many studies on methods for removing examples from
memory either for efficiency (faster processing by removing unnecessary examples) or for
accuracy (better predictions for unseen cases by removing badly predicting examples).
See Dasarathy (1991) for a collection of fundamental papers on k —nn research. However,
until the nineteen eighties, the impact of these non-parametric statistical methods on the
development of systems for solving practical problems has remained limited because of a
number of shortcomings: they were computationally expensive in storage and processing;
intolerant of attribute noise and irrelevant attributes; sensitive to the similarity metric
used; and the Euclidean distance metaphor for similarity breaks down with non-numeric
and missing feature values.

From the late eighties onwards, the intuitive appeal of the nearest neighbor approach
has been adopted in Artificial Intelligence in many variations on the basic nearest neigh-
bor modeling idea, using names such as memory-based reasoning, case-based reasoning,
exemplar-based learning, locally-weighted learning, and instance-based learning (Stanfill
and Waltz, 1986; Cost and Salzberg, 1993; Riesbeck and Schank, 1989; Kolodner, 1993;
Atkeson, Moore, and Schaal, 1997; Aamodt and Plaza, 1994; Aha, Kibler, and Albert,
1991). These methods modify or extend the nearest neighbor algorithm in different ways,
and aim to solve (some of) the problems with & — nn listed before. Recently, the term
Lazy Learning (as opposed to Eager Learning) has been proposed as a generic term for
this family of methods (Aha, 1997).

Since the early nineteen nineties, we find several studies using nearest-neighbor tech-
niques for solving problems in Natural Language processing (Cardie, 1996; Daelemans,
Van den Bosch, and Zavrel, 1999). The general approach is to define the tasks as (cas-
cades of) classification problems. For each (sub)problem instances are collected of input
linguistic items and their context, and an associated output linguistic class. The Ger-
man plural prediction task to be discussed later adheres to this format. The spectrum of
language processing tasks that has been investigated within this framework ranges from
phonology to semantics and discourse processing. See (Daelemans, 1999) for a recent
overview.

A related framework is DOP (Data-Oriented Parsing), a memory-based approach to
syntactic parsing (Scha, Bod, and Sima’an, 1999), which uses a corpus of parsed or se-
mantically analyzed utterances (a treebank) as a representation of a person’s language
experience, and analyzes new sentences searching for a recombination of subtrees that can
be extracted from this treebank. The frequencies of these subtrees in the corpus are used
to compute the probability of analyses.

In another related tradition, Nagao (1984) proposed Example-Based Machine Trans-
lation (EBMT), an approach to Machine Translation which is essentially memory-based.
By storing a large set of (analyzed) sentences or sentence fragments in the source lan-
guage with their associated translation in the target language as exemplars, a new source
language sentence can be translated by finding exemplars in memory that are similar to
it in terms of syntactic structure and word meaning, and extrapolating from the transla-
tions associated with these examples. Especially in the UK and Japan, this approach has
become an important subdiscipline within Machine Translation research.

1.2 Analogical Modeling of Language

Since Chomsky replaced the vague notions of analogy and induction existing in linguis-
tics in his time (in work of e.g., de Saussure and Bloomfield) by the clearer and better
operationalised notion of rule-based grammars, most mainstream linguistic theories, even



the functionally and cognitively inspired ones, have assumed rules to be the only or main
means to describe any aspect of language.

In contrast, Royal Skousen (1989; 1992) argues for a specific operationalisation of
the pre-Chomskyan analogical approach to language and language learning (AML). He
introduced a definition of analogy that is not based on rules and that does not make a
distinction between regular instances (obeying the rules) and irregular instances (excep-
tions to the rules). To model language acquisition and processing, a database of examples
of language use is searched looking for instances analogous to a new item, and extrapo-
lating a decision for the new item from them.

Current research on AML attempts to solve the computational complexity problem
(the algorithm is exponential in the number of attributes used to describe examples), and
to apply the approach to a wide range of linguistic problems. The work has also been
taken up as a psycholinguistically relevant explanation of human language acquisition
and processing, especially as an alternative to dual route models of language processing
(Eddington, 2000; Chandler, 1992; Derwing and Skousen, 1989). AML has also been used
in computational linguistics. Jones (1996) describes an application of AML in Machine
Translation, and work by Deryle Lonsdale includes AML implementations of part-of-speech
tagging and sentence boundary detection.

While AML is the most salient example of analogy-based theories in linguistics (and the
most interesting from a computational point of view), other linguists outside the main-
stream have proposed similar ideas. E.g., in the storage versus computation trade-off in
models of linguistic processing, linguists like Bybee (1988), and usage-based linguistic the-
ories such as Cognitive Grammar (Langacker, 1991) claim an important role for examples
(instances of language use); but they still presuppose rules to be essential for representing
generalizations.

2 A Comparison of Algorithms

Whereas AML refers to a single algorithm, there are various possible ways in which ideas
in MBLP can be operationalized in algorithmic form. In the remainder of this text, we
will narrow down our discussion of MBLP to the specific incarnation of it that has been
used intensively in Tilburg and Antwerp. Although our specific approach to MBLP was
developed primarily with language engineering purposes in mind, like in AML, its linguis-
tic and psycholinguistic relevance has always been a focus of attention. As an example,
work on word stress acquisition and processing in Dutch contrasted MBLP with metrical
phonology and studied correlations between errors made by a memory-based learner and
those made by children producing word stress in a repetition task (Daelemans, Gillis, and
Durieux, 1994; Steven Gillis, 2000). Many of the properties which make AML cognitively
and linguistically plausible also apply to MBLP: (i) there is no all-or-none distinction
between regular cases and irregular cases because no rules are used, (ii) fuzzy bound-
aries and leakage between categories occurs, (iii) the combination of memory storage and
similarity-based reasoning is cognitively simpler than rule-discovery and rule processing,
and (iv) memory-based systems show adaptability and robustness. Remarkably, seen from
the outside, such analogical or memory-based approaches appear to be rule-governed, and
therefore adequately explain linguistic intuitions as well.

Both approaches are instances of the same general view of cognitive architecture.
However, because of the different algorithm used to extrapolate outcomes from stored
occurrences, the properties and behavior of both approaches may differ considerably in
specific cases.



2.1 Similarity in MBLP

The most basic metric that works for patterns with symbolic features as well as for
numeric features, is the overlap metric given in equations 1 and 2; where A(X,Y") is the
distance between patterns X and Y, represented by n features, and ¢ is the distance per
feature. The distance between two patterns is simply the sum of the differences between
the features. The k — nn algorithm with this metric is called 1B1' (Aha, Kibler, and
Albert, 1991). Usually k is set to 1.

n

AX,Y) = 6(mi,us) &
i=1
where:
% if numeric, else
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1 if x; # s

The distance metric in equation 2 simply counts the number of (mis)matching feature-
values in both patterns. In the absence of information about feature relevance, this
is a reasonable choice. However, we can do better by computing statistics about the
relevance of features by looking at which features are good predictors of the class labels.
Information Theory gives us a useful tool for measuring feature relevance in this way.
Information Gain (IG) weighting looks at each feature in isolation, and measures how
much information it contributes to our knowledge of the correct class label (Quinlan,
1993). The Information Gain of feature ¢ is measured by computing the difference in
uncertainty (i.e. entropy) between the situations without and with knowledge of the
value of that feature (equation 3).

w; = H(C) = Y P(v) x H(C|v) (3)

vEV;

Where C is the set of class labels, V; is the set of values for feature i, and H(C) =
— > cec P(c)logy P(c) is the entropy of the class labels. The probabilities are estimated
from relative frequencies in the training set. For numeric features, values are first dis-
cretized into a number (the default is 20) of equally spaced intervals between the minimum
and maximum values of the feature. These groups are then used in the IG computation as
if they were discrete values (note that this discretization is not used in the computation of
the distance metric). The k — nn algorithm with this metric is called 1B1-1G (Daelemans
and van den Bosch, 1992). For more references and information about the algorithms
we refer to Daelemans, Van den Bosch, and Weijters (1997; Daelemans et al. (1998;
Daelemans, Van den Bosch, and Zavrel (1999).

For most of our experiments in the past, IB-IG with extrapolation based on 1 nearest
neighbor (k = 1) has been the default MBLP algorithm. Note that setting £ = 1 may imply
extrapolation from more than one exemplar in memory: in case there is more than one
exemplar which is the nearest neighbor, the algorithm uses all of them for extrapolation,
and selects the class which appears most in them (or the overall most frequent class in
case of ties). In what follows, we will use both 1B1-1G (the particular incarnation) and
MBLP (the general approach) to refer to our approach, depending on the context.

!For our experiments we have used TIMBL, available from http://ilk.kub.nl/. It is a Memory-Based
Learning software package developed in our group (Daelemans et al., 1998). TiMBL implements a number
of important memory-based algorithms and metrics. We only describe those here which we used in the
experiments below.



2.2 The AML Extrapolation Algorithm

The main algorithmic difference between AML and MBLP is the way the selection of mem-
ory items to extrapolate from is made. In 1B1-1G, the different features are assigned a
relative importance, which is used during matching to filter out the influence of irrelevant
features. In AML, essentially the same effect is achieved without precomputing the relative
importance of individual features?. Instead, all features are equally important initially,
and serve to partition the database into several disjoint sets of examples. Filtering out
irrelevant exemplars is done by considering properties of these sets rather than by inspect-
ing individual features that their members may share with the input pattern. To explain
how this works, we will describe the matching procedure in more detail®.

The first stage in the matching process is the construction of subcontexts; subcontexts
are sets of examples, and they are obtained by matching the input pattern, feature by
feature, to each item in the database, on an equal/not equal basis, and classifying the
database exemplars accordingly. Taking an input pattern ABC as an example, eight (22)
different subcontexts would be constructed, ABC, ABC,ABC, ABC, ABC, ABC, ABC
and ABC, where the overstrike denotes complementation. Thus, exemplars in the class
ABC share all their features with the input pattern, whereas for those in ABC only the
value for the third feature is shared. In general, n features yield 2" mutually disjoint
subcontexts. Subcontexts can be either deterministic, which means that their members
all have the same associated category, or non-deterministic, when several categories occur.

In the following stage, supracontexts are constructed by generalising over specific fea-
ture values. This is done by systematically discarding features from the input pattern,
and taking the union of the subcontexts that are subsumed by this new pattern. Supra-
contexts can be ordered with respect to generality, so that the most specific supracontext
contains examples which share all n features with the input pattern, less specific supracon-
texts contain items which share at least n — 1 features, and the most general supracontext
contains all database exemplars, whether or not they have any features in common with
the input pattern. In the table below the supracontexts for our previous example are
displayed, together with the subcontexts they subsume.

Supracontext Subcontexts

A B C ABC

A B - ABC ABC

A - C ABC ABC

- B C ABC ABC

A - - ABC ABC ABC ABC

ABC ABC ABC ABC

- - C ABC ABC ABC ABC

- - - ABC ABC ABC ABC ABC
ABC ABC ABC

vs)

An important notion with respect to supracontexts is homogeneity. A supracontext is
called homogeneous when any of the following conditions holds:

e The supracontext contains nothing but empty subcontexts.
e The supracontext contains only deterministic subcontexts with the same category.

e The supracontext contains a single non-empty, non-deterministic subcontext.

2The specific analogical algorithm employed by Skousen is available in a number of implementations. See
the AML group’s homepage at http://humanities.byu.edu/aml/homepage.html. For our experiments, we
used an implementation by Gert Durieux, AML 0.1, available from durieux@ua.ac.be.

3This description of the algorithm was taken from Daelemans, Gillis, and Durieux (1997).



Heterogeneous supracontexts are obtained by combining deterministic and non-deterministic
subcontexts. Going from least to most general, this means that as soon as a supracontext
is heterogeneous, any more general supracontext will be heterogeneous too.

In the final stage, the analogical set is constructed. This set contains all of the ex-
emplars from each of the homogeneous supracontexts. Two remarks are in order here.
First, since some exemplars will occur in more than one supracontext, each exemplar is
weighted according to its distribution across different supracontexts. This is accomplished
by maintaining a score for each exemplar. This score is simply the summed cardinality of
each of the supracontexts in which the exemplar occurs. The motivation for this scoring
mechanism is to favor frequent patterns over less frequent ones, and patterns closer to
the input pattern over more distant patterns, since the former will surface in more than
one supracontext. Second, banning heterogeneous supracontexts from the analogical set
ensures that the process of adding increasingly dissimilar exemplars is halted as soon
as those differences may cause a shift in category. Exactly when this happens depends
largely on the input pattern.

To finally categorise the input pattern, either the predominant category in the ana-
logical set (plurality) or the category of a probabilistically chosen member of this set is
chosen.

2.3 AML versus MBLP

The different way in which 1B1-1G and AML construct a set of exemplars to extrapolate
from, leads to a number of differences which have sometimes been advanced as an advan-
tage or disadvage for one or the other approach (Skousen, 2000; Daelemans, Gillis, and
Durieux, 1997). We will list these differences here, and discuss them in the context of our
experimental results in Section 4.

1. Non-neighbors can affect language behavior in AML, not in 1B1-1G.

2. Because of the method of constructing contexts, AML can locally determine the
significance of variables (feature values), whereas these are lost in the averaging
over values when using information gain in 1B1-1G.

3. The feature weighting in 1B1-1G constitutes a type of preprocessing or learning which
is unnecessary in AML.

4. The natural statistic on which AML is based makes necessary the use of only a
percentage of the data (imperfect memory) for optimal accuracy and robustness,
whereas for 1B1-1G “forgetting exceptions is harmful to language learning” (Daele-
mans, Van den Bosch, and Zavrel, 1999).

5. AML is exponential in the number of features, 1B1-1G is linear in the number of
features and in the number of exemplars.

6. AML has no natural extension to numeric data whereas the overlap metric used in
IB1-1G can be easily generalized to different types of feature values (numeric, set-
valued).

3 Empirical Comparison: German Plural

The diachrony of plural formation of German nouns has led to a notoriously difficult
system, which is nevertheless routinely acquired by speakers of German. Because of the
complex interaction, from a synchronic point of view, of regularities, subregularities, and
exceptions, it is to be expected that lexicon-based methods such as AML and 1B1-1G do
well in this case, and that it is an interesting testing ground for comparing them.

There is another reason why the German plural is an interesting problem. Marcus et
al. (Clahsen, 1999; Marcus et al., 1995) have argued that this task provides evidence for



the dual route model for cognitive architectures. A dual route architecture supposes the
existence of a cognitively real productive mental default rule, and an associative memory
for irregular cases which blocks the application of the default rule. They argue that —s
is the regular plural in German, as this is the suffix used in many conditions associated
with regular inflection (e.g. novel words, surnames, acronyms, etc.). This default rule is
applied whenever associative memory-lookup fails. The case of German plurals provides
an interesting new perspective to what is regular: in this case, the default rule (regular
route) is less frequent than many of the ‘irregular’ associative memory cases. In a plural
noun suffix type frequency ranking (see below), —s comes only in last place. Perhaps the
behavior of AML and 1B1-1G as single route models offers some additional insight into this
phenomenon.

We collected 25,753 German nouns from the German part of the CELEX-2 lexical
database!. We removed from this dataset cases without plurality marking, cases with
Latin plural in —a, and a miscellaneous class of foreign plurals. From the remaining 25,168
cases, we extracted or computed for each word the plural suffix, the gender feature, and
the syllable structure of the two last syllables of the word in terms of onsets, nuclei, and
codas expressed using a phonetic segmental alphabet. Table 1 gives an overview of the
features, values, and output classes considered in these experiments. The gender feature
has, apart from masculin (M), neutre (N), and feminine (F) also all possible combinations
of two genders.

Table 1: Data characteristics of German Plural experiments.

Feature number of values | Example: Vorlesung
Onset penultimate 78
Nucleus penultimate 27 e
Coda penultimate 85 -
Onset last 84 zZ
Nucleus last 27 U
Coda last 79 N
Gender 10 F
Class 8 -en

Table 2 lists the possible output classes with their type frequency in the dataset. There
was no further preprocessing of the data. A well-known source of noise in the CELEX data
are plain mistakes in lexical coding. However, we expect learning methods to be robust
to this type of noise, and did not attempt to find and correct these coding errors.

In order to empirically compare the accuracy of AML and 1B1-1G on the German plural
task, we performed several learning experiments. We compared the learnability of the task
varying the training set size for the complete task and for the different suffixes separately,
we performed an error analysis and comparison, and we looked at the influence of some
different parameter settings on algorithm accuracy.

3.1 Learnability

In an initial learnability experiment, we randomized the dataset, selected a 5,168 word
test set, and divided the remaining 20,000 words in 19 training sets with an incrementally

4 Available from http://www.ldc.upenn.edu/



Table 2: Type frequency of pluralization mechanisms in Celex.

Class | Frequency | Umlaut | Frequency | Example
(e)n 11920 Abart
e 6656 no 4646 | Abbau
yes 2010 | Abdampf
- 4651 no 4402 | Aasgeier
yes 249 | Abwasser
er 974 no 287 | Abbild
yes 687 | Abgang
S 967 Abonnement

increasing size from 200 to 2,000 in steps of 200, and from 2000 up to 20,000 in steps of
2,000. Each of the algorithms was then trained with each of the training sets and tested
each time on the single test set. Figure 3.1 shows the learning curve for both algorithms
when using their standard settings, i.e. 1B1-1G with information gain and ¥ = 1 for MBLP,
and AML with perfect memory and with plurality selection.

Learning Curves
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Figure 1: Learnability of German Plural with MBLP and AML.

We see that for small training sets, AML performs about the same as MBLP, but a
statistically significant divergence in favor of MBLP starts after 1000 training items. Al-
though accuracy is still increasing for both algorithms with 20,000 training cases, learning
seems to come near to its upper bound already at around 2,000 training cases.

In Figures 3.1 and 3.1 the learning curves of the individual plural formation classes are
shown for AML and 1B1-1G, respectively®. Interestingly, for both algorithms, the suffixes
seem to fall into three classes: those that are learned correctly from the start (—en and

5In these figures, the training set sizes on the x-axis are represented as categorical values, i.e., the 200 item



—), those that require longer learning but are learned very well in the end (—e and —er),
and one which is never learned very well at all (—s), although accuracy is increasing with
number of training items. It seems indeed to be the case that —s behaves differently
from the other suffixes, when learned by single-route models such as AML and 1B1-1G.
However, this does not necessarily lend credence to a dual route model for the German
plural. The learning curves clearly show that the suffix is learned by single route models as
well (at least some generalizations about when to use —s are learned), and 60% accuracy
(for 1B1-1G) is a respectable result given the limited information provided in the input
representations. It is by no means inconceivable that additional semantic of syntactic
features could further improve learnability of —s with the single route models discussed
here. The only conclusion that can be drawn from these experiments in this regard is that
whereas the other suffixes are learnable from syllable structure and gender information,
this is not the case for —s.

For those suffixes which are sometimes accompanied by an Umlaut, there is no marked
difference in the speed of learning and accuracy achieved for versions with and without
Umlaut. For the different suffixes, we see that AML learning is slower and reaches lower
accuracies, except for the —en suffix shich is learned very well from the start by AML.
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Figure 2: Learnability of German Plural classes with AML

3.2 Error Analysis

In order to generate more data for a comparison between AML and MBLP on the German
plural data, we performed a leave-one-out experiment using both algorithms. In such a
set-up, each instance in the data file is held out in turn as a test item, and all remaining
instances act as training material to train the classifier. In machine learning methodology,
the leave-one-out method is generally accepted as the best estimator for the “real” error

training sets get as much space on the x-axis as the 2000 item datasets, hence the less steep learning curve,
compared to Figure 3.1.
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Figure 3: Learnability of German Plural classes with MBLP

of a classifier. The advantage of using it in this context, is that we have access to the
complete dataset to look for trends or examples. For both algorithms, we again used
the default parameter settings. Table 3 shows the accuracy on the full dataset using this
method for AML and MBLP distributed over the different suffixes. For clarity, we repeated
the frequencies of Table 2 above.

The high accuracies found in both algorithms are partly due to exact matches in mem-
ory: several different words can have the same syllable structure for their last two syllables
and the same gender. Disregarding these cases (i.e. using only unique combinations of
feature set and class as data) gives an overall accuracy of 89.7% for MBLP and 86.6% for
AML with roughly the same distribution of accuracies over the different suffixes. In the
remainder of this paper, we will work with the results for the dataset with duplications of
lexical representations.

For 92.5% of the words, both systems agree on the outcome, and assuming the outcome
in the CELEX database to be correct, for 90% of the words they agree on the correct class.
Of the 555 cases in which both algorithms predict the same, wrong, class, the majority
is due to words with plural suffix —s, being assigned to —e or —(e)n. E.g. Autocar, Bar,
Jeep, Sheriff (—e instead of —s); Backhand, Fondue, Tape (—(e)n instead of —s). But
many other confusions occur as well. See Tables 4 and 5 for a complete overview. In
these Tables, confusion between the different outcomes (classes) is represented. U means
Umlaut. E.g. Uer is the class of nouns with plural in —er and with Umlaut, er is the
class of nouns with plural in —er without Umlaut.

If we compare the confusion matrices of both systems, we see that they are almost
indistinguishable in the confusions made. The Spearman correlation coefficient is 0.999
when taking into account all cells (correct predictions as well as errors). When limited to
errors, the correlation is still 0.83 suggesting that both systems make the same confusions.
Nevertheless, some of the error categories indicate more divergence: for the cases of
grammatical conversion (no suffix is added; — and U in the confusion matrices), the errors
made by both algorithms differ more markedly, both the confusion made when assigning
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Table 3: Accuracy of AML vs. MBLP on the complete data set using leave-one-out.

Suffix MBLP Accuracy (%) AML Accuracy (%) | Frequency

- 96.5 96.1 4651

no Umlaut 96.5 96.1 4402
Umlaut 96.8 96.4 249
-e 92.5 87.0 6656

no Umlaut 92.1 88.2 4646
Umlaut 93.3 84.3 2010
-er 92.7 81.5 974

no Umlaut 92.7 79.4 287
Umlaut 92.7 82.4 687
en 98.3 97.7 11920

S 66.9 46.7 967
Total 95.0 92.0 25168

an incorrect class to these cases (Pearson correlation 0.64), and the type of cases to which
conversion is incorrectly assigned (Pearson correlation 0.41). AML especially seems to
mistake words much more often for a — or U case than 1B1-1G, especially words which
should have received an —e plural.

For example, Almosenier generates an AML analogical set with the distribution (Uer:0,
en:6, Ue:71, -:2880, U:0, er:0, e:834, s:72) whereas 1B1-1G finds 3 neighbors at distance 0.3,
all with the correct suffix —e (Harpunier, Pionier, Kanonier; all with masculine gender
and ending in —ier). Clearly, looking at local neighborhood only, in combination with
assigning more weight to the rhyme of the last syllable and the gender, provides the right
sub-generalization here for MBLP.

For all other confusions, correlation is near to or much higher than 0.90, indicating
very similar language behavior of both algorithms, except that AML makes significantly
more errors than 1B1-1G in absolute terms.

Table 4: Confusion matrix for AML. Indicates how many times an exemplar of type as indicated in
the rows, was classified as type as indicated in the columns. Correct predictions are on the diagonal.

- U Ue Uer e en er S
- | 4191 46 9 3 44 48 5 56 | 4402
U 78 171 0 0 0 0 0 0 249
Ue 4 0 1893 0 82 26 0 5| 2010
Uer 0 0 7 643 31 5 0 1 687
e 33 0 79 30 4318 118 9 59| 4646
en 35 13 32 3 103 11708 0 26| 11920
er 1 0 0 2 14 0 270 0 287
S 64 1 12 7 153 74 2 654 967
4406 231 2032 688 4745 11979 286 801 | 25168

Moving on to other errors made by the algorithms, we see that there are 499 words
where AML is correct and MBLP wrong, and more than twice that many (1190 words)

11



Table 5: Confusion matrix for MBLP. Indicates how many times an exemplar of type as indicated in
the rows, was classified as type as indicated in the columns. Correct predictions are on the diagonal.

- U Ue Uer e en er S
- | 4231 11 7 1 54 74 2 22 | 4402
U 8 240 0 0 0 1 0 0 249

Ue 31 0 1694 2 113 167 0 2010
Uer 15 0 22 566 70 12 0 2 687
e| 104 14 139 32 4097 214 11 35| 4646
en 62 6 29 3 159 11649 1 11| 11920
er 11 0 0 34 13 228 1 287

S 73 3 30 5 185 218 1 452 967
4535 274 1921 609 4712 12348 243 526 | 25168

w

o

where the reverse holds. When we look at the clustering of errors in these sets of words,
we see that even here there is a positive correlation between the types of confusions AML
and 1B1-1G make when their counterpart is correct.

We have to conclude that, at least for this problem, we find no evidence that the way
the AML algorithm works leads to qualitatively different language behavior compared to
that when using the conceptually and computationally simpler 1B1-1G algorithm. The
former leads to significantly lower accuracy, however, and seems to miss certain sub-
regularities in the data.

3.3 Related Research

We are not the first to apply these methods to the German plural problem. In (Ramin
Charles Nakisa, 1996; Nakisa, 2000), simulation results on CELEX data are reported for
nearest neighbour (comparable to 1B1, i.e. no feature relevance weighting), Nosofsky’s
Generalized Context Model (GCM), and a standard three-layer backprop network. The
set-up of the experiment is similar to ours (predicting plural class from phonology) but
not comparable because of the different data-preprocessing steps resulting in other sets
of examples and classes, a different encoding of the phonology (phonetic features instead
of segmental syllable structure, no gender), and because of a different methodology, viz.
cross-validation instead of leave-one-out. Results were 70.8% for nearest neighbor, 74.3&
for GCM, and 82.7% for backprop.

In (Wulf, 1996), AML is also applied to the German plurals problem. Based on a
dataset of 703 frequent words, with exemplars encoding phonology and gender, he was
able to anecdotally show gang effects and effects of heterogeneity on selected nouns. No
accuracy was reported.

Daelemans, Gillis, and Durieux (1997) compared AML and several variants of MBLP on
the task of main stress assignment for Dutch. They found that whereas AML outperform
IB1, IB1-1G and other variants outperform AML, and are more insensitive to noise. The only
other comparison of AML and MBLP we know of (Eddington, 2000) focused on comparing
both, as a possible alternative implementation of a single-route model for past tense
morphology, to connectionist models, and reported similar results for both when testing
on non-words for the past tense.
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4 Discussion

In this Section, we refer back to the list of differences noted in Section 2, and discuss
these, armed with our new empirical results.

4.1 The Effect of Non-neighbors

In AML, even non-neighbors can in principle affect the decision of the algorithm, as we
have seen. MBLP on the other hand relies on local extrapolation: a small neighborhood
(typically the nearest neighbor only) is used to extrapolate from. We see that for the
German plural at least, the MBLP strategy seems fruitful (e.g. in discovering the subregu-
larity that the plural suffix of masculine nouns in —ier is —e). There are 32 cases like that
with only two exceptions: Sire /zi:r/, plural Sires and Partikulier, also with plural —s. Of
these 32, 28 were classified correctly by IB1-1G (the four errors being Wesir and Kurier
which were pluralized —s, and Sire and Partikulier, classified +e). On the other hand
AML makes these errors as well, and on top of that 6 other errors, including “clear” cases
of the subregularity, such as Almosenier, Fakir, Kanonier, Kurier as well as Kashmir,
Mudir.

The problem that the AML algorithm tries to solve by looking at the complete dataset
and by classifying subsets of the data as homogeneous and heterogeneous, and that 1B1-
IG tries to solve by estimating the information gain of each feature, is the problem of
representation relevance. Which features are most relevant for solving the task? I1B1-1G
reorganizes the exemplar space (and therefore the distances in it leading to extrapolation of
outcomes) by feature weighting. In principle, it is possible to extend the 1B1-1G algorithm
such that it takes into account all exemplars in memory, by setting the value of &k to the
number of exemplars, and using the inverse of their distance to the input item to weigh
their importance in computing the outcome, but this leads in practice seldomly to better
accuracy.

This reliance of 1B1-1G on similarity-space reorganization by means of feature weight-
ing, makes the approach of course potentially vulnerable to bad relevance assignments for
some features. For example, a known problem with information gain is that it computes
the relevance of a feature without taking into account the other features, ignoring possible
feature interactions. However, for this problem (and many other linguistic problems we
have investigated), it is an accurate and robust heuristic method.

Figure 4.1 shows the relevance assignment of a few different feature weighting meth-
ods on our dataset. Gain ratio is a normalized version of information gain (boosting the
relevance of features with few values), the x? method uses statistical significance testing
to compare the observed distributions of values over classes with their expected distribu-
tion (Daelemans, Van den Bosch, and Zavrel, 1999). Interestingly, while the relevance
assignment is roughly similar, there are some marked differences, e.g., GAIN RATIO puts
more weight on the gender feature, and estimates the relevance of the segmental informa-
tion lower than the other two methods.

The effect when using these methods in a k — nn algorithm with £ = 1 on our data
(using leave-one-out methodology) is summarized in Table 6. The differences are not
important, showing that MBLP is fairly robust to the details of the algorithm for this
problem. As could be expected, the algorithm using no reorganization of the exemplar
space at all (1B1) performs significantly worse than any of the weighted methods, but it
is surprising to see that it outperforms AML. This indicates that all pre-selected features
are indeed relevant to solving the task, and that the role of the feature weighting method
is in fine-tuning the organization of the exemplar space rather than in re-organizing it.
The Table also lists the baseline accuracy when always selecting the most frequent suffix
(—(e)n), and when probabilistically guessing the outcome (knowing only the distribution
of the different classes), called BASELINE]1 and BASELINE2, respectively.
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Figure 4: Feature weights using different weighting methods.

Table 6: Effect of feature relevance assignment method on accuracy in 1B1.

Weighting Method Accuracy
BASELINEL 46.3
BASELINE2 32.1
1B1 92.6
IB1-1G 95.0
1B1-y? 95.1
IB1-GR 94.9

4.2 Value Relevance Weighting

Another potential problem for IB1-1G is the frequency-weighted averaging of the informa-
tion gain of the different values of a feature to compute the information gain of the feature,
as noted earlier. This is a source of robustness (estimation is on the complete dataset),
but may at the same time lead to unwarranted underestimation of the relevance of some
feature values for some inputs, snowed under in the averaging. Because of the way the
algorithm works (treating each value as distinct), AML can assign more or less importance
to particular values relative to the particular input it is classifying. In (Skousen, 2000),
an example from Finnish past tense is worked out in detail, and it is indeed the case
that 1B1-1G incorrectly handles this item. However, this is a representation problem more
than an algorithmic problem. If a particular value has a high relevance for some types of
inputs, it should be assigned a separate feature. It is even possible to explode all values
of all features into separate binary features, and use general feature relevance weighting
methods on this new representation. This way, the particular Finnish past tense problem
can also be solved by 1B1-1G (Van den Bosch, personal communication).

Furthermore, whereas it will probably be possible to find similar cases also for the
German plural, there will be plenty (60% more) errors made by AML which 1B1-1G does
not make. In the comparison of the linguistic adequacy of algorithms, the overall accuracy
levels are probably more important than casuistic studies. This is of course not the case
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for psycholinguistic models; here the algorithms and feature relevance metrics should be
compared with human performance and acquisition (see e.g. Eddington (2000)), and
overall accuracy is no longer the main evaluation criterion.

4.3 Feature Weighting as Training

Yet another criticism in (Skousen, 2000) of 1B1-1G is that because of the feature weight-
ing method used, a training period is needed which makes the approach more akin to
connectionism than (to) AML. The important distinction here is that whereas connec-
tionist learning methods such as backpropagation of errors are batch-learning methods
(cycling several times through all training items until an equilibrium or desired error
rate is reached), computing information gain is an incremental process, and converges
very quickly. For example, Figure4.3 illustrates the convergence of the information gain
weights in the differently sized training sets we used to compute the learnability results
discussed earlier. Already after a few hundred training items the information gain values
are stable, and already from the very first training set, the relative ordering of the rele-
vance of the different features remains basically the same, only the absolute values vary.
In addition, the algorithm is very robust to small variations in the specific values of the
information gain weights.
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Figure 5: Convergence of information gain feature weights.

4.4 (Im)perfect Memory

In language processing tasks, low-frequency events are pervasive. Due to borrowing,
historical change, and the complexity of language, most data sets representing language
processing tasks contain few regularities, and many subregularities and exceptions. These
exceptions and subregularities only concern a limited number of cases, yet, in their small
‘pocket of exceptions’ in exemplar space, they are productive in that they may correctly
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predict the outcome for a previously unseen member of their region. It is impossible for
inductive algorithms to reliably distinguish real noise from these pockets of exceptions,
so non-abstracting algorithms like 1B1-1G should be at an advantage compared to eager
learning methods such as decision tree learning or rule induction: ‘forgetting exceptions
is harmful’. In (Daelemans, Van den Bosch, and Zavrel, 1999), empirical results are
provided, and theoretical analysis, supporting this hypothesis.

On the other hand, being based on a minimization of disagreements among data-items,
AML is the most powerful statistical test possible, and can be made equivalent to standard
statistical procedures by introducing imperfect memory (i.e., introducing a chance that
a particular training item is forgotten). Interestingly, and surprisingly from the point of
view of the “forgetting is harmful” hypothesis, forgetting 25% and 50% of the training
data for the German plural problem does not decrease generalization accuracy, which
remains at 92%. However, as this is significantly lower than the generalization accuracy
of 1B1-1G it is unclear what this means. One explanation could be that the way the AML
algorithm works on this problem is a form of noise-reduction or smoothing in which the
productive subregularities and pockets of exceptions are lost against the more powerful
effect of the general tendencies in the dataset (remember that all data items may influence
the final decision, not only the local context). The anecdotal evidence about masculine
nouns in —¢er seems to support this view, but more analysis is necessary. Forgetting part
of the data may counter this hypothesised overregularization tendency of AML.

4.5 Computational Complexity and Representational Generality

In (Daelemans, Gillis, and Durieux, 1997), it was argued that an important advantage of
MBLP as opposed to the AML algorithm is the fact that the former is linear in the number
of features and exemplars, whereas the latter is exponential in the number of features.
Massive parallelism does not effectively eliminate this exponential explosion. In (Skousen,
2000), it is argued that the information gain feature relevance weighting in 1B1-1G must
take into account all psosible combinations of feature values, hence there is no escaping
from exponential explosion. But this is clearly not the case. Computation of information
gain is linear in the number of data items on which it is computed (all that is necessary is
a simple computation on a feature-value outcome-class contingency matrix which can be
incrementally collected as experience enters the system). Information gain does make the
(mostly incorrect) assumption that the features are independent; it is a heuristic. Yet,
the empirical tests show that it is an effective and robust relevance estimator for linguistic
problems.

Furthermore, the more general approach to similarity used in MBLP allows for the easy
and natural definition of similarity for features with numeric and set values, as opposed
to AML where only symbolic (nominal) and binary features can be used. Although most
language processing representations can be described adequately using nominal features,
some linguistic information (e.g., distances between and lengths of linguistic objects like
words and utterances; sets of words, phonemes, or letters; etc.) can be more naturally
represented using numeric and set valued features.

5 Conclusion

AML and MBLP are similar in spirit, but propose completely different operationalizations
of similarity- or analogy-based language processing on the basis of exemplars. In an
earlier comparison between AML and MBLP (Daelemans, Gillis, and Durieux, 1997) on the
task of main stress assignment in Dutch words, we concluded that for natural language
learning tasks there was no clear motivation to use the complex and computationally
costly (and with many features computationally intractable) AML algorithm instead of
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the more general and less complex class of MBLP algorithms. In this paper we added more
substance to this position by analyzing the behavior of AML and 1B1-1G on the task of
German plural prediction. We found that 1B1-1G, a simple MBLP algorithm, significantly
outperforms AML, and seems to be better at representing the subgeneralizations of the
task. On the other hand, both systems are highly correlated in the errors they make (i.e.,
the confusions between outcomes they predict), and have very similar learning behavior.
Taken together with the additional expressive power and flexibility MBLP offers in handling
different types of representations, we stand by our earlier conclusion.

However, additional research is needed to get more insight into the differences between
both algorithms in terms of psycholinguistic and linguistic relevance. Work by Gert
Durieux, (e.g. Durieux, Daelemans, and Gillis (1998)) suggests that AML is better at
learning regularities in the Dutch stress prediction data, whereas MBLP is better at putting
to use the predictive power of (small) subregularities.
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