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Abstract

A common view in natural language processing is that a language can be un-
derstood as a collection of language objects that follow an unknown probability
distribution. A sample or corpus, drawn from all available data about a language,
can be used to estimate these probability distributions. One such distribution is
the relative frequency of the tokens in the sample. Apart from extracting a dis-
tribution from it, the sample, if annotated, can also be used to develop a natural
language processing tool, such as a part-of-speech tagger or a word sense dis-
ambiguation system. Probability distributions and natural language processing
tools are the two main ingredients of this dissertation.

There are many ways to collect a (text) corpus. The goal of corpus collection
can be to represent all written data of, for example, the English language. To
create this corpus, one should randomly sample from all English texts, which
means that shopping lists, novels, and text messages could all end up together
in the sample. The question is not only whether it is possible to obtain a sample
representative for a language but also whether a natural language tool can deal
with the enormous variance in the sample. To overcome this problem, researchers
adopt a different sampling strategy and collect texts that show some resemblance.
This resemblance is expressed by saying that the gathered texts all belong to the
same domain. An example is the well-known Wall Street Journal corpus, which
only contains news articles from that paper. This corpus, for which the internal
variance is substantially limited when compared to a corpus of all English texts,
can effectively be used to develop natural language processing tools.

Problems arise when these tools are tested on texts that discuss another do-
main (e.g. biomedical texts). The tools become much less efficient because the
probability distribution underlying biomedical texts will differ from the distri-
bution underlying the news article corpus. If collecting a new biomedical corpus
to mediate the performance loss is not an option, making the natural language
processing tool more robust to these domain shifts may be a solution.

This dissertation investigates the relationship between the underlying probability
distributions of different corpora and the performance of natural language tools
that were developed using these corpora. A better knowledge of this relationship
may be a first step in making natural language processing tools more robust. In
this dissertation, a range of divergences is evaluated to measure the similarity
between corpora from different domains. The divergences can also be called
domain similarity measures or distance metrics.
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The domain similarity measures are tested for their correlation with the per-
formance of natural language processing tools while varying several parameters
such as the task, the algorithm, the corpora, and the homogeneity of the corpora.
We found that, for selected similarity measures, the correlation is linear for the
performance of a part-of-speech tagger and the distance between the corpus on
which the tagger is trained and the corpus on which the tagger is tested.

The linearity of the correlation is the starting point for the application of the
domain similarity measures in three setups: training data selection, feature se-
lection, and self-training.

Training data selection consists of creating a training corpus with only those
sentences that decrease the distance between the training corpus and a test
corpus from another domain. We showed that it is possible to compress a training
corpus without significantly harming performance.

For feature selection, it was investigated whether useful features influence the
correlation between distance and the out-of-domain performance of a feature-
based machine learner in a different way than superfluous or harmful features.
We found that a method based on instance distance can be used to identify harm-
ful features for synthetic data. Interdependencies between features and a varying
number of values per feature complicate feature selection for real data.

Self-training is a semi-supervised domain adaptation technique for which unan-
notated out-of-domain corpora are automatically labeled before adding them to
the training data. We show that not all newly added data leads to a performance
increase. A performance indicator, based on similarity measures, can be used to
select only the best-suited unlabeled corpora.

In view of these applications, it becomes clear that there are two aspects of a
similarity measure that come into play: quantifying the (dis)similarity of the
corpora, and linking distance to performance. Depending on the usage of the
measure, one of those aspects is predominant. If the second aspect is more
important, the linear correlation between performance and distance can be used
to select the best-suited similarity measure.

To conclude, in this dissertation, an effort has been made to get a clearer view
on the strengths and weaknesses of similarity measures in natural language pro-
cessing. When certain conditions are fulfilled, the best-suited measures can be
selected in a reasoned manner and, subsequently, the selected measure can be
successfully applied. Follow-up research could focus on more complex uses, fur-
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ther refinement of the ideas about the quantifying qualities of the measures, and
use of the measures in unsupervised feature selection.
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Samenvatting

In natuurlijketaalverwerking wordt taal vaak beschouwd als een verzameling van
talige objecten die verdeeld zijn volgens een onbekende waarschijnlijkheidsverde-
ling. Een steekproef of corpus, genomen uit alle data die beschikbaar is, kan ge-
bruikt worden om de waarschijnlijkheidsverdeling te achterhalen. Een voorbeeld
van zo een waarschijnlijkheidsverdeling is de relatieve frequentie van de tokens in
de steekproef. Onafhankelijk van de waarschijnlijkheidsverdeling, is het eveneens
mogelijk om met de steekproef, indien ze geannoteerd wordt, een systeem voor
natuurlijketaalverwerking te ontwikkelen. Voorbeelden van zulke systemen zijn
een systeem om woorden te labelen met hun woordsoort of een systeem voor de
desambiguering van de betekenis van een woord. Waarschijnlijkheidsverdelingen
en natuurlijketaalverwerkingssystemen zijn de twee hoofdingrediënten van deze
thesis.

Er bestaan verschillende manieren om een (tekst)corpus te verzamelen. Een doel
om een corpus te verzamelen kan zijn om, bijvoorbeeld, alle geschreven data van
het Engels te representeren. Om dit corpus te kunnen verzamelen moeten er
willekeurige steekproeven genomen worden van alle geschreven data waardoor
boodschappenlijstjes, romans en sms-berichten samen terecht kunnen komen in
een corpus. De vraag is niet enkel of het mogelijk is om op deze manier een
representatieve steekproef te nemen maar bovendien of een natuurlijketaalver-
werkingssysteem de enorme variatie in de steekproef aankan. Daarom kunnen
onderzoekers hun corpus ook op een andere manier verzamelen; door enkel die
teksten te kiezen die een zekere gelijkenis vertonen. De gelijkenis tussen teksten
kan dan verwoord worden door te zeggen dat ze tot hetzelfde domein behoren.
Een voorbeeld van een corpus met teksten uit hetzelfde domein is het veelge-
bruikte Wall Street Journal corpus, dat enkel krantenartikelen bevat. Dit corpus,
met een veel kleinere interne variatie dan een corpus dat alle geschreven Engelse
data zou omvatten, kan effectief gebruikt worden om natuurlijketaalverwerk-
ingssystemen te ontwikkelen.

Natuurlijketaalverwerkingssystemen kunnen niet even succesrijk toegepast wor-
den wanneer een ontwikkeld systeem getest wordt op data uit een ander domein
(bijvoorbeeld biomedische teksten). De efficiëntie van de systemen vermindert
omdat de waarschijnlijkheidsverdeling onderliggend aan biomedische teksten an-
ders zal zijn dan deze voor krantenartikelen. Wanneer het verzamelen van een
nieuw aangepast corpus geen optie is dan kan het meer robuust maken van het
systeem een oplossing zijn.
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In deze dissertatie wordt de relatie onderzocht tussen waarschijnlijkheidsver-
delingen van verschillende corpora en de prestatie van natuurlijketaalverwerk-
ingssystemen die ontwikkeld werden met behulp van die corpora. Een betere
kennis van deze relatie kan een eerste stap zijn om natuurlijketaalverwerkingssys-
temen meer robuust te maken. Omwille van deze reden wordt in deze disser-
tatie een reeks van divergentiematen om de gelijkenis tussen corpora te meten
geëvalueerd. Deze divergentiematen kunnen ook domeingelijkenismaten of afs-
tandsmaten genoemd worden.

De domeingelijkenismaten worden geëvalueerd op basis van de correlatie met de
prestaties van een natuurlijketaalverwerkingssysteem terwijl parameters zoals de
exact taak, het gebruikte algoritme, de gebruikte corpora en de homogeniteit van
de corpora veranderd worden. Voor bepaalde afstandsmaten stelden we een line-
aire correlatie vast tussen de prestatie van een woordsoortlabeler en de afstand
tussen het corpus waarmee de labeler ontwikkeld werd (ontwikkelingscorpus) en
het corpus waarmee het geëvalueerd werd (evaluatiecorpus).

Deze lineaire correlatie wordt gebruikt als uitgangspunt voor drie toepassingen
van domeingelijkenismaten: het selecteren van ontwikkelingsdata, het selecteren
van features en het selecteren van een geschikt corpus voor self-training.

Ontwikkelingsdata kan getrieerd worden door van een groot corpus enkel die
zinnen bij te houden die de afstand tussen het ontwikkelingscorpus en het evalu-
atiecorpus uit een ander domein verkleinen. We vonden dat het op deze manier
mogelijk is om een ontwikkelingscorpus te comprimeren zonder dat de prestaties
significant verslechteren.

In verband met featureselectie werd er gekeken of bruikbare features de corre-
latie tussen afstand en prestaties op een andere manier bëınvloeden dan nadelige
features of features zonder informatie-inhoud. We toonden aan dat, voor syn-
thetisch aangemaakte data, een selectiemethode gebaseerd op een gelijkenismaat
gebruikt kan worden om nadelige features te identificeren. Bij reële data zorgen
afhankelijkheid tussen de features onderling en een verschillend aantal feature-
waardes er echter voor dat deze selectiemethode beduidend moeilijker toe te
passen valt.

Self-training is een semi-gecontroleerde domeinadaptatiemethode waarbij ongean-
noteerde corpora automatisch gelabeld worden zodat ze bij het ontwikkelingscor-
pus gevoegd kunnen worden. We stelden vast dat niet elk ongeannoteerd corpus
tot betere resultaten leidt wanneer het op deze manier aan een corpus toegevoegd
wordt. Een indicator, die gebaseerd is op gelijkenismaten, kan gebruikt worden
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om uit een verzameling van corpora enkel die te kiezen die de uiteindelijke re-
sultaten zullen verbeteren.

Deze drie toepassingen van gelijkenismaten kunnen beschouwd worden als een
goede illustratie van twee verschillende aspecten van gelijkenismaten: het kwan-
tificeren van de (on)gelijkheid van corpora en het uitdrukken van de relatie
tussen afstand en prestaties van een natuurlijketaalverwerkingssysteem. Welk
aspect het belangrijkst is hangt af van de toepassing. Als het tweede aspect
meer belangrijk is dan kan de kwaliteit van de lineaire correlatie tussen afstand
en prestaties gebruikt worden om de geschikte gelijkenismaat te vinden.

Ter afsluiting kunnen we zeggen dat in deze dissertatie een inspanning werd
gedaan om een betere kijk te krijgen op de zwaktes en sterktes van gelijkenis-
maten bij hun gebruik in natuurlijketaalverwerking. Wanneer aan bepaalde voor-
waarden voldaan is dan kan de meest geschikte gelijkenismaat voor een bepaalde
taak op een beredeneerde wijze geselecteerd worden. Vervolgonderzoek kan zich
richten op het gebruik van gelijkenismaten in een meer complexe opstelling, het
verder verfijnen van de kennis over het kwantitatief gebruik van de maten en het
verdere gebruik van gelijkenismaten in ongecontroleerde featureselectie.
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Chapter 1

Introduction

1.1 Language as a set of distributions

A common view in natural language processing (NLP) is that a language can
be understood as a collection of productions that follow an unknown probability
distribution. One of the well-known examples of how a collection of words can
be associated with probabilities is Zipf’s law (Zipf, 1972). Zipf’s law states that
the probability of a word, P (w), is related to its rank s when the words of a
corpus are ordered along their frequency – with C, α as constants:

P (w) =
C

sα
(1.1)

It has been argued that other equations can model the occurrences of words
frequencies better (Montemurro, 2001) and that a random token generator can
also give rise to a Zipfian-like law (Li, 1992), but regarding texts as the outcome
of an unknown probabilistic process remains a fruitful paradigm.

Although the probabilistic process underlying the production of words is un-
known, it certainly is not random: vocabulary, grammar, purpose and medium
are only a small selection of factors that influence a person trying to get a mes-
sage across. In fact, the presence of those regulating factors can be observed in
the Zipfian distribution of words when the language of a random token genera-
tor is compared with natural language (Cohen et al., 1997). Cohen et al. (1997)
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1.1. LANGUAGE AS A SET OF DISTRIBUTIONS

argue that the main difference between real and artificial texts can be located in
the frequencies of the least frequent words and that the difference is detected by
the α parameter that is part of the inverse Zipf analysis. Applications developed
for natural language processing assume that at least some of those regulating
factors remain reasonably constant and that inferences drawn from the language
of one corpus can lead to predictions about the language of another corpus.
In contrast, differences in the Zipfian distribution, that can be attributed to a
difference in regulating factors, have been used to distinguish scientific from bel-
letristic literature (Voloshynovska, 2011). This is an illustration of the weakness
of probability-based applications: probability distributions of corpora may differ
substantially depending on which regulating factors are constant when a corpus
is being gathered.

The differences between the distributions underlying corpora can lead to de-
creased performance when it comes to natural language processing applications.
Over time, researchers in computational linguistics have attempted to create ro-
bust applications that can cope with these differences, but nevertheless, building
probability models for one corpus based on a different corpus continues to be a
source of performance loss. The work presented here, is dedicated to the investi-
gation and exploration of the relation between varying probability distributions
in written language and performance loss in a set of natural language processing
applications.

The research questions that will be addressed focus on the connection that exists
between distance metrics and the performance of a natural language processing
tool. To answer these questions, experiments to investigate the nature and the
sensitivities of the relation are set up. The insight gained will help interpret the
outcome of experiments in which the distance–performance relation is used in
an application.

The remainder of this chapter provides definitions of some basic concepts, an
overview of how differences in probability distributions have been tackled in
previous research, an overview of how the differences in probability distributions
have been measured, and a description of the research questions motivating this
work.

2



CHAPTER 1. INTRODUCTION

1.2 Probability distribution differences

Domain adaptation issues are frequently observed in natural language processing
applications and the main source of domain-sensitivity can be attributed to the
machine learning component in those applications. Since the experiments in this
dissertation are machine learning experiments, we will first summarize the basic
principles of a machine learning setup.

1.2.1 Basic concepts

training corpus development
corpussource corpus

test corpus
target corpus

S

T

step 2: evaluation

Figure 1.1: Illustration of a general machine learning setup – step 1 is used to train
a machine learner on the training or source corpus S, ideally a development corpus is
chosen from the training corpus for evaluation during the learning step. In a second
step, the trained machine learner is evaluated on the test or target corpus T . Step 2
will provide the final evaluation scores for the trained machine learner.

Supervised machine learning experiments draw upon the idea that an observa-
tion X is labeled with a (class) label Y and that it is possible to label unseen
observations by modeling the known links between observations and labels in a
given corpus. An illustration of the general machine learning setup is given in
Figure 1.1.

3



1.2. PROBABILITY DISTRIBUTION DIFFERENCES

The corpus that is used for the modeling or training step is called the training
corpus S. The corpus of previously unseen observations is called the test corpus
T .

In domain adaptation experiments, the domain, for which an NLP tool is devel-
oped, is called the target domain. The domains that are covered by the training
corpus are the source domains. In most domain adaptation experiments, train-
ing and test corpus come from a single domain and the training corpus may
also be referred to as the source (domain) corpus while the test corpus may be
referred to as the target (domain) corpus.

During the training step of a machine learner, the test corpus cannot be used to
obtain intermediate evaluations, since this can lead to overfitting of the machine
learner on the test data. A method to overcome this problem is to take a part
of the training corpus as a temporary test corpus. This temporary test corpus is
called the development corpus. During the final evaluation on the test corpus,
the development corpus can be re-incorporated in the training corpus.

In a machine learning setup, the practical implementation of observations X are
called instances. The probabilities of instances can be very low depending on
the nature of the instances. For example, if every token of a text is taken as
an instance, it is possible to obtain probabilities that are sufficiently expressive.
In contrast, if the context of the token and other information is included in the
instance, it may well be the case that each instance occurs only once. Leading to
probabilities with almost no information content. To overcome this sparseness
problem, machine learners are able to extract information from a sub-instance
level (i.e. the features) and the same ability should be present in distance metrics
that are based on these complicated instances.

The probability P (X,Y ) is the relative frequency of an observation linked to a
class label and can be estimated by:

P (X,Y ) =
number of observations X that have label Y in the corpus

total number of observations in the corpus
(1.2)

The joint probabilities Ps(X,Y ) from the source corpus, denoted by s, can be
used to construct a model, although not every machine learner tries to model
the probabilities directly. An example of a machine learning approach that is
not based on calculating probabilities, is memory-based learning (Daelemans &
van den Bosch, 2005). In this setup, all observations are stored in memory and a
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CHAPTER 1. INTRODUCTION

domain adjective noun

imaginative 74% 26%
natural science 32% 68%

Table 1.1: Example of difference in joint distributions P (X,Y ) for the token fat in
the imaginative and natural science domain from the British National Corpus (BNC,
2001). The token is predominantly an adjective in the imaginative domain (74% of the
occurrences) and a noun in the natural science domain (68% of the occurrences).

new observation is labeled according to its similarity to the stored observations.
The joint probabilities Ps(X,Y ) are not modeled, but they will lead to a different
distribution of observations in the memory-based instance space. Although the
joint probabilities are not always computed, they are the basis of machine learn-
ing experiments and the more Ps(X,Y ) resembles the joint probability Pt(X,Y )
from the target corpus, the easier and more efficient the labeling will be.

It is possible to factorize the joint probability in two ways:1

P (X,Y ) = P (X)P (Y |X) (1.3)
= P (Y )P (X|Y ) (1.4)

(1.5)

A prerequisite to be able to have a good performance is that Ps(X,Y ) ≈
Pt(X,Y ). It is not always the case that this prerequisite is satisfied. When
the source probabilities differ that much from the target probabilities, so anno-
tators decide that they are not comparable, the probabilities are said to come
from different domains. However, it is hard for human annotators to discern
probability differences and most often domains are identified according to the
semantic contents of the collected corpora. An example of a corpus contain-
ing domain labels referring to semantic contents is the Brown Corpus (Francis
& Kučera, 1964), which is a corpus of texts that are grouped into informative
prose and imaginative prose and both groups are more finely divided into various
subgroups.

An example of a case where P (X,Y ) clearly differs in two separate domains
comes from the British National Corpus. The token fat is mostly an adjective

1Which are also linked to Bayes’ theorem: P (Y |X) =
P (X|Y )P (Y )

P (X)
with P (X) 6= 0.
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used to describe a person’s figure in the imaginative domain and a noun used
to refer to the actual substance in the natural science domain.2 The actual
occurrences are given in Table 1.1.

When training a machine learner on one domain and testing it on another do-
main, the experiment can be called an out-of-domain experiment as opposed to
an in-domain experiment. Domain adaptation is any effort made to increase
the performance for an out-of-domain experiment. The class labels in the source
and target domain in a domain adaptation experiment are drawn from the same
set.

When the class labels for the source and target domain are different, the task
is no longer a domain adaptation task, but a multi-task learning problem. For
example, a named-entity tagger for a flight reservation system would need to
be able to identify information about timings, destinations and prices, while a
named-entity tagger for a tourist guide system would need to be able to iden-
tify information about transport, accommodation and sightseeing trips (Jeong
& Lee, 2009). Both tasks are similar, but the class labels are different, creat-
ing additional difficulties for a machine learner. Both domain adaptation and
multi-task learning can be regarded as transfer learning problems (Jeong & Lee,
2009).

One can distinguish three setups for domain adaptation experiments: super-
vised and semi-supervised experiments and unsupervised (Daumé III, 2007). In
the supervised setup, there is a large annotated source domain corpus and a
small annotated target domain corpus, which will both be used to train the ma-
chine learner. In the semi-supervised setup, instead of a small annotated target
domain corpus, a large unannotated target domain corpus is used. In both ex-
perimental setups, a test corpus coming from the target domain is to be used
for the evaluation of the machine learner.

The definitions for the three domain adaptation setups are not fixed. Sometimes,
semi-supervised, as defined above, is called unsupervised domain adaptation. A
mixture of a large unannotated target corpus plus a small annotated target
corpus during the training phase is then used to carry out domain adaptation
in a semi-supervised manner (Plank, 2011).

2Mostly adjective means carrying the class label AJ0 or AJ0-NN1; mostly noun means car-
rying the class label NN1 or NN1-AJ0.
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1.2.2 Domain adaptation

Domain adaptation is an established discipline in machine learning and has
been approached in various ways. As can be inferred from the factorization
P (X,Y ) = P (X)P (Y |X), there are two main approaches to make the source
probabilities Ps(X,Y ) more similar to the target probabilities Pt(X,Y ): influ-
encing the association between observations and class labels and changing (the
probability of) the observations. Both approaches are not strictly divided – most
probably P (Y |X) will change also when P (X) changes – but they will provide
a framework for an overview of previous domain adaptation work. The reader
is referred to the work of Jiang (2008) and Margolis (2011) for a different clas-
sification and a more extensive overview of domain adaptation research. The
focus of this work is on quantifying and exploiting domain shifts rather than on
domain adaptation itself.

An example of trying to influence the estimated conditional probability during
the learning step is instance weighting. Examples of methods used to influ-
ence the estimated probabilities P (X) are training data selection, training data
creation, changing the feature space, and feature weighting. The methods are
explained in the next subsections.

Instance weighting

One way to influence the association between an observation and a class label is
by weighing the observations or instances. Assigning more or less weight to an
observation during a learning step will change the estimation of P (Y |X).

The theoretical basis for instance weighting is given by Jiang (2008). The tech-
nique introduces a factor Pt(x

s
i ,y

s
i )

Ps(xsi ,y
s
i )

to weigh the loss of an observation (xi, yi). It
is not possible to compute the weighing factor from the data without any further
assumptions. Jiang (2008) discerns two approaches in the domain adaptation
literature: class imbalance and covariate shift .

In the case of class imbalance, it is assumed that the conditional probabilities of
X are the same in the source and target domain: Ps(X|Y ) = Pt(X|Y ). Under
this assumption the weighing factor is reduced to Pt(Y )

Ps(Y ) . The distribution of the
class labels for the target domain has to be estimated in order to compute the
weights – which is an unfeasible task.
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1.2. PROBABILITY DISTRIBUTION DIFFERENCES

In the case of covariate shift, the distribution of the labels is the same in the
source and target domain for a given instance, Ps(Y |X) = Pt(Y |X). Under this
assumption the weighing factor is reduced to Pt(X)

Ps(X) .

Another version of instance weighing is instance pruning (Jiang & Zhai, 2007).
As Dahlmeier & Ng (2010) explain, a small sample of labeled instances from the
target domain is required when instance pruning is to be used. The instances
from the source domain are labeled with a classifier, trained on this target do-
main sample. The top N instances that are predicted incorrectly – when ranked
according to prediction confidence – are removed from the source domain. These
instances are considered to differ too much from the target domain to contain
helpful information. Finally, the system is trained on the adapted source do-
main. Dahlmeier & Ng (2010) compare an instance weighting and an instance
pruning approach with the method explained in Daumé III (2007) for semantic
role labeling. They find that, in general, instance pruning is a better method
for adapting a semantic role labeler to a new domain.

The tree weighting approach for statistical parsing of Plank & Sima’an (2008)
is related to instance weighting in the sense that parse trees, in contrast to
instances, are given a weight according to their fitness for parsing sentences
of a given domain. In this approach, a corpus is divided into subdomains by
assigning a score to each tree, according to the likeliness that it belongs to a
given subdomain. The result are domain-specific parsers trained on treebanks
with weighted trees, which can then be combined into an optimal combination
to parse an unseen sentence.

Training data selection

Instead of trying to alter the association between an observation and its class
label, it is also possible to change the estimated probabilities of the observations,
P (X). Training data selection or filtering is an attempt to keep only those
observations from the source domain that seem relevant for the target domain.
This can be done in various ways. The most straightforward way is implemented
by Gao et al. (2002) in order to adapt a statistical language model (SLM) to
various domains. The method consists of four steps: (a) segmenting the training
data, (b) ranking the segments according to a metric (perplexity), (c) selecting
the top N training data segments, (d) reducing the language model by pruning
it.

8
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McClosky (2010) carries out domain adaptation that is an extension of train-
ing data selection by combining a mixture of models trained on different source
domains into one model for parsing. A combined distance metric is used to
assign weights to the different models in the combined model. The weighing
of corpora in the final training set is conceptually similar to model interpola-
tion, which is a special case of maximum a posteriori adaptation (Bacchiani &
Roark, 2003). Maximum a posteriori adaptation means that the model that is
learned, maximizes the probabilities of observations x given a model θ, along
with the probability of the model, instead of using only the conditional proba-
bilities P (x|θ). In the case of model interpolation, two models are learned: one
for the source domain and one for the target domain. The probability for a
class label y, given an instance x, is a linear combination – controlled by a λ
parameter – of the probabilities taken from the two models:

P (y|x) = λPs(y|x) + (1− λ)Pt(y|x) (1.6)

Training data creation

Training data creation can help to adapt a machine learner to another domain.
The creation of labeled data for the target domain can help domain adaptation
in a supervised or semi-supervised way. The labeled data can be included in the
training data, used during the learning phase of the machine learner.

A supervised way to adapt a machine learner to another domain is by active
learning. Active learning is a technique that starts with selecting interesting
instances from an unlabeled target data sample. Next, the selected instances are
labeled by an annotator and are added to the training data, thus more efficiently
increasing the performance of a machine learner. This approach is introduced
by Lewis & Gale (1994) under the name of uncertainty sampling . The workflow
for active learning is given in Figure 1.2 (Chan & Ng, 2007).

In the first step, all labeled source data is taken as training data and a model
is inferred. Next, an instance from the target data is labeled with the trained
model. If the machine learner is not very certain about the new label, the correct
label is provided and the instance is added to the training data. If the machine
learner is certain, it is assumed that the machine learner does not need this
instance as additional evidence and the instance is discarded. The labeling and
adding steps are repeated until a stopping criterion is met. Examples of stopping
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INPUT labeled source data, labeled target data sample
OUTPUT adapted model
step 1 Train a model on the labeled source data,
step 2 Label an instance from the target data sample with the

model,
step 3 If the certainty of the machine learner is below a given

threshold, add the instance with the correct label to the
training data,

step 4 Repeat from step 2 until a stopping criterion is met –
e.g. a predefined number of cycles is reached or cross-
validation accuracy does no longer increase significantly,

step 5 Train the final model on the extended training data.

Figure 1.2: The active learning algorithm, adapted from Chan & Ng (2007).

criteria are putting a threshold on the number of cycles and stopping when cross-
validation accuracy does no longer increase significantly. The final model will
be trained on the labeled source data, extended with selected instances from the
target data.

Active learning becomes interesting during the corpus annotation phase when,
initially, the target data sample is unlabeled. In step 3 of the algorithm of
Figure 1.2 an annotator then provides the correct label. Active learning is a
way to save annotation time, because only the interesting instances need the
annotator’s attention.

Instead of adding the instance with the correct label, it is also possible to simply
add the instance with the predicted label. This is the concept of self-training
(Charniak, 1997; McClosky, 2010; Sagae, 2010). During self-training, additional
training data is created in a semi-supervised way. Jiang & Zhai (2007) present
an example for part-of-speech tagging (POS-tagging). POS-tagging is a task
that consists of labeling tokens of a sentence with information about the linguis-
tic category to which they belong. Self-training in a POS labeling context is
explored in Section 4.4. The self-training routine from Figure 1.3 is taken from
McClosky (2010).

In a first step a model is trained on labeled data. Next, this model is used to label
any amount of unlabeled data. The third step is optional and entails selecting
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INPUT labeled data, unlabeled data
OUTPUT self-trained model
step 1 Train a base model on the labeled data,
step 2 Label the unlabeled data with the base model,
step 3 Select data from the newly labeled data [optional],
step 4 Train a self-trained model on the original labeled data and

the selected data from step 3 while optionally assigning
different weights to the labeled and the selected data.

Figure 1.3: The self-training algorithm, adapted from McClosky (2010).

those instances from the newly labeled data that contain useful information
for the next training phase. This filtering step may reduce the noise that is
introduced through inevitable misclassifications. In the last step, a new model
is learned from the original labeled data extended with the newly labeled data.
This new model is the self-trained model.

A second option for suppressing classification errors is by assigning different
weights to the newly labeled training data with respect to the original data.
Applying such a weighting scheme is called count-merging (Chan & Ng, 2007).
For some machine learners, this can be done by simply duplicating instances
in the training data. Bacchiani & Roark (2003) show that count-merging, like
model interpolation, is a special case of maximum a posteriori adaptation.

Changing the feature space

Instead of acting on the number of instances in the training corpus it is also
possible to change the probabilities P (X) by remodeling the observations.

In most machine learning setups, observations are vectors and each element of
the vector represents a feature. The first step of these machine learning tasks
then consists of extracting features that contain the information required to solve
the task. However, there is no well-defined set of features that can be reused for
every NLP task. By adding or removing features, the nature of the observations
change and this has an influence on the probability P (X), as can be seen in
Figure 1.4. The intelligent conversion of the features of an observation X can
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tokenprevious token

P( x  ) = 0.041 P( x  ) = 0.301

Figure 1.4: Example of how the probability of an observation changes when the fea-
ture space changes. Each line represents an observation, there are 50 observations.
Each column represents a feature, there are two features: token and previous token.
Each color represents a feature value, there are five different feature values: a vocab-
ulary of five words. Both features have the same set of feature values. When only the
token of an observation is taken into account, the first observation x1 has an associated
probability of 0.30. When the previous token is also taken into account – the feature
space changes – the first observation x1 has an associated probability of 0.04.

help to bring the source and target distributions closer together without losing
the expressiveness of the system.

One of the better known adaptation procedures that draws upon the idea that
adapting the features can lead to domain adaptation, is structural correspondence
learning (SCL) (Blitzer et al., 2006).

Pivot features, which are features that are common in the source and target
domain, are used to learn a mapping θ. This mapping then transforms the
original feature space and the concatenation of the original and transformed fea-
ture space constitute the new feature space, which promises to better capture
the similarities between the two domains. SCL has been shown to work for
part-of-speech tagging (Blitzer et al., 2006) and sentiment classification (Blitzer
et al., 2007). Plank (2009) shows that structural correspondence learning ob-
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tains better results than self-training when carrying out parse tree selection
experiments.

Another example of changing the feature space is presented by Chen et al. (2009).
They use a metric (maximum mean discrepancy) to transform the feature space
in such a way that the distance between source and target domain is minimal
without harming the in-domain accuracy on the source domain.

Globerson & Roweis (2006) argue that it is important not to assign too much
weight to a feature for classifiers that incorporate feature weighting. Stressing
a feature too much decreases the robustness of the classifier and, consequently,
harms cross-domain usage. If a heavily weighted feature is not in the test corpus,
the feature becomes useless and accuracy decreases. Globerson & Roweis (2006)
try to create a classifier that deletes these sensitive features at test time, but
without overly stimulating the negative effect on the accuracy. They showed
that deleting features indeed increases the robustness. Missing features in the
test corpus do not have a major influence on the accuracy, but, as a result, the
accuracy of the adapted system on a test corpus without any missing features is
lower than the accuracy of a classifier (SVM) trained on all features. However,
they also show that for a spam detection task the system with feature deletion
performs better than an SVM classifier, even on a complete test data. They argue
that their procedure is related to, but dissimilar from, feature selection.

Although they do not change the feature space, the idea of using lexical infor-
mation from the target domain in the model is also picked up by Hara et al.
(2007). In an HPSG parser, they replace the source data probabilities for as-
signing lexical information to tokens with probabilities that are obtained from
the target data.

Feature weighting

As Finkel & Manning (2009) point out, feature augmentation (Daumé III, 2007;
Daumé III et al., 2010) is equivalent to their work on using a hierarchical
Bayesian prior. The idea of the hierarchical Bayesian adaptation method is
that feature weights can be learned from data from different domains and that
they should provide corrections on the feature weights that are globally applica-
ble. Or, more generally, language data is considered to have a common core of
properties and domain-specificity of data comes from deviations from that core.
For domain adaptation, it is important to capture those deviations as well as
the common core.
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As Finkel & Manning (2009) remark, the difference of their setup with the work
of Daumé III (2007) is that in the latter paper the variances of each domain
are considered to be the same. An example of hierarchical Bayesian adaptation
for maximum entropy language modeling is described by Alumäe & Kurimo
(2010).

1.2.3 Summary

In this section, the basic concepts of machine learning experiments are presented
as they will be used in the following chapters. Together with the basic concepts,
an overview is given of different approaches to domain adaptation with a fo-
cus on the various elements of the machine learning process that are available
for adaptation. The second building block of this dissertation is the distance
between the training and test corpus during an experiment. In the next sec-
tion, two research lines that can be distinguished in distance metric research,
are presented.

1.3 Measuring distance

One of the basic ideas of this work is that a measure of the difference between a
source and a target corpus is needed to identify those situations in which domain
adaptation is required. A good measure would also be informative to analyze
the strength of domain adaptation methods. Indeed, an adaptation method that
can increase the performance of an NLP tool when source and target domain are
very divergent, is a more appealing method than a method than can only remedy
small domain differences. In this section a short overview is given of methods
to measure differences between text corpora. The focus of previous research can
be purely descriptive or can be the relation between a distance measure and an
NLP application. The next subsections will elaborate on the differences between
these two lines of research.

1.3.1 Descriptive usage

Different kinds of properties of text corpora can be counted. A well-known
approach is the Zipf curve, which is based on the counts of lexical items in a text
(Zipf, 1972). However, the availability of parsers provides access to a whole range
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of more refined approaches. The primordial goal of counting is to characterize a
corpus and express the deviation of the corpus from other corpora.

In the work of Verspoor et al. (2009) a whole range of properties of Open Access
publications is compared with those of classic journal publications. Higher order
syntactic phenomena like negation, passivization, conjunction, and pronominal
anaphora are quantified, along with sentence length and a symmetric version
of the Kullback-Leibler divergence based on token frequencies. Based on of
these counts, Verspoor et al. (2009) conclude that both types of publications are
similar.

Another example of the descriptive usage of measures can be found in Biber
& Gray (2010). In this work, an attempt is made to find the difference be-
tween spoken register and professional academic writing by investigating dis-
course markers such as structural elaboration, structural compression and ex-
plicitness. Structural elaboration is measured by counting the number of finite
complement clauses, non-finite complement clauses, finite adverbial clauses, fi-
nite relative clauses, and non-finite relative clauses. Structural compression is
measured by counting attributive adjectives, noun as noun pre-modifiers, etc.
They conclude that there are differences, but not necessarily those that were
preconceived.

They show that academic writing is not more structurally elaborated than lan-
guage with a spoken register. Elaborateness is expressed by the number of subor-
dinate clauses in a corpus. Instead, academic writing is structurally compressed.
Compression is expressed by the number of phrasal modiers embedded in noun
phrases. They also argue that academic writing is less explicit in meaning than
spoken language because of its compressed and less elaborated features.

The findings of Biber & Gray (2010) are based on the decision about what
to count and how to annotate it. A working method not requiring annotator
interference would not only lead to the production of more objective counts, it
would also make processing of larger corpora feasible. Furthermore, automatic
measures are more easily shared, enabling other researchers to apply them. One
such automatic approach is clustering. It can be used to discern subdomains in
a large corpus, although the descriptive dimension is somewhat lost when only
clustered data is presented. Many natural language tools focus on biomedical
corpora, therefore regarding biomedicine as a single domain, but this may be
an oversimplification (Lippincott et al., 2010, 2011). Lippincott et al. (2011)
choose a set of lexical, syntactic, semantic and discourse-related properties and
use those properties to cluster the subdomains of a biomedical corpus.
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1.3.2 In relation to an NLP task

In the previous subsection, the metrics are presented as self-contained. No ex-
ternal purpose is linked to the metric – the metric simply expresses distance.
The issue of identifying subdomains without reference to an external purpose is
addressed in the concluding section of Lippincott et al. (2011). Indeed, connect-
ing a measure to a task gives more meaning to the measure. In this dissertation,
attention is given to measures that are linked to an NLP task. Previous research
that focuses on the reference of metrics to an external purpose is incorporated
in the general overview of metrics in Chapter 2.

1.4 Research questions

For domain adaptation experiments, the actual domains are defined by an an-
notator, who bases the domain labels on his knowledge of the world. This link
between domains and semantics can be easily understood by a human and may
lead to sentences like:

The larger set of unlabeled data [. . . ] is closer to [the target domain] in general
than to the source domain [. . . ] (Sagae, 2010).

This sentence may not draw any specific attention when reading a domain adap-
tation article, but there is an aspect that deserves more attention. What is meant
when an article states that corpora are closer to one another? It seems trivial
that a corpus of texts on genetics is closer to a corpus of microbiology texts than
it is to a corpus of texts dealing with swimming contests, but what does this
difference look like for a machine learner? And, how should this difference, as
perceived by a machine learner, be understood?

A straightforward way to measure the distance between text corpora objectively
is by running a machine learning experiment with a test and training set from
the same corpus followed by an experiment with a test and a training corpus
from different corpora. It is known that out-of-domain experiments decrease
the performance of a machine learner, therefore the performance drop will be a
measure of the distance between the different corpora. An advantage of measur-
ing the distance in this manner is that the distance is defined using the context
in which it will be used. As can be expected, different machine learning tasks
may require a different notion of closeness. Two corpora that are very similar
for a part-of-speech labeler may be very dissimilar for a dependency tree parser.
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But there are also disadvantages associated with this manner of measuring dis-
tances: it requires labeled data and no externally defined measure of distance is
provided. These two disadvantages will be explained in detail below.

One can easily think of a situation in which a distance measure that does not
require labeled data becomes interesting. Consider a language engineer who has
two large labeled corpora, both corpora being clearly different from the corpus
on which he wants to apply a machine learner. There are unspecified constraints
(storage limitations, price of the corpora, . . . ) that force him to choose either
one of the labeled corpora to train his system. The data that is fed to his
application is unlabeled. Which training corpus should he choose? A distance
measure that can work with unlabeled corpora, can help identify the training
corpus that is closest to his data and, if the distance measure is well-designed, he
will know that the performance of his tool will be the best given the limitations
of the setup.

The absence of an externally defined distance measure leads to a one-dimensional
view on the correlation between distance and performance. The missing extra
dimension can become interesting in specific cases. If the correlation between
a distance metric and the performance of a machine learner is well described,
deviations from the correlation can help point out cases that deserve more atten-
tion. It is only by the juxtaposition of two variables – performance and distance
– that cases that would otherwise go unnoticed, are picked up.

In summary, three reasons for automatic assessment of differences between un-
labeled corpora can be given: (a) to estimate performance of NLP tools without
the need of labeled data (Ravi et al., 2008; McClosky, 2010), (b) to be exploited
during domain adaptation (Mansour et al., 2009; McClosky, 2010), (c) to pro-
vide more background information for domain adaptation experiments. A do-
main adaptation method that can increase the performance for an out-of-domain
experiment with very different domains is more interesting than a domain adap-
tation method that can only remedy small domain differences.

Our research questions concerning the connection between machine learning per-
formance and distance addressed in this work, are explained further in the re-
mainder of this section.
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Figure 1.5: The solid lines all represent a monotonic correlation between distance
and performance. The dashed line is a non-monotonic correlation.

1.4.1 Is there a monotonic relation between perfor-
mance and distance?

Occasionally, distance measures are used explicitly in natural language process-
ing studies concerning the challenges that domains impose on specific tools (Ravi
et al., 2008; Chen et al., 2009; McClosky, 2010; Plank, 2011). The assumption
that is made is that the distance measure that is used, is correlated monoton-
ically (see Figure 1.5) with the performance of the natural language tool. The
nature of the correlation is indeed of minor importance as long as the relation
is monotonic, i.e. the correlation does not switch between positive and nega-
tive.

A non-monotonic correlation would hamper the usage of the distance, since more
data points will be needed to infer the correlation, which could mean that finding
the relation becomes unfeasible.

There are various questions related to this research question. Should the distance
be expressed using only one metric from the many existing ones or should a
combination of metrics be used? Are there conditions that should be satisfied
to be able to observe the correlation? Is the correlation task-specific?
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1.4.2 Is the correlation easily traceable?

Traceability of the correlation depends on the number of data points that are
needed to retrieve the correlation, the amount of data needed to find reliable
data points, and the generalizability of the correlation to other setups.

Linearity

An important question related to the previous research question is whether the
connection between performance and distance can be approximated by linear re-
gression. In fact, this question expresses a similar, but stronger condition than
monotonicity. Linearity does not mean that performance should be directly
linearly correlated with distance, but, ideally, there should at least be a trans-
formation that would make it possible to relate both variables linearly.

The advantage of a linear correlation is that it can be easily captured. In the
ideal case, two data points already suffice to find a linear correlation. Further-
more, a linear correlation permits using linear regression, enabling performance
prediction with a certain degree of reliability.

Corpus size

Another question related to traceability is how quickly the relation can be found.
Exploiting the correlation may become impractical if extremely large corpora are
needed to find a correlation between performance and distance.

Machine learner independence

A last question covers the independence of the linear relation of the machine
learner that is chosen for a given task. If a linear relation can be found for a
machine learner adapted to a given task, does this relation persist when there is
a change of machine learner?

1.4.3 Can the relation be exploited?

The most interesting question is whether the correlation between performance
and distance can be used to adjust the machine learning process. With a linear
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correlation as the starting point, many experimental setups for the integration
of a distance measure are conceivable. In this dissertation, three applications
are investigated.

Training data selection

The distance between test and training corpus can be used to select only those
segments of the training corpus that are likely to constitute a better training
corpus.

Training data selection or instance selection can be carried out in three ways:
incremental, decremental, and mixed (Jankowski & Grochowski, 2004). For in-
cremental instance selection, the algorithm starts with a singe instance and adds
instances as long as they are considered to be useful. For decremental instance
selection, instances are removed from the training data when they are considered
to be noise. The mixed approach makes use of both previous methods.

The reasons to reduce the size of the training corpus can be to increase the
performance of a machine learner trained on the corpus, to speed up the train-
ing phase, to minimize memory requirements, or to obtain a set of prototypes.
Prototypes are only a few instances that are considered to represent the entire
training corpus.

Feature selection

The distance between corpora can be defined using the token frequencies of
the texts, but this is not mandatory. The distance may as well be based on
the features of the instances that are created for the learning task. Since each
feature may capture a different aspect of a machine learning task, it may be
possible to derive the quality of a feature from its influence on the correlation
between distance and performance, when the feature is or is not included when
calculating the distance measure.

Self-training

In a self-training setup, unlabeled data is added to the training data. The triage
of unlabeled data could be done using the distance between the test corpus and
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the unlabeled data. The closer the corpora are to each other, the more likely
adding the unlabeled data will improve the performance.

Since the basis of machine learning in NLP is that a corpus is a distribution, the
information present in the differences between distributions could help treating
the machine learner less as a black box, but more as an adaptive system that
can change according to the data it is presented with.

1.4.4 Reproducibility of the research

Apart from the search for well-founded answers to the posed research questions,
special attention has been given to reproducibility of the experiments that are
carried out for this dissertation. The scripts that are used to obtain the results
are made as accessible as possible, but within the boundaries that are imposed by
the experimental coding routine that inevitably accompanies ongoing research.
In Appendix B, on overview of the scripts is given and all scripts are available
online. Attention is given to provide functioning scripts, but to fully reproduce
all experiments adaptation of the source code can be needed.

1.5 Structure of this dissertation

The remainder of this work is structured as follows: Chapter 2 contains a def-
inition of the concepts used in this work, together with an overview of various
metrics. At the end of Chapter 2, some evaluation measures and statistical tests
are discussed. Chapter 3 contains experiments with part-of-speech labelers and
a prepositional phrase attacher in order to identify the performance-distance re-
lation for these machine learners. Various experimental parameters are changed
in order to get a clearer view on the subject. In Chapter 4, the correlation that
is found in Chapter 3, is investigated by means of three applications that can
benefit from the availability of a reliable distance metric. Finally, Chapter 5
contains the general conclusions of this dissertation.
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Chapter 2

Divergences and other
measures

2.1 Introduction

In this chapter, the definitions of various concepts that are used in this disserta-
tion are given. Some definitions are descriptive – like the definition of a corpus
– and others are mathematically defined.

First, the objects of study are described: text, corpus, distribution, and domain.
An important remark is the interchangeability of the terms corpus, distribution,
and domain in the context of this work. Following the descriptions of the con-
cepts, a range of distance metrics are presented and the asymmetry property
of the metrics is discussed in more detail. At the end of this chapter, all the
basic building blocks of the experiments in the following chapters will have been
surveyed.

2.2 Text, corpus, distribution, and domain

The terms domain, corpus, distribution, or even text need to be defined ex-
plicitly in order to avoid confusion when reading this work. These definitions
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are given for the use in our dissertation. No claim is made about their general
validity.

Text

A text is a collection of tokens, ordered in such a way that they convey a meaning.
Examples are news articles, novels, letters, but also shopping lists, information
tables, or computer code.

Corpus

A corpus is a collection of texts. The collection may consist of only one text or
different texts may be merged into one before calling it a corpus. In practice, a
corpus will often consist of one data file.

Distribution

A distribution is a probability distribution extracted from a corpus. A distribu-
tion P can be described formally as:

P =
{
pk : pk ∈ R+ ∧

n∑
i

pi = 1
}

(2.1)

with k a unique identifier and n the number of elements in P .

Extracting a distribution from a corpus can be done in various ways. Examples
of distributions are token frequency, character frequency, and feature value dis-
tributions. Given a corpus, numerous different distributions can be obtained.
More formally, the conversion of a corpus C to a distribution P can be stated
as a mapping M on the corpus C:

M : C → D (2.2)

with D as the collection of distributions and C as the collection of corpora.
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CHAPTER 2. DIVERGENCES AND OTHER MEASURES

The mapping should be surjective (there should be a distribution for every cor-
pus) and in most practical situations the mapping will be injective as well (every
corpus is uniquely linked to a distribution and vice versa).

Although depending on the mapping, injectivity will not always hold, but it
would often be the ideal situation. If injectivity would not hold, the same dis-
tance value could be obtained for pairs of corpora that are different. An example
of a mapping that is not injective, would be a mapping that leads to a distribu-
tion only containing the count of the number of question marks in a corpus. For
corpora of the same size, this mapping will often produce the same distribution
and it is impossible to uniquely identify the original corpus if only the distribu-
tion is given. In general, this lack of expressiveness will cause the mapping to
be impractical.

A commonly used mapping to extract a distribution, is getting the relative fre-
quency counts of the tokens in a corpus, but the mapping used to create a
distribution depends on the task at hand. As stated before, the number of dif-
ferent mappings is only limited by the imagination of the researcher. This is the
reason why, for clarity, it should always be mentioned which mapping is used to
extract a distribution from a corpus. However, in the practical chapters of this
work, the relative token frequency mapping is assumed when the mapping is not
explicitly mentioned.

Domain

The term domain is an ambiguous term and, in general, the term is used to
express a difference between corpora. The exact nature of the difference depends
on the context in which the term is used.

In computational linguistics, categorization of texts is done with genre, register,
text type, style, and topic as discriminative features. Most authors that have
written upon the subject, agree that these concepts are vague (Karlgren, 2010;
Argamon & Koppel, 2010; Lee, 2001a). Lee (2001a) takes the definitions of
the concepts as proposed by various authors, like Biber (1988) and EAGLES
– a European initiative aiming at the establishment of language engineering
standards (Sinclair & Ball, 1996) – and tries comparing and integrating them.
The conclusions of Lee (2001a) are taken as the main source for the definitions
given below.
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The parameters to distinguish texts are considered to be external (intended au-
dience, purpose, and setting) or internal (lexical or grammatical (co)occurrence
features). Genres are then the outcome of the differences in the external param-
eters of a text. Illustrations of genre labels are: broadcast news, phone calls,
letters and natural science articles. During genre labeling, the focus is on the
whole text and on the practical categorization of the text. Genres are dynamic
labels that are more or less based on social and/or ideological conventions. The
rise of new genres, like the language used in social media, exemplifies the fact
that the set of genres is dynamic. The forbidden books that were on the Index
could be associated with an ideologically inspired genre label.

Register is regarded as being closely related to genre. The term register is used
when the focus shifts more to the abstract level of internal and linguistic aspects
of a text, in contrast to a focus on practical grounds, as it is for genre labels.
The register is less tied to the text as a whole and is more independent from
overall textual structures. Lee (2001a) gives the legal register as an example of
register. When talking about the legal register, the focus is on the language.
Parts of a text can be in the legal register while other parts can be colloquial.
Texts in the legal register can belong to different genres like testaments and law
texts. Testaments and law texts are social and practical categories for texts when
focusing on the text as a whole. It seems unfeasible to come up with a text that
belongs only partially to the testament genre.

A domain (a subject field: arts, science, religion) would be one of the attributes
of a genre, along with medium (spoken, written, electronic), content (topic),
purpose (informative, persuasive), type (description, narrative, argumentation),
language (register, style) and form. Style would then arise from the actual
linguistic choices made by an individual when producing texts within a given
register and genre.

If genre (and register) are linked to the external parameters of a text, there
should also exist a labeling system for the variation of the internal parameters of
a text. Text types would be the outcome of differences in the internal parameters
of a text. Illustrations of text types cannot be given, because it is hard to define
different text types – text types should be defined crossing genres and based
purely on internal parameters. For this reason text type is considered an elusive
concept by Lee (2001a) and one that is hard to put into practice.

Overlooking all these definitions, it is clear that the concepts are vague, over-
lapping and mostly valued for their practicality in a given context. A common
trait of the definitions is that they do not contain a scale to distinguish between
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Figure 2.1: Domain classification and domain discovery – the dots represent corpora,
the lines separate domains. For domain classification (left), the domains are given and
the task consists of positioning a new corpus in the space. The domain of the new
corpus can be retrieved from its position. For domain discovery (right), the domain
boundaries between the corpora are to be found.

subgenres, genres and supergenres. For example, is the distinction between topic
and domain (as defined in the previous paragraph) not merely an issue of looking
at a text at a different scale?

Biber (1988) presented work on finding the dimensions that separate different
genres. The dimensions are constructed from linguistics features such as the
verb tense, the type of adverbials and pronouns, the use of passive voice and
so on. All features are represented by relative frequency counts. The work is
a nice example of how genres can be characterized objectively, but it focuses
more on genre classification than on genre discovery. Figure 2.1 illustrates the
difference between genre classification and genre discovery. The points in the
figure depict corpora or texts. The lines are boundaries between genres. At the
left of Figure 2.1, the boundaries are given by an annotator and the task consists
of positioning a new text in the space. This is genre/domain classification. By
positioning a text in the space, a genre label can be retrieved. There is no other
ground to the genre label than the intuition of the annotator, who assigned genre
labels to the texts that are already present in the space. Genre classification is
a supervised task.
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At the right of Figure 2.1, there are no boundaries and the task consists of
finding the genre boundaries between the texts. This unsupervised task is called
genre/domain discovery. Genre discovery is similar to clustering and the same
problem occurs: what should be the threshold to separate one cluster from
another? A second question that arises when carrying out genre classification
and genre discovery is how the space is constructed. Are the dimensions of the
space the combined linguistic dimensions of Biber (1988) or is a one-dimensional
space built up by a single metric sufficient? These are relevant questions for
which there may not be a general answer.

For our research, a pragmatic approach is adopted because of the difficulty of
finding a theoretical ground for the presented concepts such as genre, domain,
and register. The decisions made by the annotators while composing a text
corpus containing any categorization are taken to be correct in the sense that
we assume that the categories are distinct and on the same level of granularity.
It is only by following the decisions of the annotators and not imposing our view
on domains that we can introduce a sense of objectivity. By only preserving
the notion of categories that the annotators considered to be distinctive and
socially/pragmatically defendable, we also abstract from the difference between
genre and domain and, for convenience’s sake, all further categories in this work
will be referred to as domains.

In the previous paragraph, it was shown that there is no other ground for the do-
main labels than the annotator’s intuition. In search for an objective ground, a
supplementary source is introduced for the experiments in the remainder of this
work. It is the link between the accuracy of a machine learner that is designed
for a given task and the discriminating factor that will provide the ground for
the domain labeling. By exploring this link, it is possible to mix the domain
reproducing task with the domain discovery task. This working method assures
that the domains that are labeled by applying a discriminating factor (domain
reproduction), are significant for the machine-learning task in the sense that
the amplitude of the discriminating factor will result in different cross-domain
accuracies. Putting a threshold on the accuracy differences between different
domains leads to the opportunity to use the discriminating factor for domain
discovery.

In the technical chapters, the terms domain, corpus, and distribution are used as
synonyms because they are all different views on the same concept: A domain
becomes a corpus when one wants to examine a domain and starts gathering
texts. With a given mapping, a corpus can be uniquely linked to a distribution
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and vice versa – creating a sense of isomorphism between corpora and distribu-
tions.

2.3 Definition of a metric

Throughout this work, we will use the terms metric, distance and divergence as
synonyms for any function that returns a real number when applied on any pair
of corpora or on the derived distributions. The usage of these terms diverges
from the usage in an exact, mathematical context. In a mathematical context
a distance metric, d, is a symmetric, positive definite function that satisfies the
triangle inequality for any pair of points.

d : X × X → R
∀x, y, z ∈ X :

d(x, y) ≥ 0 (non-negativity)
d(x, y) = 0 ⇐⇒ x = y (identity)
d(x, y) = d(y, x) (symmetry)
d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)

where X can be the collection of corpora or of the distributions extracted from
the corpora, using a given mapping.

In statistics, a divergence can be defined by dropping the symmetry and trian-
gle inequality conditions from the distance definition. Many functions in this
dissertation do not satisfy all of the distance or divergence conditions. For ex-
ample, Kendall’s τ does not satisfy the non-negativity condition, perplexity does
not satisfy the identity condition, and the Kullback-Leibler divergence does not
satisfy the symmetry condition and the triangle inequality. As we will see later,
not satisfying the symmetry condition makes a divergence better suited for the
task at hand. On the other hand, not satisfying the triangle inequality condition
makes a divergence unsuitable for drawing a similarity map of the corpora for a
given task. Such a map could be used to infer a functional relation between a
position on the map and the outcome of a machine-learning task. It is fairly easy
to see why all conditions should hold in order to be able to produce a map. A
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visual clue of why triangle inequality is necessary for a topological representation
of domains can be found in Appendix A on page 161.

In short, when the term distance, metric, or divergence is used in this work, the
following function is targeted:

d : X × X → R (2.3)

2.4 Distance metrics for corpora

In this chapter we will give an overview of a collection of metrics that can be used
to measure the distance between two corpora P and Q. A corpus can be a text, a
tokenized text, a list of instances consisting of features of any kind, dependency
trees, etc. In general, any collection of elements can be used, but in this work
we will most of the time use the divergences on tokenized sentences.

Probability based metrics Since a corpus can be easily rewritten in a prob-
ability distribution of tokens it is not surprising that metrics using these prob-
abilities are commonly used. In this category we list the metrics that are an
uncomplicated combination of those token probabilities.

Let

P =

{
pk : pk =

count of token k in corpus P
total number of tokens in P

}
(2.4)

and

Q =

{
qk : qk =

count of token k in corpus Q
total number of tokens in Q

}
(2.5)

Then a well-known divergence metric has been developed by Kullback & Leibler
(1951):

KL(P ;Q) =
∑
k

pklog2

(pk
qk

)
(2.6)

A nice example of the usage of the Kullback-Leibler divergence, KL, comes from
Della Pietra et al. (1997) where the KL-divergence is used for feature selection
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by adding only those features that decrease the divergence. Another example
can be found in Daumé III & Marcu (2006). They use the Kullback-Leibler
divergence to compute the similarity between unigram language models.

The Kullback-Leibler divergence is asymmetric:

KL(P ;Q) 6= KL(Q;P ) (2.7)

From the formula of the Kullback-Leibler divergence it is clear that the diver-
gence is not defined when P and/or Q contains a token that is not in the other
corpus. For natural language corpora this is often the case, making KL imprac-
tical. The Jensen-Shannon and the Skew divergence that are introduced below
can offer solutions for this problem. Another option is to smooth the divergence
in such a way that log2

(
pk
qk

)
is also defined for tokens where pk = 0 or qk = 0.

For the experiments in the following chapters, we used smoothing:

log2

(pk
qk

)
=

{
0 for pk = 0,

log2

(
pk
qk+ε

)
for qk = 0. (2.8)

With ε set to a very small value. A more general form of the Kullback-Leibler
divergence is the divergence developed by Rényi (1961):

Rényi(P ;Q;α) =
1

(α− 1)
log2

(∑
k

pαk q
1−α
k

)
with α ≥ 0 (2.9)

This metric is equal to the Kullback-Leibler divergence when lim
α→1

. In the selected
situations when α is set to a value strictly greater than 1, the Rényi divergence
may need smoothing in the same manner as the Kullback-Leibler divergence.
Mansour et al. (2009) argue that the class of Rényi divergences are suitable in
the context of combining multiple sources into one training set.

If α is set to 1
2 , the Rényi divergence becomes −2log(Bhat) with Bhat as the

Bhattacharyya coefficient (Bhattacharyya, 1943). The Bhattacharyya coefficient
can be turned into a true mathematical distance metric that obeys the triangle
inequality (Kailath, 1967):
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Bhat(P ;Q) =
√

1−
(∑

k

√
pkqk

)
(2.10)

This distance may also be called the Hellinger distance (Hellinger, 1909), but
we did not retrieve the articles for Hellinger (1909) and Bhattacharyya (1943)
so we just follow Kailath (1967).

The Jensen-Shannon divergence (Lin, 1991) is an alternative to the KL-divergence
that does not require every token in P to occur also in Q – making smoothing
redundant.

JS(P ;Q) =
1
2

[
KL

(
P ;

P +Q

2

)
+KL

(
Q;

P +Q

2

)]
(2.11)

Grosse et al. (2002) use a version of the Jensen-Shannon divergence that contains
weighting. The Jensen-Shannon divergence can be rewritten if we replace the
KL-divergences by their definitions:

JS(P ;Q) =
1
2

[∑
k

pklog2

( pk
pk+qk

2

)
+
∑
k

qklog2

( qk
pk+qk

2

)]
(2.12)

=
1
2

[∑
k

pklog2(pk)−
∑
k

pklog2

(pk + qk
2

)
+

∑
k

qklog2(qk)−
∑
k

qklog2

(pk + qk
2

)]
(2.13)

=
1
2

[∑
k

pklog2(pk) +
∑
k

qklog2(qk)−

2
∑
k

pk + qk
2

log2

(pk + qk
2

)]
(2.14)

It is easier to see where the weighting is included if the Jensen-Shannon entropy
is expressed by means of the Shannon entropy H of a distribution P :

32



CHAPTER 2. DIVERGENCES AND OTHER MEASURES

H(P ) = −
∑
k

pklog2(pk) (2.15)

This entropy can be included in the JS formula:

JS(P ;Q) =
1
2

[
−H(P )−H(Q) + 2H

(P +Q

2

)]
(2.16)

= H
(1

2
P +

1
2
Q
)
− 1

2
H(P )− 1

2
H(Q) (2.17)

A parameter λ can be introduced and the weighted version of the Jensen-
Shannon divergence then becomes:

JS(P ;Q;λ) = H
(
λP + (1− λ)Q

)
− λH(P )− (1− λ)H(Q) (2.18)

with 0 < λ < 1 and with λ = 1
2 , the weighted version becomes equal to the

unweighted version.

Another alternative to the KL-divergence is the Skew divergence (Lee, 1999).
The purpose of the Skew divergence is related to the purpose of the Jensen-
Shannon divergence: it is a weighted version of the KL-divergence to enable the
comparison between distributions when pk 6= 0 and qk = 0.

Skew(P ;Q) = KL(Q;αP + (1− α)Q) with α ∈ [0, 1] (2.19)

Lee (2001b) discusses that the Skew divergence is better suited for estimating
co-occurrence probabilities of words than the KL-divergence. In her work, she
also presents an overview of other well-known metrics like Euclidean, Variational
or L1, and Cosine divergence:

Euclidean(P ;Q) =
√∑

k

(pk − qk)2 (2.20)

L1(P ;Q) =
∑
k

|pk − qk| (2.21)
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Cosine(P ;Q) =
∑
k pkqk√∑

k p
2
k

√∑
k q

2
k

(2.22)

McClosky (2010) uses CosineTopK, which is a variant to the cosine divergence.
Instead of taking the entire distribution only the K most frequent elements
from the joint distribution are taken into account when computing the cosine
divergence.

The recurrence metric (Kessler, 2001), R, can be linked to already mentioned
metrics in the following way:

R(P ;Q) =
∑
k

∣∣pk − pk + qk
2

∣∣ (2.23)

which reduces to R = L1
2 , and Rsq:

Rsq(P ;Q) =
∑
k

(
pk −

pk + qk
2

)2

(2.24)

which reduces to Rsq = 1
4 (Euclidean)2.

The previous metrics are based on the token frequencies to produce a divergence
score. The τα and τβ scores, also called Kendall’s τ , do not directly reflect the
frequency difference, but they inform about the variable ordering of the token
frequencies of two corpora P and Q. For this metric, both corpora should have
the same number of tokens n (Kendall, 1970).
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τα(P ;Q) =
2

n(n− 1)

∑
k1

∑
k2

sign
(
(pk1 − pk2)(qk1 − qk2)

)
(2.25)

τβ(P ;Q) =
2
F

∑
k1

∑
k2

sign
(
(pk1 − pk2)(qk1 − qk2)

)
(2.26)

with

F =
√(

n(n− 1)− 2U
)(
n(n− 1)− 2V

)
U = number of ties in P, i.e. size of

{
(pk1 , pk2)|pk1 = pk2

}
V = number of ties in Q, i.e. size of

{
(qk1 , qk2)|qk1 = qk2

}
From the formulas, it can be seen that τα = τβ when there are no ties. The
values of τ lie between 1 (when the ordering of the frequencies is the same for
P and Q) and −1 (when the ordering of the frequencies in P is the reverse of
the one from Q) and |τα| ≤ |τβ |. In general, τβ is used when both distributions
are equivalent and τα is used when one distribution is a reference and the other
an estimation of that reference. We refer to Appendix A on page 174 for an
example adapted to token frequency counts.

Section A.4.3 in the appendix explains why Kendall’s τ has some undesirable
properties when trying to distinguish between domains. In addition, computing
τ is computationally expensive and unfeasible for larger corpora. Therefore, τ
will not be used in the experiments in this thesis.

Another set of divergence metrics is not rooted in the difference between prob-
ability distributions: average sentence length (ASL), simple unknown word rate
(sUWR) and overlap, unknown POS trigram ratio (UPTR), and perplexity.
Zhang & Wang (2009) and Ravi et al. (2008) apply them in an accuracy es-
timation context and define them as the following:

Average sentence length (ASL) (Zhang & Wang, 2009): The average length of
the sentences of a corpus. All tokens, w, of the tokenized corpus, T , are counted
and divided by the number of sentences, s, in the corpus, i.e.

ASL =
|{w|w ∈ T}|
|{s|s ∈ T}|

(2.27)
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The conversion of the average sentence length into a metric can be done in
numerous ways. Four implementations are presented here:

ASL1 = ASLtesting (2.28)

ASL2 =
∣∣ASLtesting −ASLtraining∣∣ (2.29)

ASL3 =
ASLtesting
ASLtraining

(2.30)

ASL4 = ASLtesting −ASLtraining (2.31)

ASL1 is the version used in Zhang & Wang (2009).

Simple Unknown Word Rate (sUWR): This can only be computed by using the
training corpus, S, and testing corpus, T . sUWR is the fraction of word types,
t, in the testing corpus that are not in the training corpus, i.e.

sUWR =
|{t|t /∈ S ∧ t ∈ T}|
|{t|t ∈ T}|

(2.32)

(Zhang & Wang, 2009; Plank & van Noord, 2010)

Overlap: Overlap is a complement to the sUWR. The same annotation as for
the sUWR definition is used:

Overlap =
|{t|t ∈ S ∧ t /∈ T}|
|{t|t ∈ S}|

(2.33)

Unknown POS Trigram Ratio (UPTR): This measure is the same as sUWR,
except for the usage of POS trigrams instead of word types. It is possible to
include sentence initial and sentence final markers to stress the position of a
trigram in the sentence. (Zhang & Wang, 2009; Plank & van Noord, 2010)

Perplexity : Perplexity, ppl, of a corpus is computed with the formula:

ppl = 10
−logprob
w−oov+s (2.34)

with w the number of words, s the number of sentences, and oov the number
of tokens that occur in the test corpus, but not in the training corpus. logprob
is the total probability of the sentences in the testing corpus when using a
language model based on the training corpus. It is also possible to compute the
perplexity without taking into account the number of sentences s. Perplexity
has been used to measure distances for language modeling (Gao et al., 2002;
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Klakow & Peters, 2002; Moore & Lewis, 2010). Cross-entropy is related to
perplexity and Chen (2009) shows that it is possible to use training set cross-
entropy together with other model statistics to model test set cross entropy for
n-gram language models.

Plank & van Noord (2010), like Zhang & Wang (2009), find that applying three
dependency parsers on data from different domains is rather robust to ASL1,
meaning that they didn’t observe a correlation between the accuracy and the
ASL1. For sUWR, they found a high correlation for data-driven parsers and for
UPTR, they observed no correlation, unlike Zhang & Wang (2009). Perplexity
displayed the highest degree of correlation, with correlation coefficients between
-0.64 and -0.57.

A more elaborate measure has been proposed by Blitzer et al. (2007): the A-
distance (Kifer et al., 2004). For this measure the actual instances, as they will
be used in the machine-learning task, are extracted. Only the instances coming
from the source domain are associated with a class label, but the class labels are
not required to compute the A-distance. Blitzer et al. (2007) propose a linear
classifier as a means of measuring the similarity between the two domains. The
Huber loss (Huber, 1964) then serves as a proxy of the A-distance. The resulting
proxy A-distance correlates with the adaptation loss they observe when applying
a sentiment classification tool on different domains. Originally, the Huber loss,
ρ, has been stated as:

ρ(y, f(x)) =
{

1
2 [y − f(x)]2 for |y − f(x)| < δ,

δ|y − f(x)| − 1
2δ

2 for |y − f(x)| ≥ δ. (2.35)

with y a (random) variable and f(x) an estimation of that variable. δ is a param-
eter depending on the fraction of ys that do not follow the normal distribution
(Huber, 1964). Huber loss can be adapted to the output of a linear classifier,
like an SVM, if we take y to be the reference class labels and f(x) to be the
predicted class label. If we take y, f(x) ∈ {−1, 1}, δ > 2, and divide the loss
with a factor 2, then:

ρ(y, f(x)) =
{

0 for y = f(x),
1 for y 6= f(x). (2.36)
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To compute the proxy A-distance, instances from the source domain are labeled
with −1, instance from the target domain are labeled with 1. The instances of
the two domains are concatenated, an SVM is trained upon this data set, and
the Huber loss, is retrieved. The proxy A-distance then evaluates to:

proxy A-distance = 100(1−Huber loss) (2.37)

A more theoretical approach of the A-distance, after renaming it to the H-
divergence, can be found in Ben-David et al. (2010).

Maximum mean discrepancy (MMD) is a test statistic introduced by Gretton
et al. (2007) to find out if a distribution P is different from a distribution Q
using only samples of both distributions. Such a sample can be a collection of
unlabeled instances fit for a machine-learning task. When the MMD between
the samples of two distributions is large, the distance between the distributions
can be considered to be large and we expect a lower accuracy if one distribution
is the training corpus and the other is the test corpus. The unbiased estimate
of the square of the MMD is given by Gretton et al. (2007):

MMD2 =
1

m(m− 1)

m∑
i 6=j

[
k(pi, pj) + k(qi, qj)− k(pi, qj)− k(pj , qi)

]
(2.38)

with

p, q : p, q ∈ Rd; the instances from P and Q

d : the number of features of an instance p, q
m : the size of the two distributions P,Q
k : the reproducing kernel

When comparing corpora using only the frequency counts, we can say that d = 1,
viz. the frequency value itself. Gretton et al. (2007) define constraints on the
type of kernels that can be plugged in in the formula of the MMD2. Gaussian
and Laplace kernels meet these constraints. The Gaussian radial basis function
kernel is defined as follows:

k(xi, xj) = e−
||xi−xj ||

2

2σ2 (2.39)
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The Gaussian radial basis function kernel is symmetric, leading to the reduction
k(pi, qj) = k(pj , qi) in the formula of MMD2.

An implementation of the MMD for a document classification and an information
extraction task is presented by Chen et al. (2009). In their work they minimize
the MMD between the source and target domain during linear transformation
of the feature space. Combined minimization of the MMD and minimization of
the loss on the source domain ensures a better result in the final out-of-domain
classification task.

Satpal & Sarawagi (2007) take the same approach as Chen et al. (2009), but
they suggest a distance metric based on the expected value of every feature of
an instance. For the source domain the expected value of the kth feature is
defined as:

Eksource =
1
n

n∑
i

fk(xi, yi) (2.40)

with n the number of instances for the source domain and fk(xi, yi) giving the
value of the kth feature of the ith instance. In the paper of Satpal & Sarawagi
(2007), fk does not only depend on the instance, x, but also on the class label,
y. Therefore they have to introduce a different formula to compute the expected
value for the target domain:

Ektarget =
1
m

m∑
i

∑
y

fk(xi, y)Pr(y|xi, w) (2.41)

with m the number of instances for the target domain and with Pr(y|xi, w) the
probability of a class label y to be associated with feature vector x carrying
weight w. Ektarget becomes the same as Eksource if the actual value of a feature
does not depend on the class label, fk(xi, yi) = fk(xi) .The actual distance, 4E,
amounts to:

4 E =
K∑
k

d(Eksource, E
k
target) (2.42)

with K the number of features.
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Satpal & Sarawagi (2007) use the square distance, d(Eksource, E
k
target) = (Eksource−

Ektarget)
2, as distance function d. It is clear that this metric is not straightfor-

wardly usable for nominal features.

Daumé III & Marcu (2006) introduce a domain adaptation framework containing
a parameter π. This parameter expresses the degree of relatedness of domains.
Low values of specific π parameters indicate that the in-domain and out-of-
domain data differ significantly. We do not go deeper into this parameter, since
the parameter is tied to a specific framework, which makes it less generally
applicable than other distance metrics.

The Mahalanobis distance (Mahalanobis, 1936) has been used in natural lan-
guage tasks (Stamatatos et al., 2000; Shimizu et al., 2008; Dhillon et al., 2010).
In its original form, it is suited for measuring the distance of one observation
to a collection of observations rather than for measuring the distance between
corpora as defined in this work. The original distance is defined as:

Mahalanobis(x;Y ) =
√

(x− µ)TS−1(x− µ) (2.43)

With x =


x1

x2

...
xn

 an n-dimensional point, Y an m × n-dimensional matrix con-

taining m n-dimensional points, µ =


µ1

µ2

...
µn

 the means of every coordinate of the

points in Y, and S the covariance matrix of Y. In this work, we only have one
vector x for corpus P and one for corpus Q making it impossible to compute
the original Mahalanobis distance. For this reason, Weinberger & Saul (2009)
introduce an extension to the notion of Mahalanobis distance by substituting µ
with an n-dimensional point y and by replacing the covariance matrix S by a
positive semi-definite matrix M :

Mahalanobis(x; y;M)2 = (x− y)TM(x− y) (2.44)

If M is the identity matrix, the Mahalanobis distance equals the Euclidean dis-
tance. In fact, the Mahalanobis distance can be seen as a linear transformation

40



CHAPTER 2. DIVERGENCES AND OTHER MEASURES

of the Euclidean distance. When M is symmetric it can be decomposed as
M = LTL and substituting this decomposition in the Mahalanobis equation
gives:

Mahalanobis(x; y;M)2 =(x− y)TLTL(x− y) (2.45)

=
(
(x− y)TLT

)(
L(x− y)

)
(2.46)

=
(
L(x− y)

)T (
L(x− y)

)
(2.47)

Which is a linear transformation L of the differences. When M is the identity
matrix, so are L and LT , and the distance becomes:

Mahalanobis(x; y)2 = (x− y)T (x− y) (2.48)

which is the matrix representation of the Euclidean distance as defined on page 33

with x =


p1

p2

...
pn

 and y =


q1
q2
...
qn

 and n the number of unique tokens in the union

of corpus P and corpus Q. When applying the Mahalanobis distance on corpora,
the matrix M can be regarded as a parameter that has to be learned or chosen.
An algorithm – called ITML – to compute M in a supervised way, has been
proposed and implemented by Davis et al. (2007). Dhillon et al. (2010) extend
this algorithm to the usage of partially unlabeled data to assess M in a semi-
supervised way. The Mahalanobis metric will not be used in this work, mainly
because of computational restrictions, but an elementary comparison is made in
Appendix A.2.

All metrics can be applied to any pair of distributions – they are not restricted to
the use on token frequencies. Plank (2011) implements a distance that is based
on the distribution of topics of segments (documents) in the training corpus.
The topics are automatically extracted using latent dirichlet allocation(LDA,
Blei et al. (2003)) and are distributions over words. Plank (2011) finds that
using topic model-based divergences works slightly better than token-based di-
vergences for parsing accuracy.

It can be expected that not every metric captures the same information about a
corpus. To get a more detailed characterization of a corpus it may be a reasoned
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choice to construct a statistical model based upon a collection of metrics. Ravi
et al. (2008) and McClosky (2010) build a linear model for a parser based upon
cosine distance, average sentence length, sUWR and others. Plank (2011) tries
to combine a token frequency based measure with a measure based on topic
models to carry out training data selection.

We presented the above metrics because they can all be implemented using the
token frequencies or other uncomplicated aspects of any natural language corpus.
Since we are looking for a stable, readily employable, multipurpose metric, these
are all interesting candidates. Nevertheless, many other metrics are conceivable.
An example of a metric that uses node deletions/additions in dependency trees
to calculate the superficial syntactic difference between languages can be found
in Homola & Kuboň (2006). The drawback of such more complicated measures
is that they rely on other resources besides the tokenized corpus. The extra
resources, for example a dependency parser, may interfere with the measurement
and may limit the applicability of the metric. It is trivial that measuring the
distance using part-of-speech tags when trying to find a linear correlation to
the outcome of a part-of-speech tagger is pointless – one may as well use the
accuracy score of the part-of-speech tagger as a measure of distance. Because of
these issues, we will not go deeper into the usage of measures based on automatic
linguistic analysis in the remainder of this work.

To conclude this section, the most important metrics are presented in a table list-
ing some of the properties. Table 2.1 contains information on whether the metric
returns the same distance when P and Q are switched (column 1), whether the
computed distance is bound to an interval or not (column 2), and whether the
metric is defined when there are tokens that occur only in one corpus (column 3).
For example, sUWR returns distance values between 0 and 1 and the value is
unlinked to the order in which P and Q are used. The fact that the sUWR is
defined for tokens that have a zero frequency is irrelevant, since the metric does
not use token frequencies as such. An underscore in column 3 means that the
metric as defined by its formula, can handle tokens that only occur in either P
or Q.

2.5 Symmetry and asymmetry

All metrics presented in Section 2.4 have their own properties and they will
highlight various aspects of a distribution – a metric can be sensitive to small
changes in the distributions, may need lots of data to reach a stable value, etc.

42



CHAPTER 2. DIVERGENCES AND OTHER MEASURES

metric symmetry distance range zero frequency to-
ken

Kullback-Leibler asymmetric ≥ 0 smoothing
Rényi asymmetric depending on

α; not limited
depending on α

Bhattacharyya distance symmetric ≥ 0
Jensen-Shannon symmetric [0, 1] –
Skew divergence asymmetric ≥ 0 –
Euclidean symmetric ≥ 0 –
Variational (L1) symmetric ≥ 0 –
Cosine symmetric [0, 1] –
τ symmetric [-1, 1] –
ASL1 asymmetric ≥ 1 irrelevant
ASL2 symmetric ≥ 0 irrelevant
ASL3 asymmetric > 0 irrelevant
ASL4 asymmetric ]−∞, +∞[ irrelevant
sUWR asymmetric [0, 1] irrelevant
perplexity asymmetric ≥ 0 irrelevant
proxy A-distance asymmetric [0, 100] irrelevant
MMD2 symmetric ≥ 0 –

Table 2.1: Properties of various metrics – symmetry gives information about the
importance of the order of the distributions when a metric is applied, the range of pos-
sible values of a metric is given in the distance range column, the zero token frequency
column gives information about the needs when an element occurs in only one distri-
bution. The value irrelevant means that the metric is not based on the probabilities.

One striking difference between the metrics is that there are symmetric and
asymmetric metrics. This is also called the commutative property.

The potential importance of asymmetry is illustrated with Table 2.2. In this
table, the label distribution of unspecified observations x is given according to
two corpora coming from different domains. This is the same situation as in any
cross-domain binary classification task. As can be seen, P (A|x), the chance that
observation x gets label A, is 99% for corpus P and 20% for corpus Q. This
means that when corpus P is used as the training corpus there will be a high
tendency to predict label A, harming the recall of instances with label B. The
majority of the observations in corpus Q carry label B, meaning that the overall
accuracy will suffer from this imbalance. On the other hand, when corpus Q is
used as training and corpus P as test, there will be a high tendency to predict
label B, harming the recall of instances with label A. Since the predominance
of label A is even more outspoken than the predominance of B in the previous
situation, the overall accuracy will suffer more. To sum up, the accuracy drop
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corpus P corpus Q

label A 99% 20%
label B 1% 80%

Table 2.2: Different P (y|x) in two corpora – a given observation x carries the A label
for 99% of its occurrences in corpus P and for 1% of the occurrences it carries label B.
For corpus Q, these figures are different and in reversed order.

can be expected to drop more or less depending on which corpus is used as
training and as test.

Although the explanation above seems to be valid, a remark has to be made. If
there would be no relation between an observation and its label, the asymmetry
would disappear. Reconsider the probabilities of Table 2.2. If we use corpus Q
as the training corpus, and assign labels to the instances of corpus P using the
probabilities of Q – without doing any machine learning using features from the
observations x – then 20% of 99% of the instances of corpus P will be labeled
correctly with label A and 1%×80% instances would be correctly labeled as B.
These figures do not undergo any influence when the test and training corpus
are switched1, making the direction of the experiment unrelated to the expected
accuracy.

On the basis of the discussion above, it is possible to say that a machine learner
that assigns labels with a probability that is strongly related to the probability
of the occurrence of the labels in its training corpus, shows less of the asymmetry
effect than a machine learner that tries to abstract from the training distribu-
tion by using the features of the observations. In the latter situation, a better
correlation between the accuracy of out-of-domain experiments and the distance
between training and test corpus can be expected if the distance metric takes
into account this asymmetric behavior.

2.6 Implementation of the metrics

In the previous sections, the theoretical definitions of the metrics are given, but
some decisions that are made during implementation can be equally important.
For this reason, the implementation of the metrics as they are used, should be
available. Some decisions are worth to be mentioned explicitly:

120% of 99% equals 99% of 20% and 1% of 80% equals 80% of 1%.
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In the definition of the metrics, Q will be instantiated with the distribution
derived from the training corpus and P will be the distribution derived from
the test corpus.

The Rényi divergence has been implemented with the factor 1
1−α instead of

1
α−1 . This has no influence on the conclusions that can be drawn from the
experiments. The only difference resulting from this adaptation is the sign
of the Rényi divergence: the more negative the distance, the further the two
measured distributions are from each other. The main advantage is that in a
distance–performance plot the performance increases when moving towards the
right of the plot, which is more intuitive for a left-to-right reader.

For the Kullback-Leibler divergence, a smoother version is used and the smooth-
ing factor ε is set to 2−52.

These are only a few choices that were made during research, but it already
illustrates the importance of small implementation decisions: switching training
and test corpus in an asymmetric metric leads to different conclusions, the sign
of the Rényi divergence influences the graphs, and using a different smoothing
ε in the Kullback-Leibler divergence leads to different distance values. To get a
better insight in the metrics, the source code of the metrics is made available
online and Appendix B contains an overview of the presented scripts.

2.7 Conclusions

In this chapter, some basic concepts and how they should be understood in the
context of this work, are described, while the bulk of the chapter contains a
survey of a range of distance metrics that will be used in the following chap-
ters. The overview of metrics is followed by a discussion about the asymmetry
property of metrics.

In the next chapter, the actual implementation and the applicability of the dis-
tance metrics will be tested by means of different corpora and different machine
learners. The main point of interest will be to find an operable relationship
between the metrics and machine learning performance.
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Chapter 3

Domain distance and
performance

3.1 Introduction

Although there are many ways to derive a distribution from a corpus, in many
computational linguistics experiments a corpus is regarded as a sample of an
underlying distribution of tokens. If this assumption is followed, a lot of meth-
ods become available to measure the divergence between different corpora, since
there exist a lot of metrics to compute the divergence between probability distri-
butions (Chapter 2). However, a question arises: do divergence metrics capture
something meaningful when they are applied to linguistic corpora? With the
term meaningful, we express the requirement that a metric can be used for a
specific task, but also that there is a sense of logic, maybe only intuitively, when
the metric is interpreted.

As discussed in Chapter 1, in general, a machine learning experiment consists of
a training corpus and a test corpus. The performance of the machine learner can
be estimated by training the machine learner on the training corpus and applying
it to the test corpus. At the same time, it is possible to measure the distance
between the training and the test corpus. Intuition tells us that there should
be a correlation between the distance between corpora and the performance of
a machine learner trained and tested on those corpora: the closer the training
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and test corpus are to each other, the higher the performance. This chapter
is dedicated to testing that intuition and to finding to best measure for the
distance.

distance

pe
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ce

d2d1

p2

p1

R

Figure 3.1: Data points on the distance–performance plot – a larger distance between
the test and training corpus of an experiment leads to a lower performance score.

The relation between distance and performance can be explored in two different
ways: absolutely and relatively. Absolute usage of the relation means that the
value of the distance metric is used to predict the actual performance. This
can be made more clear using Figure 3.1. An absolute usage of the relation
R : R→ R equals saying that the performance of an experiment with a distance
d1 between the test and training corpus would be p1; R(d1) = p1. In this case,
the nature of the relation R is not important – it should not be linear – as long as
it is known and implementable. This type of usage is investigated by McClosky
(2010) and Plank (2011).

When the relation is used in a relative manner, the value of the distance metric is
only used to rank the performance of different experiments. A greater distance
should lead to a proportionally greater difference in the ranking. Looking at
Figure 3.1, a relative usage is related to expressing that a machine learner will
perform better for a first test/training pair than for a second test/training pair
because the distance d1 between the first pair is smaller than the distance d2
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between the second pair; d1 < d2 ⇔ p1 > p2. To be able to rank experiments
proportionally, the relation between distance and performance should be of a
linear nature.

The absolute usage is more focused on (finding) the actual relation between
distance and performance, while the relative usage is more focused on the con-
sequences of the link between distance and performance. Because later in our
dissertation, the distance will be used to select the best corpus from a pool of
corpora, i.e. taking the best-ranked corpus, we will focus on the investigation of
the relative usage of the distance–performance relation.

The first set of experiments in this chapter addresses the reliability of divergence
metrics based on relative token frequencies. The size of the corpora used to
measure the distance, may have an influence on the final distance value. If the
corpora are too small, the distance value may vary substantially when only little
extra data is added to a corpus, therefore making the distance value unreliable.
In Section 3.3, the minimal corpus size needed to obtain a sufficiently stable
distance value, is examined.

After defining the critical corpus size, a set of divergence metrics is investi-
gated in relation to a machine learning task. The focus of the experiments is on
finding the divergence metrics or combination of metrics that lead to the best
linear relation between the divergence score and the performance of the machine
learner. The first set of experiments consists of part-of-speech labeling exper-
iments with a memory-based part-of-speech tagger (Sections 3.4.1 and 3.4.2).
To investigate the general applicability of the linear relation, the experiments
are repeated with varying labeling systems (Section 3.4.2), a different corpus
(Section 3.4.4), varying homogeneity of the corpus (Section 3.4.5), and for a dif-
ferent machine learning task (prepositional phrase attachment, Section 3.5). In
the final Section 3.6, the relation of the conditional probability P (Y |X) with the
performance is also investigated although the presence of the class labels Y in
the conditional probability will make this factor unsuitable for techniques that
rely only on unlabeled data.

3.2 Description of the corpora

Three different corpora are used: the British National Corpus (BNC), the On-
toNotes corpus and the GENIA corpus. The well-known Wall Street Journal
corpus is included in OntoNotes.
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The reason for choosing these corpora is that they contain part-of-speech label
information. In addition, OntoNotes and the GENIA corpus both contain syn-
tactical trees, which are required to carry out prepositional phrase attachment
experiments. Both the BNC and OntoNotes are divided into subcorpora based
on domain labels, which makes them suited for domain specific experiments. An
extra advantage of using the BNC is its size. Even the smallest domain in the
BNC contains ∼3 million tokens.

3.2.1 British National Corpus

For the stability experiments and for the part-of-speech experiments further on
in this chapter, data extracted from the British National Corpus (BNC, 2001)
is used. The entire corpus consists of written books and periodicals.1

The BNC annotators provided nine domain codes (i.e. wridom codes), making
it possible to divide the text from books and periodicals into nine subcorpora.
These annotated semantic domains are: imaginative (wridom1), natural & pure
science (wridom2), applied science (wridom3), social science (wridom4), world
affairs (wridom5), commerce & finance (wridom6), arts (wridom7), belief &
thought (wridom8), and leisure
(wridom9).

The extracted corpus contains sentences in which every token is tagged with
a part-of-speech tag, as defined by the BNC. Since the BNC has been tagged
automatically, using the CLAWS4 automatic tagger (Leech et al., 1994) and
the Template Tagger (Pacey et al., 1997), the experiments are artificial in the
sense that they do not learn real part-of-speech tags, but rather part-of-speech
tags as the automatic taggers assign them. The fact that the corpus is tagged
automatically, is not considered to be problematic, since we are interested in the
effect of domain differences and not in the POS-tagging task as such.

The tokens in the BNC may contain a whitespace. Whitespace inside a token
may introduce undesired effects in the machine learners and, for this reason, the
tokens are split into subtokens at the whitespace. Splitting the tokens instead of
replacing the whitespace with an underscore ensures that the number of newly
constructed tokens is minimized.

1This is done by selecting texts with BNC category codes for text type (i.e. alltyp3 (written
books and periodicals)) and for medium (i.e. wrimed1 (book), wrimed2 (periodical), and
wrimed3 (miscellaneous: published)).
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domain # tokens # sentences

imaginative 19,507,596 1,333,450
world affairs 17,925,728 726,881
social science 13,481,239 542,410
leisure 11,088,447 560,094
arts 7,182,257 303,019
applied science 7,154,185 312,948
commerce & finance 6,787,847 302,455
natural & pure science 4,095,326 172,836
belief & thought 3,160,642 136,366

Table 3.1: Overview of number of tokens and sentences in each domain of the BNC.

domain # tokens # sentences

newswire (nw) 682,691 27,567
– Wall Street Journal (wsj) 355,641 14,786
– ECTB newswire (mz) 194,498 8,328
– extra newswire (enw) 132,552 4,453
broadcast news (bn) 226,272 12,146
broadcast conversation (bc) 209,346 14,412

Table 3.2: Overview of number of tokens and sentences in each domain of the Onto-
Notes corpus.

Table 3.1 shows the number of tokens and sentences for each domain. As can be
seen in Table 3.1, the belief domain is the smallest domain and the imaginative
domain has the most tokens. When random samples are taken to ensure that
the same amount of data is used for each domain, the size of the belief domain
will determine the maximal size of the samples. The version of the BNC that
consists of domain samples of the same size is called the normalized BNC .

3.2.2 OntoNotes corpus

The OntoNotes corpus (release 3.0) has been collected by Weischedel et al.
(2009). The OntoNotes corpus comprises various genres of text (news, conver-
sational telephone speech, weblogs, use net, broadcast, and talk shows) in three
languages (English, Chinese, and Arabic) with structural information (syntax
and predicate argument structure), and shallow semantics (word sense linked to
an ontology and coreference) (Weischedel et al., 2009), but in this work only the
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syntactic information for the English texts is used. The syntactic information
has been manually annotated with the Penn Treebank tagset.

The corpus contains three domains: newswire (nw), broadcast news (bn) and
broadcast conversation (bc). The newswire domain consists of texts from the
Wall Street Journal (wsj), newswire data from the English side of the ECTB2

(mz), and additional data. The subdivisions of the newswire domain are main-
tained by the annotators of OntoNotes.

The OntoNotes corpus will be used to extract a corpus adapted to part-of-
speech labeling experiments (Section 3.4.4) and prepositional phrase attachment
experiments (Section 3.5). Table 3.2 shows the number of tokens and sentences
for each domain. As can be seen in Table 3.2, the broadcast conversation domain
is the smallest domain.

3.2.3 GENIA corpus

The GENIA treebank corpus version 1 contains annotated data from 1999 Med-
line abstracts (Tateisi et al., 2005). The biomedical texts are segmented into
sentences and each sentence is manually annotated for syntactic structure and
part-of-speech tags with the Penn Treebank tagsets (Kim et al., 2006).

The corpus contains 486,630 tokens and 18,541 sentences and, because GENIA
is annotated with syntactic structure, it can be used to extract a corpus fit for
prepositional phrase attachment experiments (Section 3.5).

3.3 Metric stability

A first question that comes up when trying to apply any metric introduced in
Chapter 2, is how large the corpus sample must be to obtain a stable and reliable
value.

For the experiments in this section, each corpus of the British National Corpus
is reduced to a bag of words and the distributions are computed as explained
in Section 2.4 on page 30. To test for metric stability, the distance is computed
with varying corpus sizes. The consecutive distances between two domains are
computed on increasingly larger subsets of the corpora. Because the smallest

2English-Chinese Parallel Treebank.
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(a) Rényi (α = 0.99)

0 500000 1000000 1500000 2000000 2500000 3000000 3500000
Number of tokens

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

D
is

ta
n
ce

(b) Euclidean

Figure 3.2: The evolution of the two divergences with increasing number of tokens –
the 1,500,000 tokens threshold is marked with a dashed line.

domain has 3.2M tokens, see Table 3.1, the experiment finishes when the subsets
contain this number of tokens. The corpora will increase in 100 steps to 3.2M
tokens. This means that for every step the number of tokens on which the
distance is computed, is increased with 32K tokens.

Figure 3.2 shows the evolution of the measured distance between corpora linked
to increasing corpus size. The x-axis gives an indication of the size of the corpora
expressed by the number of tokens, and the y-axis represents the distance values.
Because there are nine domains, it is possible to repeat the size experiments 9×8
= 72 times. The dotted lines are linked to each separate experiment, the black
line is the average of all experiments.

As the number of tokens increases, the distance decreases. For our implemen-
tation of the Rényi (Fig. 3.2a) divergence, a shorter distance is expressed with
a less negative value. For the Euclidean distance (Fig. 3.2b), a shorter distance
is expressed with a lower positive value. This observation can be expected be-
cause the chances that the token samples taken from two domains are divergent,
diminish when those samples are larger: more data will often lead to more sim-
ilarity.

A second observation is that the distance decrement slows down with increasing
corpus size and continues to decrease for most corpora pairs. It is unclear if this
continuing decrease should be interpreted as whether corpora of 3,160,642 tokens
are not sufficiently large to reach a stable value, or as whether two text corpora
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Figure 3.3: The evolution of the average distance difference of the Rényi (α = 0.99)
divergence (· · ·) and Euclidean distance (—) with increasing number of tokens drawn
from the BNC. If the average distance difference reaches 0, the metric can be considered
stable with regard to the number of tokens used to compute the distance value. The
1,500,000 tokens threshold is marked with a dashed line.

keep approaching each other when they grow larger, eventually becoming equal.
The second interpretation may illustrate the point of view that all domains are
biased samples of the entire language. The contents of a sample is deliberately
chosen to come from a given domain, i.e. a specific subset of the language, and,
as a consequence, the sample is unrepresentative of the language. This means
that no random sampling is involved. When enlarging the sample, it becomes
inevitably more representative of the language and, when this happens for all
domains, all samples become more equal.

A last observation to make before trying to come up with a minimal corpus
size is about the smoothness of the curve. A smooth curve would mean that
the metric is more reliable, since changing the corpus size would not result in
a quickly varying distance value. When a critical corpus size is reached, both
metrics seems to be stable.

A second way to derive the stability of the average curves in Figure 3.2, is
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presented in Figure 3.3. In this figure, the dyk-value belonging to a given xk is
computed with the formula:

dyk =
∣∣∣ yk − yk−1

max(yk−1, yk)

∣∣∣ (3.1)

The dy-value is the difference in distance at point k and can be regarded as a
signless, relative version of the first order derivation of the graphs in Figure 3.2.
If the dy equals 0, this means that the distance–vs–corpus-size plot has reached
a plateau. The denominator of the formula makes the value scale independent,
therefore enabling the comparison of different metrics on the same plot. Fig-
ure 3.3 shows that, after a steep beginning, the curves for both the Rényi and the
Euclidean distance become stable. The Euclidean distance reaches the plateau
earlier than the Rényi divergence, but when the size of the corpora falls in the
range of 1,500,000 tokens, both metrics seem to return a reliable value. We will
use this number of tokens as a rule of thumb for the minimal corpus size needed
in our experiments.

The number of 1,500,000 tokens is a pragmatic, flexible and disputable threshold.
It has been obtained based on the BNC; it may be different for other corpora.
It has been derived by visual inspection of Figure 3.3. And, it is obtained by
examining only two metrics. The main reason to use the number of 1.5M tokens
is that corpora of 200K tokens or maybe even of 500K tokens are not sufficiently
large to calculate a stable distance. A corpus of 1.5M tokens surpasses these
substandard corpora in size without being unnecessarily large.

3.4 The distance–performance relation

When a machine learner is trained on a corpus from a given domain (source
corpus) and tested on an out-of-domain test corpus (target corpus), the perfor-
mance of the machine learner decreases. In Section 2.4, a range of metrics is
presented. In this section, those metrics are applied to various source/target
corpus combinations and the relation between the obtained distance and the
performance of the out-of-domain experiment is investigated. The goal of these
experiments is to unravel whether metrics capture useful information about a
corpus given a specific task. A collection of useful metrics will be selected,
based on the comparison of the linearity of the relation between distance and
performance for different metrics and combinations of metrics.
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The first set of experiments consists of part-of-speech labeling experiments with
the British National Corpus and the performance will be compared with a single
metric. An effort is made to attain a sense of generality for the linear rela-
tion by examining the relation for machine learners that are based on different
theoretical grounds. Next, different metrics are linearly combined into a model
and the combination is again compared to the performance of part-of-speech
experiments. The claim that there is a linear relation between distance and per-
formance can be made more general by repeating the first set of experiments on
a different corpus, OntoNotes. Finally, the sensitivity of the distance metrics is
tested by means of in-domain experiments. For in-domain experiments, there is
also a difference between the test and the training corpus, although the differ-
ence will be small when compared to out-of-domain experiments. At the end of
this section, we will have a clear view on how the relation between distance and
performance works for part-of-speech labeling. In the next section, this relation
will be investigated for a different task: prepositional phrase attachment.

3.4.1 Two part-of-speech taggers and a baseline algo-
rithm

The British National Corpus described in Section 3.2.1 contains part-of-speech
information which enables us to carry out a part-of-speech tagging experiment
(Van Asch & Daelemans, 2010). The BNC corpus provides 91 different POS
labels which are combinations of 57 basic labels. Three algorithms were used to
assign part-of-speech labels to the words from the test corpus:

Memory-based POS-tagger (MBT, Daelemans & van den Bosch, 2005).
MBT is a machine learner that stores examples in memory and uses a varia-
tion of the kNN algorithm to assign POS labels. The memory-based tagger
consists of two kNN-classifiers: one classifier for tokens that are in the training
corpus and one classifier for tokens that are not. The first classifier will be re-
ferred to as the known words classifier and the second will be referred to as the
unknown words classifier. The default settings were used. This classifier is also
used for the experiments in Section 4.

SVMTool POS-tagger (Giménez & Márquez, 2004). Support vector machines
in a sequential setup are used to assign the POS labels. The default settings
were used.

Majority algorithm. This algorithm assigns the POS label that occurs most
frequently in the training set for a given token to the token in the test set. If
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the token did not occur in the training corpus, the overall most frequent tag is
used.

For the two part-of-speech taggers no optimization has been carried out, because
we are mainly interested in the effect of varying test/training pairs and the as-
sociated distance–performance correlation, and not in the actual performance.
The effect that is investigated is not expected to change when performance in-
crease has been obtained by means of optimization. Running the same machine
learner with different settings could be considered similar to running two differ-
ent machine learners. In this sense, optimization would increase the number of
algorithms that can be tested. In this dissertation, we are only interested in the
nature of the distance–performance correlation when different machine learners
with a different theoretical basis are examined. The influence of different set-
tings, which may be only minimal, can be the subject of future research.

3.4.2 Influence of algorithm choice

Random samples of equal size are taken from the nine corpora from the BNC
in order to abstract from corpus size effects. During the sampling, the number
of sentences is normalized, because the part-of-speech taggers should learn from
complete sentences. The number of sentences of each domain is defined by
the size of the smallest domain, viz. 136,366 sentences for the belief domain.
Normalizing on the basis of sentences means that the number of tokens may
differ, although every domain will contain approximately 3,000,000 tokens, which
is more than the required minimal corpus size derived in Section 3.3.

Memory based tagger results

Each POS-tagging experiment consists of taking one of the nine domains as
the training corpus and another domain as the test corpus. Because there are
nine domains, the entire BNC can be covered doing 72 of such out-of-domain
experiments. More reliable results can be obtained by repeating the experiment
through cross-validation.

For out-of-domain cross-validation experiments, the scheme is more complicated
than for in-domain experiments. For each of the nine domains in the BNC,
the data is divided into five parts. For all pairs of domains, each part from the
training domain is paired with each part from the testing domain. This results in
a 25 fold cross-validation out-of-domain experiment. A data point in Figure 3.4
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is the average outcome of such a 25 fold experiment and by using the entire
BNC, 72 data points are yielded. For the plots in Figure 3.4, the x-value of a
data point is the divergence score between the training and testing component
of an experiment, the y-value is the accuracy of the part-of-speech tagger. Not
every metric is represented in the figure, because the plots only present a coarse
view of the relation between divergence and accuracy, resulting in an almost
interchangeable appearance of most plots. Nevertheless, there are some trends
that are worth mentioning.
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Figure 3.4: POS-tagger accuracy vs. metric value. The dashed lines indicate the
95% prediction interval. The smaller this interval, the better the relation between
distance and performance.
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First, the nature of some metrics is such that they produce a higher value for
greater distances (like Kullback-Leibler, Fig. 3.4b), while other implementations
of metrics produce a lower value for greater distances (like Rényi α = 0.95,
Fig. 3.4a). This results in increasing and decreasing trends in the plots of Fig-
ure 3.4. The easiest way to determine the direction of a metric is by looking
at the highest accuracy, since all metrics return the shortest distance for the
highest accuracy, regardless of the actual value of the metric. There are a few
metrics that do not comply with this notion of direction. One example is average
sentence length type 4, ASL4 which is the difference between the ASL in the
test and training corpus, Figure 3.4f. This means that a value of 0 indicates
the shortest distance and other values, whether they are more positive or nega-
tive, indicate further distances. This behavior makes ASL4 unsuitable for direct
linear regression.

Another observation that can be made from the plots in Figure 3.4, is that some
metrics are limited to an interval, see Table 2.1, third column. A good example is
the cosine divergence, Fig. 3.4e. The value of the cosine divergence ranges from
0 (opposites) to 1 (entirely similar). As can be seen in the plot, the result of this
limited range is that many data points cluster together at the shortest distance
side of the plot. This is also an indication that the metric is not sensitive to
small changes, since the cosine divergence labels most domain combinations as
a combination between very similar domains.

A prediction interval is an accuracy interval that can be used to predict the
accuracy of a machine learning experiment. The certainty of the prediction
interval gives the certainty that the accuracy of the experiment will lie inside the
prediction interval. The narrower the interval, the more precisely the accuracy
of an experiment can be predicted.

Generally speaking, the width of the prediction interval is greater for symmetric
divergences (Euclidean and Cosine divergence) than for asymmetric divergences
(Kullback-Leibler, Rényi, and Overlap). For symmetric divergences, the accu-
racy for a combination of two domains is positioned at the same divergence score
as the accuracy of the reverse combination of the same pair of domains. This
collapse may be a cause of a wider prediction interval. The behavior is illustrated
in Figure 3.5. The disadvantages of applying a symmetric divergence have been
discussed in Section 2.5, but symmetry is certainly not the only cause for wide
intervals.

When trying to predict the accuracy for an out-of-domain experiment, it is
possible to first obtain a prediction interval by collecting the minimum and
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Figure 3.5: Illustration of the wider prediction interval for symmetric distance met-
rics. There are two machine learning experiments indicated with a circle and a number.
The only difference between the experiments being a switch of the role of the training
and test corpus in the metric. Both circles with number 1 are data points for the same
experiment – hence the same performance – but the distance between test and training
corpus is computed differently for both points. For the two data points at the left of the
figure, the distance is computed with a symmetric distance metric. Since symmetric
metrics are insensitive to the order of the measured corpora both data points are on
the same vertical line. For the two data points at the right of the figure, the distance
is measured with an asymmetric measure, leading to a different distance for these data
points. The prediction intervals are indicated with dashed lines. It can be seen that
the prediction interval for the symmetric distance metrics is wider.
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INPUT set of divergences paired with accuracy scores for
different domain combinations; the divergence for a combination
of domains that is not in the set.
OUTPUT Accuracy for the unseen domain combination.
step 1 Compute the intercept (β0) and regression coefficient

(β1) between divergences and accuracies using the least
squares method,

step 2 Compute the accuracy for the divergence of the unseen
domain combination; accuracy = β0 + β1 ∗ divergence,

step 3 Compute a 95% confidence interval for the predicted ac-
curacy (See Appendix A).

Figure 3.6: Linear regression for accuracy prediction.

maximum accuracy scores for a set of out-of-domain experiments. It can then be
expected that the accuracy for the new out-of-domain experiment will be in this
prediction interval. There are two disadvantages to this working method:

The first disadvantage is linked to unexpected performance drops for out-of-
domain experiments. One can expect that the accuracy of a new in-domain
experiment will lie in the prediction interval derived from other in-domain ex-
periments. For out-of-domain experiments, there is a higher risk that the ac-
curacy for a new out-of-domain experiment will not lie in the interval because
no knowledge about the difference between test and training corpus is present.

A second disadvantage is that the simple minimum/maximum prediction inter-
val can be wide for out-of-domain experiments. A wide interval will have less
predictive power.

Using linear regression with divergences as the regressors may overcome these
two issues: it will provide knowledge about the difference between test and train-
ing corpus, and the prediction interval will be narrow if the linearity is strong.
The linear regression can be carried out as depicted in Figure 3.6. A set of
out-of-domain experiments is carried out and the divergence scores between the
training and test corpus and the accuracies are collected. This collection of
results can be used to carry out linear regression with the divergences as the
regressor and the accuracies as the dependent variable. Next, the linear regres-
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sion parameters can be used to predict the accuracy of a new divergence and
the 95% confidence interval on this predicted accuracy can be computed.

The result of obtaining confidence intervals for every data point is a set of lower
and upper boundaries. This set can be taken as the prediction interval. The
size of the prediction interval gives an indication of the precision of the regres-
sion method. If the interval size is small, there is a good relation between the
divergence and the accuracy, and it is possible to predict the accuracy for an
unseen combination of domains with a high precision. The 95% prediction in-
terval is also plotted as a dashed line in Figure 3.4. The ratio of the prediction
interval based on regression and the minimum/maximum prediction interval is
an indication of the improvement when using linear regression. The lower the
ratio, the greater the improvement.

Table 3.3 on page 65 shows an overview of different metrics on the BNC cor-
pus with the memory-based machine learner. For the experiment, the mini-
mum/maximum prediction interval has a width of 5.945%. The first column of
the table gives the metric that has been used. The second column (interval size)
contains the width of the 95% prediction interval based on linear regression. The
third column gives the ratio of the prediction interval to the minimum/maximum
interval. The fourth column gives the Pearson product-moment correlation co-
efficient, or simply correlation coefficient (r) (Pearson, 1896), which is a measure
of linear association. The last column repeats the correlation coefficient, but in
an unsigned format, r2.

We find that the Rényi divergence α = 0.95 gives the best results, but the
first three metrics give comparable results. It should be noted that the good
result of the Rényi divergence does not mean that the divergence is best suited
to draw statistically sound conclusions about the similarity of domains (Batu
et al., 2000; Pathak & Nyberg, 2009). There are more advanced metrics and
tests (Batu et al., 2000) available if the distance metric is to be used to compute
a distance d between two samples of distributions, such that a distance d < ε
means that the distributions are identical. An example of an advanced metric is
the A-distance (Devroye et al., 1996; Kifer et al., 2004), but the computationally
expensive A-distance is not used in this work, because we are not interested in
tests for the distance as such, but only in the correlation between distance metric
and performance.

Because of the setup of the experiment, a metric that can cope with asymmetry
(see Section 2.5) will have an advantage over a metric that cannot. Indeed,
the performance of an experiment for a given training and test corpus will most
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likely differ from the performance of the reverse experiment – switching the roles
of the original training and test corpus. If data points, as well as their mirror
points, are on the same plot, the value of the distance metric should be different
for both points.

This property can be important for specific experimental setups, but for other
experiments this difference is not important. The ability to handle asymmetry
will not be required if an experiment consists of a fixed test corpus and a train-
ing corpus that increases in size during the experiment while the test-training
distance is probed at defined intervals. The roles of the training and the test
corpus in the metric are never switched. Therefore, for this type of experiment,
the asymmetry property of metrics is not important.

It is possible to recalculate the correlations of Table 3.3 on page 65 to give more
information about the practicability of the metrics in setups without asymmetry
disruptions. The results are given in Table 3.4. These correlations are computed
for the same data points as in Table 3.3 except that only data points for the same
test corpus are plotted on the same plot rather than plotting all data points on
a single plot. Since there are nine domains, this leads to nine plots for which
the correlation can be computed. Averaging these nine correlations leads to
the correlations reported in Table 3.4. Because a data point is not on the same
plot as its mirrored data point, the influence of asymmetry is eliminated. In gen-
eral, eliminating asymmetry improves the correlations – leading to an acceptable
correlation between distance and performance for many metrics.

Given the setup, ASL1 – average sentence length of the test corpus – is the same
for all data points on a plot leading to an incalculable correlation.

The difference between our setup and the one described in Klakow & Peters
(2002), Zhang & Wang (2009), and Plank & van Noord (2010) is that they try
to find a relation between a distance and a performance score, while we try to
find a relation between the difference between two domains and the accuracy.
The idea is that consistent errors in the distance metric are smoothed out when
you work with the differences instead of with the absolute scores.
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metric interval size ratio r r2

Rényi with α =0.95 1.938 0.326 0.934 0.872
Kullback-Leibler 1.961 0.330 -0.932 0.869
Rényi with α =0.99 1.983 0.334 0.931 0.866
Rényi with α =0.90 2.270 0.382 0.908 0.824
Rényi with α =1.05 2.962 0.498 -0.837 0.701
Rényi with α =0.80 2.994 0.504 0.833 0.695
sUWR 3.077 0.518 -0.823 0.677
Skew with α =0.25 3.225 0.543 -0.804 0.646
Rényi with α =0.70 3.486 0.586 0.766 0.586
Skew with α =0.50 3.732 0.628 -0.725 0.525
Rényi with α =0.60 3.829 0.644 0.707 0.500
Skew with α =0.75 4.073 0.685 -0.659 0.435
Perplexity 4.074 0.685 -0.659 0.434
Bhattacharyya 4.080 0.685 -0.657 0.432
Rényi with α =0.50 4.100 0.690 0.654 0.427
Rényi with α =1.10 4.100 0.690 -0.653 0.427
Jensen-Shannon 4.139 0.696 -0.645 0.416
Skew with α =0.80 4.145 0.697 -0.644 0.414
Variational (L1) 4.275 0.719 -0.614 0.377
Skew with α =0.90 4.322 0.727 -0.603 0.363
Rényi with α =0.40 4.342 0.730 0.598 0.357
Skew with α =0.95 4.464 0.751 -0.566 0.321
Rényi with α =0.30 4.590 0.772 0.531 0.282
Rényi with α =3.00 4.665 0.785 0.508 0.258
Rényi with α =2.00 4.696 0.790 0.498 0.248
Euclidean 4.705 0.792 -0.495 0.245
Skew with α =0.99 4.725 0.795 -0.489 0.239
CosineTop5000 4.747 0.798 0.482 0.232
CosineTop500 4.751 0.799 0.480 0.230
CosineTop50 4.754 0.800 0.479 0.230
Rényi with α =0.20 4.876 0.820 0.436 0.190
ASL3 4.921 0.828 -0.418 0.175
ASL2 5.045 0.849 -0.364 0.132
ASL4 5.100 0.858 -0.337 0.114
Rényi with α =1.50 5.123 0.862 0.325 0.106
Rényi with α =0.10 5.212 0.877 0.273 0.075
Overlap 5.224 0.879 0.264 0.070
ASL1 5.412 0.910 0.043 0.002
Rényi with α =0.01 5.417 0.911 -0.000 0.000

Table 3.3: Linearity of different metrics with MBT accuracy on the normalized
BNC. Interval size is the size of the average confidence interval when the performance
is predicted based on the distance; ratio is the ratio of the interval size and the interval
size without the use of metric-based linear regression; r and r2 are measures for the
degree of linearity between a distance metric and the performance.
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metric r r2

Rényi with α =0.99 0.995 0.990
Kullback-Leibler -0.994 0.988
Rényi with α =0.95 0.994 0.987
Rényi with α =0.90 0.987 0.974
Skew with α =0.25 -0.973 0.947
Rényi with α =0.80 0.968 0.939
sUWR -0.962 0.925
Skew with α =0.50 -0.954 0.912
Rényi with α =1.05 -0.948 0.904
Rényi with α =0.70 0.949 0.903
Variational (L1) -0.944 0.893
CosineTop5000 0.929 0.865
Rényi with α =0.60 0.927 0.864
Euclidean -0.928 0.863
Skew with α =0.75 -0.926 0.862
CosineTop500 0.927 0.862
CosineTop50 0.923 0.853
Skew with α =0.80 -0.917 0.846
Jensen-Shannon -0.913 0.840
Rényi with α =0.50 0.899 0.818
Skew with α =0.90 -0.886 0.796
Bhattacharyya -0.886 0.792
Rényi with α =0.40 0.862 0.758
Skew with α =0.95 -0.853 0.744
Rényi with α =2.00 0.842 0.729
Rényi with α =1.50 0.829 0.720
Rényi with α =1.10 -0.678 0.713
Perplexity -0.803 0.688
ASL3 -0.766 0.675
Rényi with α =0.30 0.806 0.672
ASL4 -0.749 0.642
Skew with α =0.99 -0.771 0.624
ASL2 -0.720 0.591
Rényi with α =0.20 0.707 0.537
Rényi with α =3.00 0.639 0.512
Rényi with α =0.10 0.505 0.312
Overlap 0.274 0.187
Rényi with α =0.01 0.111 0.081
ASL1 – –

Table 3.4: Symmetric version of Table 3.3. The difference between the scores in
this table and the previous is that only data points based on the same test corpus
are plotted on the same plot. Given the setup, ASL1 – average sentence length of
the test corpus – is the same for all data points on a plot leading to an incalculable
correlation.
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SVMTool and majority baseline

Majority MBT SVMTool

average accuracy 83.95 91.38 93.22
standard deviation 2.44 1.33 1.11

Table 3.5: Overview of the average performance of two different machine learners and
a majority baseline on the POS-tagging experiment.

To investigate the possible influence of the machine learning method, the exper-
iments from the previous subsection are also evaluated with two other machine
learners. SVMTool is based on support vector machines and the majority base-
line is a simple lookup algorithm. The average accuracies over all cross-domain
experiments are shown in Table 3.5. It is clear that the simple majority algo-
rithm obtains the lowest score and, as the larger standard deviation indicates,
the accuracies differ more from each other. This means that the majority algo-
rithm is more susceptible to domain shifts than the other learners. This can be
expected, since the other learners have more sophisticated POS labeling mech-
anisms.

Table 3.6 presents the correlation for the accuracy of the majority algorithm and
the SVMTool accuracy in the same way as it is presented in Table 3.3 for the
memory-based accuracy. Only the four best metrics for each machine learner
are included. There is a drop of 0.1 r2-point after Rényi with α =0.990 for the
majority algorithm. For the SVMTool results the drop is smaller. Combining
the results in this table with the scores in Table 3.3 leads to the choice of Rényi
(α = 0.99) as the best default metric because the highest average r2 value of
0.877 is obtained with this metric. This means that the Rényi divergence will
be used as the distance metric in further experiments. However, the collec-
tion of experiments is too small to give strong preference to one of the top 4
metrics.

3.4.3 Influence of combination of metrics

As pointed out before, there is no need to restrict an accuracy predictor to only
one measure (Ravi et al., 2008; McClosky, 2010). A logical step to undertake
is to linearly combine metrics in order to find a good fit. Some remarks should
be made. Firstly, when more factors are added to a linear combination of fac-
tors, the fit with the data will intrinsically be tighter, i.e. producing a higher

67



3.4. THE DISTANCE–PERFORMANCE RELATION

metric ratio r r2

Majority
Rényi with α =0.95 0.308 0.925 0.855
Kullback-Leibler 0.311 -0.923 0.852
Rényi with α =0.90 0.329 0.913 0.834
Rényi with α =0.99 0.348 0.906 0.821
SVMTool
Rényi with α =0.99 0.209 0.971 0.943
Rényi with α =0.95 0.329 0.927 0.859
Kullback-Leibler 0.334 -0.925 0.855
Rényi with α =0.90 0.397 0.892 0.795

Table 3.6: Linearity of top 4 metrics with SVMTool and majority accuracy on the
normalized BNC. Ratio is the ratio of the interval size and the interval size without the
use of metric-based linear regression; r and r2 are measures for the degree of linearity
between a distance metric and the performance.

correlation coefficient (r2). This is not what we aim at, since repeatedly adding
the same metric with slightly different parameters does not result in a better
understanding of the nature of differences between corpora, but it simply results
in a better fit to a data sample. Secondly, investigating high-level models may
produce a powerful model tailored to a specific task, but in the current research
we are interested in an answer to the question whether there is a simple metric
that can be applied to a diverse collection of NLP tasks. In the remainder of
this section we will investigate linear models based upon the metrics from the
previous section, but without disregarding the practical interpretation of the
final model.

Examining the formulas of the metrics in Table 3.3 helps to distinguish four
groups:

- Probability distribution based (Kullback-Leibler, Rényi, Skew,
Jensen-Shannon, Bhattacharyya, Variational, Euclidean, Cosine).

- Average sentence length (ASL).
- Unknown words count (sUWR, overlap).
- Perplexity (perplexity, reverse perplexity).

As the plots in Figure 3.4 on page 59 show, the observation that all probability
distribution based metrics use the same building blocks, does not lead to inter-
changeability of the metrics with regard to accuracy prediction. In some metrics
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the linear relation is lost (see Euclidean3), while other metrics (Kullback-Leibler,
Rényi) seem to be nicely correlated with accuracy. However, the common prin-
ciple behind these metrics clearly differs from that of, for example, the average
sentence length, which is computed without using token frequencies. This may
lead to the plausible conclusion that every group of metrics captures a distinct
aspect of corpora. This can be observed when examining the models in Ta-
ble 3.7.

Nr Parameters r2 adjr2 gain

1 Rényi α = 0.95 0.872 0.870 -
2 Rényi α = 0.99, ASL 0.900 0.897 3.1%
3 Rényi α = 0.95, ASL, sUWR 0.917 0.914 1.9%
4 Rényi α = 0.99, ASL, sUWR, Rényi α = 0.01 0.943 0.939 2.7%
5 Rényi α = 0.99, ASL, sUWR, Rényi α = 0.01, 0.952 0.948 1.0%

perplexity
6 Rényi α = 0.90, sUWR, ASL, Skew α = 0.50, 0.957 0.953 0.5%

variational, perplexity
7 Rényi α = 1.1, ASL, Rényi α = 0.01, sUWR, 0.961 0.957 0.4%

perplexity, cosine5000, cosine50

Table 3.7: Overview of best fitting models with increasing number of parameters.
r2 and adjr2 are an indication of the degree of linearity of the relation between the
output of the model and the performance; gain is the relative adjr2 difference when
comparing a model with the previous model.

This table shows linear models4 with a varying number of parameters fitting the
same data from the experiments of Figure 3.4 on page 59. For every number of
parameters, the best model according to r2 is presented, along with its value for
the squared correlation coefficient, r2 and adjusted r2 (adjr2). The last column
is an indication of the adjr2 gain when adding a parameter, calculated with
adjr2i−adjr

2
i−1

adjr2i−1
. The adjusted r2 is more suited for comparison over models with a

different number of parameters, but, since we are only interested in the nature
of the parameters, the actual value of r2 is of minor importance here. Moreover,
when selecting these models, we did not split the data into a training and a
test partition, so the correlation coefficients are not validated against unseen
data. The parameters in Table 3.7 are sorted according to decreasing impact.
The impact is measured by the student t test ratio on the estimated regression
weight of a parameter. A parameter appears more in front of the list if the

3The Euclidean distance does not need to be probability distribution based like it is in our
setup.

4Linear modeling has been carried out using the JMP 9.0.0 statistical software package.
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probability that the parameter has a zero weight is smaller. For the model with
five parameters, this means that Rényi α = 0.99 has a greater influence on the
model than perplexity.

Table 3.7 shows that a newly introduced parameter is member of a group dif-
ferent from the groups already present. If only one parameter is used, the best
model is the one using a probability based metric, Rényi. Adding an extra
parameter introduces average sentence length. Adding another parameter in-
troduces unknown words. But it is only after adding two more parameters that
perplexity is introduced and perplexity is ranked at the bottom. Considering
the definition of perplexity – the degree of complexity when predicting the next
word in a sentence – it is plausible that this metric is not that essential when
predicting part-of-speech tags. McClosky (2010) has shown that perplexity is
also not very useful when trying to predict parser accuracy. He ends up with
a set of parameters consisting of probability based metrics (entropy, cosine50),
sUWR and information about the composition of the training corpus, although
perplexity was also tested. These two experiments may indicate that perplexity
is not very well suited for accuracy prediction. Note that the fact that perplexity
seems not to be useful for accuracy prediction does not mean that the metric is
never useful. As Rehbein (2011) shows, perplexity is helpful when one is only
interested in the similarity between corpora.

In the model with seven parameters, different probability based metrics are
introduced, but the gain is diminishing. We did not compute models with more
than seven parameters because of limited computational resources, but the trend
is clear.

For later experiments we keep the top of the single metric models from Table 3.3
and the model with three parameters from Table 3.7. Although the gain for
the model with four parameters is substantial, we choose the model with three
parameters, because the model with four parameters contains the Rényi diver-
gence twice. As can be seen in Figure A.5 on page 170, Rényi divergences vary
in sensitivity, along with the value of α, but they do not behave contrastingly. In
addition, two extra models are selected for their expected performance: an av-
erage model and a model selected by stepwise addition of parameters in a 6-fold
cross-validation setup, in which the k-fold r2 is the selection criterion.

Model averaging is a technique where the final model is not the single best model,
but a combination of a collection of models. We take the average model of the
collection of models with five terms, associated with an adjr2 of 0.952. The
average model will have 33 regressors.
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In the cross-validation setup, the data is split into a test and training part.
Parameters are gradually added to the model and evaluated on the test set.
In the end, a model with sixteen parameters and an adjr2 value of 0.961 is
selected. Both selection procedures have their disadvantages. Using them in
further experiments should show which model is more robust to changes in the
setup of the experiments. Both the model obtained with the model averaging
technique and the model obtained with the cross-validation setup, will be reused
in the next subsection.

3.4.4 Influence of corpus

In the previous sections, it was shown that there is a good linear correspon-
dence of some metrics (Kullback-Leibler, Rényi with α = 0.95 and 0.99) and of
combinations of those metrics with the POS-tagging accuracy. This relation has
been observed with two part-of-speech taggers with a different theoretical basis
and a baseline algorithm, but all experiments have been conducted on the same
corpus, viz. the British National Corpus (BNC). The good correlation between
distance and performance that has been found, could be due to the way the
BNC corpus has been labeled. The annotation guidelines that were followed
during construction of the corpus may differ from corpus to corpus. For this
reason, confirmation of the results is needed using a different corpus. Despite
that many other corpora have been annotated for parts-of-speech, the OntoNotes
corpus (see Section 3.2.2) is selected to run confirmation experiments, because
the annotators provided a division of the corpus into domains.

Excerpts have been taken from the OntoNotes corpus: broadcast conversation
(bc), broadcast news (bn), extra newswire (enw), newswire data from the English
side of the English-Chinese Parallel Treebank (mz), and the Wall Street Journal
(wsj). The newswire (enw) domain is the smallest with 132,552 tokens so all
excerpts are limited to this number of tokens. The data for the five domains leads
to twenty cross-validated out-of-domain experiments: each domain is combined
once with each other domain.

For reasons of clarity, it should be noted that 132,552 tokens is below the minimal
corpus size as established in Section 3.3. Figure 3.3 shows that a corpus of
132,552 tokens is right at the end of the initial drop of the first order derivation
of the divergences. This means that the divergence scores will be less reliable
compared to working with larger corpora, although it is still possible to look
at some trends. The conclusions drawn from the OntoNotes experiments are
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informative – certainly when they are combined with the conclusions from the
more reliable BNC experiments.

metric interval size ratio r r2 adjr2

Kullback-Leibler 6.672 0.492 -0.894 0.800 0.789
Rényi α = 0.99 7.452 0.550 0.866 0.750 0.736
Rényi α = 0.95 7.966 0.587 0.845 0.715 0.699
Jensen-Shannon 12.16 0.896 -0.575 0.330 0.293
Rényi α = 0.95, ASL, sUWR 6.563 0.484 0.898 0.807 0.771
average model 7.085 0.523 0.880 0.774 –
6-fold cross-validation model 7.758 0.572 0.854 0.729 –

Table 3.8: Overview of different metrics on the normalized OntoNotes. Interval size
is the size of the average confidence interval when the performance is predicted based
on the model; ratio is the ratio of the interval size and the interval size without the
use of model-based linear regression; r, r2 and adjr2 are measures for the degree of
linearity between a distance value from the model and the performance.

The correlation between distances computed with the top three metrics of Ta-
ble 3.3 and the POS-tagging accuracy, can be seen in Table 3.8. The table
also contains the results for two models that are developed for the BNC in
Section 3.4.3: the average model (33 regressors) and the 6-fold cross-validation
(16 regressors). There is no adjr2 reported for the average and 6-fold cross-
validation model, since the number of regressors in these models exceeds the
number of observations (20).

There is a 13.560% difference between the highest and the lowest accuracy score.
The third column of Table 3.8 shows that using metrics tends to reduce this range
with approximately 50%. The r2 scores are lower than for the BNC experiments,
but a value of 0.8 is sufficiently high to speak of a linear relation. From Table 3.8,
it can be derived that Kullback-Leibler and the model with a linear combination
of three divergences show the best linear relation when looking at r2. The
adjusted r2 has been developed to be able to compare models with a different
number of regressors and the KL-divergence comes out best when looking at the
adjr2. This is an indication that combining divergences can lead to overfitting. A
second indication of overfitting with divergence combinations is that the average
and cross-validation models do not perform best for OntoNotes, while they do
so for BNC, on which they are fitted.

In the experiments in the next chapters and sections, we will focus only on a
single metric to compute the distance between training and test corpus because
of the risk of overfitting when estimating the extra parameters for a linear model
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and because the experiments in this subsection show that there is no guarantee
that the linear model will clearly outperform a single metric.

3.4.5 Influence of homogeneity of corpora

In the previous part-of-speech labeling experiments, we focused on out-of-domain
experiments. The judgement of the annotators on what are separate domains
has been followed to differentiate between domains. This does not mean that
the domains in the previous experiments are measurably different. The notion of
domain is not essential to the experiments, since they are designed to study the
effect of differences in token frequencies between corpora, when labeling tokens
with POS tags. The actual domain labels are only of interest for users that need
the domain classification for external reasons. This means that domain labels
provided by human annotators can be well suited. However, an objective way
to label texts with domain labels can still be interesting. In this subsection, the
link is studied between, on the one hand, the linear relation between distance
and performance and, on the other hand, domain labeling.

The linear relation between distance and performance that exists for out-of-
domain experiments, should also exist for in-domain experiments. The single
difference between in-domain and out-of-domain experiments is that in-domain
training and test corpora are labeled with the same domain label by human
annotators. For this reason, the experiments of the previous subsections can be
repeated for in-domain experiments because of this arbitrary difference between
in-domain and out-of-domain experiments.

Annotators intend to group similar texts into one domain, therefore it can be
expected that the distance between the test and training corpus for in-domain
experiments will be smaller, maybe even too small for the distance metric to
overcome noise effects. The noise effect could break the linear relation between
divergence and accuracy and the disappearance of the linear relation could be a
means to define domains in an objective manner. A set of corpora that exhibits
a linear relation would then be a set of corpora from different domains. A
set of corpora that does not exhibit a linear relation, would consist of corpora
belonging to the same domain.
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Comparing in-domain with out-of-domain experiments

In a first set of in-domain experiments, the setup is chosen such that it reflects
the setup of the out-of-domain experiments. For these experiments, the British
National Corpus is used, see Section 3.2.1.

The BNC-subcorpus with the domain tag world is split into five random parts of
approximately 145,285 sentences (> 3,000,000 tokens). These parts are treated
in the same way as the domains in the out-of-domain experiments of Sec-
tion 3.4.2, so they are split into five parts (approx. 29,057 sentences) for the
25-fold cross-validation experiments. In this way, it is possible to obtain in-
domain results that are comparable with the out-of-domain experiments. The
only difference being the slightly different corpus size, since the out-of-domain
corpora contain 136,253 sentences instead of 145,285 sentences. Randomizing
the data before splitting it into five parts, guarantees that the data can be con-
sidered as truly in-domain. Not randomizing the data would leave the possibility
that the first data in the corpus is different from the last data. If such a corpus
is split into parts, subdomains could be created.
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Figure 3.7: In-domain POS-tagger accuracy vs. perplexity and Rényi divergence.
The dashed lines indicate the 95% prediction interval. The smaller this interval, the
better the relation between distance and performance is.

The average accuracy of the in-domain experiment is 93.70% (0.02% standard
deviation). The perplexity shows the highest correlation with the accuracy and
it is associated with an r2 value of 0.384. Perplexity has not been a good metric
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in previous experiments and is not a good metric in this experiment because
of the low r2. The linear relation between metric scores and accuracy is lost,
but a hint of it remains noticeable as can be seen in Figure 3.7. The figure also
shows the plot for Rényi (α = 0.99), which is the best metric for the out-of-
domain experiments. The test and training corpus are too close to each other
for the metric to pick up information, but a remark about the sensitivity of the
metric has to be made: Despite the observation of lost linear correlation, there
may still be a linear correlation between distance and performance for in-domain
experiments. If this were the case, the lost correlation could be attributed to the
insensitivity of the metric. The linear correlation may depend on small distance
differences, too subtle to be picked up by the metric. A more sensitive metric
may be able to pick it up. To exclude this option, a second set of experiments
is performed.

Testing sensitivity

To test the sensitivity of the metrics, another POS-tagging experiment has been
set up. In the previous subsection, it has been found that the linear correlation
is lost for small differences in distance and the associated small difference in
performance, dissolving the linear correlation in a cloud of noise. It is possible to
set up an experiment with small distance differences, but with larger performance
differences. The key feature of these experiments being that there is a clear
difference between the data points because of the different performance, while
there are only small distance differences. The result is that a metric that is not
sufficiently sensitive, will not show a linear correlation.

A round of in-domain POS-tagging experiments is set up, using the domains from
the British National Corpus. We showed that the domains are different, which
means that the performances of the nine in-domain experiments are expected
to be sufficiently different when compared to each other. This ensures the large
performance differences.

For the in-domain experiments, the data from a single domain is split into five
parts of approximately 27,273 sentences.5 Each part is combined with every
other part, once as training corpus and once as test corpus.

For one domain, the result is one data point based on a 20-fold cross validation
and consisting of an average POS labeling accuracy and an average divergence

5Each domain has been randomly downsampled to 136,366 sentences – the size of the
smallest domain (belief ).
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Figure 3.8: In-domain POS-tagger accuracy vs. Rényi (α = 1.5) and Kullback-
Leibler divergence. The dashed lines indicate the 95% prediction interval. The smaller
this interval, the better the relation between distance and performance is.

score. Because the distance is based on purely in-domain test/training pairs,
the distance is expected to be small.

The relation between these experiments and the in-domain experiment in the
previous subsection is that the previous experiment tries to enlighten what hap-
pens inside a data point in Figure 3.8, hence the smaller performance differences
in the previous experiment.

By running the experiments with the nine domains of the BNC, nine data points
can be obtained. Figure 3.8 depicts the data points when the Rényi divergence
(α = 1.5) and Kullback-Leibler divergence are used as the metric. The x-axis
shows the metric value, the y-axis shows the POS labeling accuracy.
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metric interval size ratio r r2

Rényi with α=1.50 1.143 0.632 -0.952 0.905
Kullback-Leibler 1.232 0.681 -0.943 0.889
Rényi with α=1.10 1.270 0.702 -0.940 0.883
Rényi with α=1.05 1.280 0.707 -0.939 0.881
Rényi with α=0.01 1.290 0.713 0.938 0.879
Rényi with α=0.99 1.290 0.713 0.938 0.879
Skew with α=0.01 1.295 0.716 -0.937 0.878
Rényi with α=0.95 1.296 0.716 0.937 0.878
Skew with α=0.05 1.302 0.719 -0.936 0.877
Rényi with α=0.90 1.302 0.720 0.936 0.877
Rényi with α=0.10 1.302 0.720 0.936 0.877
Skew with α=0.10 1.309 0.723 -0.936 0.875
Rényi with α=0.80 1.313 0.725 0.935 0.875
Rényi with α=0.20 1.313 0.725 0.935 0.875
Rényi with α=0.70 1.320 0.729 0.935 0.873
Rényi with α=0.30 1.320 0.729 0.935 0.873
Rényi with α=0.40 1.324 0.731 0.934 0.873
Rényi with α=0.60 1.324 0.731 0.934 0.873
Rényi with α=0.50 1.325 0.732 0.934 0.872
Skew with α=0.99 1.325 0.732 -0.934 0.872
Skew with α=0.25 1.326 0.733 -0.934 0.872
Skew with α=0.95 1.337 0.739 -0.933 0.870
Skew with α=0.90 1.343 0.742 -0.932 0.869
Jensen-Shannon 1.344 0.743 -0.932 0.869
Skew with α=0.50 1.344 0.743 -0.932 0.869
Skew with α=0.75 1.350 0.746 -0.931 0.868
Bhattacharyya 1.388 0.767 -0.927 0.860
Variational (L1) 1.672 0.924 -0.893 0.797
Rényi with α=3.00 1.958 1.082 0.848 0.718
Overlap 2.224 1.229 -0.800 0.640
sUWR 2.224 1.229 -0.800 0.640
Perplexity 2.999 1.657 -0.564 0.318
Rényi with α=2.00 3.264 1.803 0.472 0.223
ASL3 3.622 2.001 0.432 0.186
CosineTop50 3.362 1.858 0.403 0.163
ASL2 3.523 1.947 0.380 0.144
CosineTop5000 3.595 1.987 0.289 0.083
CosineTop500 3.587 1.982 0.285 0.081
Euclidean 3.640 2.011 -0.246 0.060
ASL1 3.971 2.194 0.122 0.015

Table 3.9: Linearity of different metrics with MBT accuracy on the normalized BNC
for in-domain experiments. Interval size is the size of the average confidence interval,
when the performance is predicted based on the distance; ratio is the ratio of the
interval size and the interval size without the use of metric-based linear regression;
r and r2 are measures for the degree of linearity between a distance metric and the
performance.
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The average accuracy for an in-domain experiment is 93.67% (0.63% standard
deviation), which is higher and more stable than the 91.38% (1.33% standard de-
viation) accuracy score from the out-of-domain MBT experiment. An overview
of the linear correlation for various metrics for the in-domain experiments is
given in Table 3.9.

When comparing the scale of the x-axis of the in-domain plot for Kullback-
Leibler, Figure 3.8b, with the x-axis scale for out-of-domain experiments, Fig-
ure 3.4b on page 59, it is clear that the distance between train and test for
in-domain experiments is smaller, ranging between 0.9–1.5 instead of between
1–7. Nonetheless, the plots show a good linearity which is confirmed by the r2

figures in Table 3.9.

The experiments indicate that the metrics are sufficiently sensitive to capture
meaningful information about small distance differences between training and
test corpus. The combination of the finding that the metrics are sufficiently
sensitive to capture small distance differences together with the lost correlation
observation from the previous subsection, leads to the conclusion that a lost
correlation between distance and performance can be attributed to a homogenous
set of corpora rather than to insensitivity of the metric.

Apart from this conclusion, two extra remarks have to be made:

(i) The observation that the Rényi divergences with α values that ranked
rather low in out-of-domain experiments Table 3.3 on page 65 are at the
top of the in-domain Table 3.9 on page 77 seems rather peculiar. A possible
explanation may be found in the analysis made in Section A.4.1. Increasing
α decreases the sensitivity of the Rényi divergence to tokens that are in one
corpus, but missing in the other. At the same time, an increased sensitivity
for token frequency differences is observed. For out-of-domain experiments,
a large number of missing tokens and greater frequency differences between
training and test corpus can be expected, meaning that the α parameter
can have a big influence. For in-domain experiments, the factors upon
which the α parameter acts, can be expected to be less prominent, making
the Rényi divergence robust to the value of α. Only for the larger values
of α (α = 2 and 3), enough emphasis is put on the factors to show a
detrimental effect.

(ii) The fact that the r2 value for Rényi(P ;Q;α = δ) is the same as for
Rényi(P ;Q;α = 1 − δ) for α values lower than 1, is due to the setup
of the experiment. For one data point, an experiment is run as well as its
reverse and the outcome is averaged. This averaging has as effect that the
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following equality holds:

Rényi(P ;Q;α = δ) =
δ

1− δ
Rényi(P ;Q;α = 1− δ) (3.2)

Since the correlation is indifferent to scaling, the r2 values for divergences
with α = δ and α = 1 − δ are the same. This behavior also means that
Figure 3.8 is not directly comparable to Figure 3.4 on page 59.

Conclusion

In a first set of in-domain experiments, it is shown that the metrics are not able
to pick up meaningful information in an in-domain experiment, see Figure 3.7
on page 74. The linear correlation between distance and performance is lost.
In a second set of in-domain experiments, it is shown that the best metrics
are sufficiently sensitive to pick up small distance differences between test and
training corpus and the linear relation between distance and performance is
preserved, see Figure 3.8 on page 76.

The conclusion from these two sets of experiments is that the disappearance
of the linearity in the first set of experiments is not due to insensitivity of the
method, but to the absence of significant differences – differences in distance
as well as in performance – between the training and test corpus – the only
difference being sampling noise. This would mean that the five parts of the
randomized world corpus could be considered as being homogenous.

3.5 A different machine learning task

In the previous section, is has been shown that a divergence metric based on
relative token frequencies captures information that is linearly related to the
performance of part-of-speech labeling systems. The general applicability of
the method has been tested by varying the labeling system (Section 3.4.2), the
corpus (Section 3.4.4), and the homogeneity of the corpus (Section 3.4.5)

In this section, the setup for the POS labeling experiments from Section 3.4
is repeated for the prepositional phrase attachment task (PP-attachment). The
GENIA corpus and domains of the OntoNotes corpus are used to extract corpora
that can be used for the PP-attachment task. The goal of the experiments in
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this section is to see whether the linearity is preserved when switching from the
POS labeling task to the PP-attachment task.

In the next subsection, the PP-attachment task is first described in more detail
before reporting on the experiments.

3.5.1 Description of the PP-attachment task

The core of the PP-attachment task is to link a prepositional phrase – mostly
a preposition followed by a noun phrase – to its head. The task is a subtask of
parsers that construct constituent trees. To be able to carry develop and evalu-
ate a PP-attacher, a corpus of constituent trees is needed to extract a suited PP
corpus. OntoNotes (Weischedel et al., 2009), Wall Street Journal (Marcus et al.,
1994), and GENIA (Tateisi et al., 2005) are all fit for the task. The OntoNotes
and GENIA corpus are used for the experiments in this section, since the goal
of the PP-attachment experiments is to get a better insight into the influence
of domain shifts and OntoNotes provides data annotated for three different do-
mains: broadcast conversation (bc) , broadcast news (bn), and newswire texts
(nw). The newswire (nw) domain also contains the data from the Wall Street
Journal corpus (See Section 3.2.2). GENIA contains texts from the biomedical
domain (genia) (See Section 3.2.3).

As Atterer & Schütze (2007) state, the classic formulation of the PP-attachment
task, as defined by Ratnaparkhi et al. (1994) and Hindle & Rooth (1993), is
a simplification. The classic formulation uses quadruples (v, n1, p, n2)6 that
were manually selected from a corpus. This improves the performance of PP-
attachment systems, but for a natural language application these quadruples
are not available. In the experiments of Atterer & Schütze (2007), the evalu-
ated PP-attachment systems did not significantly improve on a state-of-the-art
parser, the Collins parser (Collins, 2003), indicating that the use of quadruples
is harmful when trying to draw conclusions for realistic PP-attachment tasks.
The PP-attacher system that is used in this section does not make use of this
simplified representation and therefore can be regarded as more fit to the task of
natural language PP-attachment. To this end, a corpus is to be extracted from
the OntoNotes and GENIA corpus to be able to train and test a more realistic
PP-attacher.

6v, n1, p, n2 is a verb–noun–preposition-noun pattern like e.g. receives book from Salinger.
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The OntoNotes and GENIA corpora consist of tree structures representing the
syntactic structure of sentences, as shown in Figures 3.9a and 3.9b. The trees
are transformed into a flat representation in order to be able to define one unique
attachment site (anchor) for every prepositional phrase (PP). A flat representa-
tion of an anchor–PP pair consists of a pair of indices. The first element of the
pair is the index in the sentence of the anchor; the second element is the index
of the preposition. For the sentence in Figure 3.9a the representation is (3, 4) –
token count starts at zero. For the sentence in Figure 3.9b the representation is
(1, 4). The output of the memory-based prepositional phrase attacher consists
of this type of index pairs. Evaluation is done by checking if the returned index
pairs are present in the reference.

(a) I eat a pizza with olives. (b) I eat a pizza with a fork.

Figure 3.9: Constituent tree structures.

The memory-based PP-attacher (MBPA) (Van Asch & Daelemans, 2009) has
been used for the experiments in this section. The PP-attacher is based on a
kNN-classifier TiMBL (Daelemans & van den Bosch, 2005). This PP-attacher
has been incorporated in MBSP.7 As Van Asch & Daelemans (2009) showed, the
memory-based PP-attacher obtains slightly lower but comparable scores when
compared to a state-of-the-art statistical full parsing approach, viz. the Collins
parser (Collins, 2003; Bikel, 2004).

3.5.2 Experimental setup

For the experiments, three domains from OntoNotes (bn, bc, nw) and the GE-
NIA domain (genia) are used to extract the needed anchor-pp pairs. For com-

7Memory-based shallow parser (De Smedt et al., 2010; Daelemans & van den Bosch, 2005;
Daelemans et al., 1999) – http://www.clips.ua.ac.be/pages/MBSP [October 2011].
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Figure 3.10: F1 score against Rényi divergence for out-of-domain prepositional phrase
attachment experiments. The data point is marked with a + if both source and target
domain come from the OntoNotes corpus. If the GENIA corpus is either used as source
or as target domain the data point is marked with a •.

parison, the number of tokens in each domain is normalized. For each domain,
random samples of equal size are taken. The samples have the same number
of tokens as the smallest domain, which is broadcast conversation with 209,346
tokens (see Table 3.2). During sampling, the sentences are kept intact, resulting
in a corpus of 209,346 tokens for broadcast news, a corpus of 209,350 tokens for
newswire, and a corpus of 209,358 tokens for GENIA.

Each domain is used once as the training corpus for the MBPA, while another
domain serves as the test corpus. A combination of two domains results in 25
test/training experiments, because each domain is split into five parts and each
part of the training corpus is once combined with each part of the test corpus.
Because there are four domains, the outcome is twelve data points obtained by
25-fold cross-validation. Evaluation of an experiment is done by computing the
F1-score for the output.

Figure 3.10 shows the outcome of the PP-attachment experiments on the GENIA
and OntoNotes corpora. The figure is built up in the same way as Figure 3.4. The
x-axis is the Rényi 0.99 divergence between the test and training corpus and the
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Figure 3.11: Performance versus Rényi divergence. The PP-attachment F1-score (•)
is depending less on the divergence than the POS accuracy (+).

y-axis gives the PP-attachment F-score. The data points that are represented by
a cross (+) are training and test combinations of strictly OntoNotes domains.
The data points that are represented by a bullet (•) are combinations of an
OntoNotes domain and the GENIA corpus.

The correlation coefficient r2 is 0.398, which is low. Visual examination of the
figure supports the hypothesis that there is a weak linear relation between the
divergence and the F-score. The visual linear relation mainly comes from the
F1-score drop when GENIA is included in the experiment. When examining only
the experiments with OntoNotes (+) r2 value drops to 0.197 and the relation
between divergence and F1-score seems to be lost.

Domain insensitivity or robustness can be a possible explanation for the weak
relation between divergence and F1-score. The effect of the robustness can be
seen in Figure 3.11, which reproduces the PP-attachment (•) figures from Fig-
ure 3.10, but the outcomes of POS-tagging experiments using the same corpora
are included (+). The r2 value for the POS experiment is 0.966 (0.792 Onto-
Notes only), which is very good. The data clusters at the left of the Figure 3.11
are the data points when GENIA is introduced as training or as test corpus. The
clusters at the right are the result of pure OntoNotes experiments. Figure 3.11
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shows that the POS experiment accuracy drops considerably when GENIA is
part of the POS experiment, although the performance drop is much less for the
PP-attachment experiment.

Plank & van Noord (2010) argue that domain sensitivity appears to be relying
heavily on lexical information and this is what can be observed here. For both the
POS labeling task and the PP-attachment task, the distance between training
and test corpus is computed using relative token frequencies, meaning that the
distance is based on the same information for both tasks. The distance between
GENIA and the OntoNotes domains is rather large. The scale of Figure 3.7
can be taken as a reference for the claim that the distance is large. The lexical
variation between biomedical and journalistic texts puts a huge strain on the
POS labeler, but does not do so for the PP-attacher. The PP-attacher appears
to be robust to the lexical variation and consequently the linear relation between
the divergence and the performance is lost.

3.5.3 Lexical robustness

An additional experiment has been conducted to obtain a second view on the
importance of lexical features when carrying out PP-attachment. The core of
the PP-attacher system is a kNN based algorithm that indicates if a given prepo-
sitional phrase should be linked to a given candidate anchor point or not. The
instances that are fed to the machine learner contain three lexical features on
a total of fifteen features: the lemma of the candidate anchor, the lemma of
the head of the prepositional phrase, and the lemma of the token in front of
the prepositional phrase. The other features of the instances contain non-lexical
information such as POS tags, presence of a hyphen, etc.

For the experiment, the same corpora as in the previous experiment are used:
the three domains from OntoNotes and the GENIA domain. Twelve out-of-
domain experiments can be run if every domain is once used as test and once
as train in combination with every other domain. The average micro-averaged
F-score for the twelve out-of-domain experiments with all features included is
93.31% (standard deviation 0.82%). It has been argued that lexical features are
responsible for diminished performance on out-of-domain test corpora (Plank &
van Noord, 2010). In a collection of 455 experiments, three of the fifteen features
are omitted and the twelve out-of-domain experiments are rerun, amounting to
a total of 5,460 experiments.
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The number of omitted lexical features is used to divide the experiments into
groups. The average micro F-scores for each of those four groups are given in
Table 3.10. The first column shows the number of lexical features that are re-
moved. For every experiment, three features are omitted, meaning that omitting
three lexical features is the upper limit. The second column contains the aver-
age micro F-score for all experiments that contain the same number of lexical
features. The third column contains the standard deviation (σ) on the micro F-
score. Note that the standard deviation can be fairly large because some domain
pairs are more compatible than others.

The last column contains the number of experiments that are averaged. For
example, if three features from the instances are omitted simultaneously, then in
220
455 = 48.35% of the cases none of the omitted features will be a lexical feature.
Since there are three lexical features, in 1

455 = 0.22% of the cases all three
omitted features will be lexical. The last column stresses that a larger standard
deviation does not necessarily come from a larger number of experiments in that
group. The larger standard deviation comes mainly from the quality difference
of the excluded features.

omitted
lexical
features

micro F-
score

standard
deviation

share

0 89.00% 6.12% 48.35%
1 90.01% 8.06% 43.52%
2 92.00% 7.24% 7.91%
3 94.64% 0.42% 0.22%

Table 3.10: Effect of omitting lexical features on performance. Averaged micro-
averaged F-score and the standard deviation are given along with the percentage of
experiments that fall into each group.

It can be seen that ignoring lexical features increases out-of-domain performance
to such a degree that ignoring all lexical features improves the micro F-score
when all features are used. This is the situation for out-of-domain experiments
and it illustrates that the PP-attacher learns mainly from non-lexical features.
During the development of the PP-attachment system, it has been optimized for
in-domain usage and for in-domain experiments lexical features are more likely
to contain helpful information.
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3.5.4 Conclusion

In this subsection, the relation between distance and performance has been tested
for a task that differs from the POS labeling task of the previous section. It has
been found that the PP-attachment task is more robust to a domain shift than
the POS labeling task. From the experiments in this section, it can be seen that
NLP tasks can be positioned on a scale ranging from domain sensitive to domain
insensitive NLP tasks.

In the case of domain sensitive machine learning, domain sensitivity comes from
lexical differences between training and test corpus and a distance metric is able
to capture these differences, thereby providing information about out-of-domain
performance. There is no sense in measuring the distance between training and
test corpus in settings, when the machine learner is robust to domain shifts.
The performance will hardly vary and the distance metric cannot provide use-
ful information. It is even shown that removing lexical features for the domain
insensitive PP-attachment task improves the performance for out-of-domain ex-
periments.

Lexical features have a great influence on the domain sensitivity of a task. In
this subsection, it was shown that measuring the distance is only useful for
domain sensitive tasks. This means that, if measuring the distance is useful
for domain sensitive tasks and if the domain sensitivity is influenced by lexical
features, it is a logical decision to base the distance on lexical information, viz.
the relative token frequencies. Regardless of this conclusion, it may still be
useful to base the distance between corpora on information different from token
frequencies. In Section 4.3 on feature selection, this idea of basing a distance on
other information than token frequencies is further investigated.

3.6 Conditional probability and performance

From a statistical point of view, the machine learning problem can be expressed
by stating that the probabilities of the instances in the target domain, Pt(X,Y ),
are estimated by a model based on the probabilities of the instances in the
source domain, Ps(X,Y ). A joint probability can be resolved into factors:
P (X,Y ) = P (Y |X)P (X). The token frequencies in the previous sections are
an instantiation of the probability factor P (X) and these sections test the hy-
pothesis that P (X) can be linked to machine learning performance. The first
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condition that has to be satisfied for this hypothesis to be true is that there
should be an actual performance difference. The second condition is that the
probabilities of the target domain, Pt(X), should be compared to the probabili-
ties of the source domain, Ps(X) using a suitable metric. If these two conditions
are satisfied, there is a link between token frequencies and performance and the
strength of the method comes from the fact that no class labels are needed when
computing P (X).

There is, however, a second factor that has an influence on machine learning
performance, which has been disregarded so far in our discussion. P (Y |X)
expresses how the use of tokens may vary between domains. An example from
the British National Corpus is the token fat, which is mostly an adjective to
describe a person’s figure in the imaginative domain and a noun to refer to the
actual substance in the natural science domain.

Because the class labels must be known to find P (Y |X), P (Y |X) cannot be
used for performance prediction, but there should be a relationship with perfor-
mance as well as there is one for P (X). In this section, this relation is briefly
investigated.

A subset of the corpora used for the POS experiments in Section 3.4, has been
selected. The BNC corpora have been reduced to contain only those sentences
that consist of tokens with a POS label that is associated with more than 1% of
the tokens in the entire BNC.8 This has been done to minimize the influence of
low frequency tags, which may obfuscate general trends when looking at the data
in detail. Filtering out low frequency POS labels does not radically change the
nature of the experiment, as can be deduced when a divergence-performance plot
similar to Figure 3.4 on page 59 is made. The r2 correlation is 0.956 before fil-
tering out the low frequency labels and remains unchanged after filtering. Eight
POS labeling experiments have been conducted with the memory-based tagger.
For each experiment, the imaginative domain is taken as the target domain and
one of the other eight BNC domains is taken as the source domain.

After running the experiments, the effect of P (Y |X = x) for a given token x
on the predicted POS labels for that token, can be analyzed. Table 3.11 shows
the effect of the different ordering of class label frequencies in source and target
domain for two tokens: straight and locked. The straight token is chosen because
it has two different class labels in all domains. The locked token is chosen because
it is missing from some domains and it has multiple class labels in other domains.

8These labels are: VVG, VBZ, DPS, VM0, CJS, PUQ, VVD, TO0, CRD, VVN, DT0, VVI,
PRF, CJC, PNP, NP0, AV0, NN2, AJ0, PRP, AT0, PUN, NN1.

87



3.6. CONDITIONAL PROBABILITY AND PERFORMANCE

straight locked
source accuracy τb source accuracy τb

applied 31.6% -1 arts 20.0% -0.82
commerce 42.1% -1 leisure 20.0% -0.82
natural 42.1% -1 world 40.0% 0.50
arts 57.9% 0 commerce 60.0% 0.82
social 73.7% 1 belief 60.0% –
belief 78.9% 1 applied 80.0% –
leisure 78.9% 1 social 80.0% 0.82
world 78.9% 1 natural 100% –

Table 3.11: Influence of P (Y |X=straight) and P (Y |X=locked) on performance. The
accuracy of assigning POS labels is given for two tokens and split out for different
source domains. The imaginative domain is taken as the target domain. The Kendall
τ values are an indication of the changed order of the probabilities of the POS labels
in the source and target domain.

A large portion of the tokens has only one associated class label, which makes
them less interesting to examine. The examples in Table 3.11 are mainly chosen
to illustrate the general trend that a reordering of the conditional frequencies of
the class labels in source and target data will lead to a decreasing performance.
However, as we will see, the performance is influenced by more factors.

The first three columns of Table 3.11 contain the data for the token straight, the
last three columns are the data for the token locked. For every experiment, the
target domain consists of the imaginative texts. The source domain is indicated
in the first column. For every source domain, the accuracy of the POS labeling
experiment for the token is given in the second column. The third column
contains the value of Kendall’s τb. τb has been calculated with a distribution
consisting of all Pt(Y |X = straight) and the corresponding distribution from a
source domain. A τ value of 1 indicates that the order of the class labels is
the same for the target domain (imaginative) and the source domain when the
labels are sorted according to frequency. A value of -1 indicates that the order
is reversed and intermediate values indicate partially reversed orders. When a
token does not appear in the source domain, τ cannot be calculated.

As can be seen in Table 3.11, source domains for which the ordered values of
Ps(Y |X = straight) are the same as for the target domain, are best in assigning
a POS label to the token straight. However, P (Y |X) is not the only factor
that is involved. The POS labeler does not only use information about a token,
it also uses low-level morphological features (last characters of the token) and
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Figure 3.12: The general trend induced by a reordered class label frequency dis-
tribution in target domain, if compared to the source domain. Each data point is a
token in a given source domain/target domain setting. The x-axis is the τb value; the
y-axis is the POS labeling accuracy. The general trend is that tokens for which the
class labels frequencies are ordered in the same manner in source and target corpus
(τb ≈ 1), obtain higher accuracies. The trend is obfuscated because class label order is
not the only factor that influences the labeling process, but nevertheless a r2 value of
0.684 is obtained.

information about the context of a token. This way the POS labeler manages to
obtain an 80% accuracy for the token locked, although the token does not appear
in the applied science corpus. This can only be explained by the influence of
morphological and contextual features, but the trend that reversing the order of
the class labels for a token is harmful, is still noticeable.

Because it is impossible to investigate all tokens in Table 3.11, a plot is made of
all tokens in all source/target settings. Figure 3.12 contains those data points
and it can be seen that a similar class label order in test and training corpus has
a positive effect on performance.

Another way of looking at the data is by summing the τs for all tokens in the
target corpus to get a sense of the combined effect of all differences in P (Y |X).
The result is that the sum of all τs is correlated with the overall performance
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(r2 = 0.972), meaning that P (Y |X) is an important factor during POS label-
ing.

Instead of Kendall’s τ , every divergence could be used to determine the variance
in P (Y |X), but Kendall’s τ is the metric of choice, because the order of the class
labels can be considered to be more important than the actual frequency of the
class labels. This intuition is confirmed when the correlation of the Kullback-
Leibler divergence with the overall performance is computed and proves to be
only 0.406.

The observation that P (Y |X) is an important factor, has led to many domain
adaptation techniques that try to mitigate the variance of P (Y |X) between
source and target domain and, as is empirically shown in this section, perfor-
mance gain can be expected from this approach.

3.7 Conclusions

In this chapter, the quality of the distance metrics from Chapter 2 is investigated.
In a first section, the minimal corpus size needed to find a stable metric value, has
been set to 1,500,000 tokens. This figure has been deduced from an experiment
on the BNC with the Rényi divergence and the Euclidean divergence, serving
merely as an indicative figure.

Based on various part-of-speech labeling experiments, it is shown that a prob-
ability-based divergence metric based on relative token frequencies, captures
information that is linearly related to the performance. The probability-based
divergence metrics that came out best, are the Kullback-Leibler and Rényi with
an α value a little under 1. The general applicability of the method has been
tested by varying the labeling system (Section 3.4.2), the corpus (Section 3.4.4)
and the homogeneity of the corpus (Section 3.4.5)

The homogeneity experiments of Section 3.4.5 indicate that the relation between
distance and performance may be the beginning of a method to assign domain
labels objectively, i.e. without depending on the judgement of a human anno-
tator. If the relation is linear for a set of corpora and a second set of corpora
does not exhibit this linear relation, the second set of corpora may be internally
homogenous and could therefore be labeled as a single domain.

Repeating the POS experiments for the prepositional phrase attachment task
led to the formulation of two conditions that should be satisfied before the re-
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lation between distance and performance can be explored: The first condition
is that there should be an actual performance difference when carrying out an
experiment. The second condition is that the probabilities of the target domain,
Pt(X), should be compared to the probabilities of the source domain, Ps(X),
using the right metric. If these two conditions are satisfied, there is a link be-
tween token frequencies and performance and the strength of the method comes
from the fact that no class labels are needed when computing P (X).

From a statistical point of view, the machine learning problem can be expressed
by stating that the probabilities of the instances in the target domain, Pt(X,Y ),
are estimated by a model based on the probabilities of the instances in the
source domain, Ps(X,Y ). A joint probability can be resolved into factors:
P (X,Y ) = P (Y |X)P (X). The token frequencies in the previous sections are
an instantiation of the probability factor P (X) and the sections handle about
the hypothesis that P (X) can be linked to machine learning performance. In
the experiments of Section 3.6, the influence of P (Y |X) on the performance is
investigated. It has been found that the conditional probabilities are an impor-
tant factor, but P (Y |X) cannot be used for performance prediction, because the
class labels are needed to compute the conditional probabilities.

In this chapter, the focus was on the first two research questions of this disser-
tation, namely, (1) is there a monotonic relation between distance and perfor-
mance, and (2) is the correlation easily traceable? The experiments showed that
a linear relation between distance and performance could be found for a large
selection of metrics. The quality of the linear relation varies, although, with the
top metrics, high correlation values can be obtained. Secondly, the traceability
of the correlation depends not only on the nature of the correlation, but also
on the corpus size and the machine learner that has been used. Experiments
are carried out to find a rule-of-thumb value for the minimal corpus size needed.
The value remains an approximation, since it may be tied to the corpus from
which it was derived. The correlation is preserved when different algorithms are
used to carry out POS-tagging. The fact that most variables, except the NLP
task, do not seem to interfere with the linear correlation between distance and
performance indicates that using a distance can be a robust element in domain
adaptation methods.

In the next chapter, the conclusions of this chapter will be used to test the Rényi
distance metric in different types of natural language processing applications.
The predictive power of the relation between distance and performance may be
used to select a good training corpus, to select good sentences for self-training,
or even to select good features.
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Chapter 4

Applying distances

4.1 Introduction

In the previous chapter, the correlation between a metric and the performance
was investigated. In this chapter, three applications that can benefit from the
use of a metric are carried out: training data selection, feature selection, and
corpus selection.

Before the experiments are presented, it may be interesting to focus again on
the two different aspects of metrics for natural language corpora, discussed in
Section 1.3 on page 14:

Aspect a: quantifying the (dis)similarity of the corpora,
Aspect b: linking distance to performance.

Aspect a simply expresses the distance between two corpora. For example, a
distance between two corpora can have a value of 4 and the distance between
two other corpora can be 6. This means that the first two corpora are closer
to one another than the second pair, although there is no connotation linked to
this distance difference.

Aspect b is the link with performance and provides additional meaning to dis-
tance differences. Looking at the example, the first pair of corpora should lead
to a better performance than the second pair, because they are closer to each
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other. This predictive dimension can only be added to a distance metric, if there
is a good correlation between distance and performance for a given task.

The distinction between the two aspects may seem an unnecessary complication,
but in this section it is shown that the importance of the second aspect varies
depending on the exact usage of the metric in the experiment. Aspect b is im-
portant if the experiment consists of ranking several training corpora according
to the performance, when they are used to label a test corpus. The tighter the
link between distance and performance, the better the ranking. If a training
data selection experiment like in Section 4.2 is carried out, the link between
distance and performance is not the only influencing factor. The stability of the
metric, the gamut of the metric, and the sensitivity to different corpus sizes are
only three factors on which the successful application of the metric will depend.
All these factors determine the way the metric will quantify (dis)similarity and
will cause faster/slower, more eager/economical data selection.

The correlation between distance and performance can be used as a selection
method to find the most suitable distance metric for an experiment, if the im-
portance of aspect b is pronounced. If aspect b is less important, the correlation
will be less informative and the most useful distance metric should be selected
on other grounds such as sensitivity to infrequent tokens, sensitivity to corpus
size, etc., none of which can be easily modeled analytically.

In Section 4.2, a training data selection experiment is used to illustrate the
importance of aspect a. In Section 4.3, the relation between performance and
a distance is investigated for a distance that is computed using the features
of instances, rather than using token frequencies as in Chapter 3. This setup
will provide information about the use of a distance metric for feature selection.
Finally, in Section 4.4, unlabeled corpora are selected according to the expected
performance gain when the corpora are added to a training corpus during self-
training. The experiment in Section 4.4 involves performance prediction, so it
can be expected that the correlation between distance metric and performance
will play a recognizable role.
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4.2 Training data selection

4.2.1 Training data selection algorithm

Selecting data from a large corpus in order to keep only the interesting sentences,
is the first application of divergence metrics that we investigate. First, we will
describe some related research.

A similar experiment for language modeling has been carried out by Moore &
Lewis (2010), who use the difference in cross-entropy of a sentence, according
to an in-domain language model and a model trained on a random sample from
a large training set, to select those sentences that will help decrease test set
perplexity. An elaborate training selection experiment is presented by Gao et al.
(2002). They present a training set selection experiment for the construction of
a language model. The algorithm of Gao et al. (2002) consists of four steps that
show a resemblance to the algorithm in Figure 4.1. An example of training data
selection that is not designed for language modeling, but for natural language
parsing, can be found in Plank (2011). In this work, data is added to the training
set for a parser, adding the closest data first. Different metrics were applied to
quantify the closeness of the data and she found that Jensen-Shannon leads
to the best results, while the Rényi divergence leads to the worst results. As
we will discuss later in this chapter, the preference of using the Jensen-Shannon
divergence cannot be derived straightforwardly from the correlation of the metric
with performance. In addition, parsing is a different task from POS-tagging. We
showed in the previous chapter that the distance–performance correlation varies
for different tasks.

The algorithm for the experiments in this section is presented in Figure 4.1.
Consider a large corpus of labeled data that consists of data from various do-
mains, but not from the test domain. It should be possible to select only those
sentences from the labeled corpus that are relevant for tagging the test corpus.
The relevance of a sentence is defined by the effect on the distance between the
training corpus and the test corpus when the sentence is added. If adding the
sentence decreases the distance, the sentence is retained, otherwise the sentence
is dismissed. A threshold value ε is used to influence the decision when adding a
sentence decreases the distance. Applying this algorithm, a new training corpus
is created from the large corpus by sequentially testing all sentences against the
test corpus.
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INPUT labeled (out-of-domain) data, test data
OUTPUT subset of labeled (out-of-domain) data
step 1 Select a random sentence from the labeled data and call

it the training corpus,
step 2 Compute the distance between the training corpus and

the test data,
step 3 Add a random sentence from the labeled data to the train-

ing corpus,
step 4 Compute the distance between the training corpus and

the test data,
step 5 If the newly computed distance is lower than the previous

distance, keep the sentence in the training corpus, other-
wise remove the sentence again,

step 6 Repeat from step 3 until all labeled data is tested.

Figure 4.1: The training data selection algorithm.

The underlying idea of this experiment is that the effect of the linear relation
between accuracy and distance should be that a higher accuracy is obtained
when the distance is being minimized. A similar idea can be found in McClosky
(2010), in which a combined distance is used to weigh corpora from a set of
training corpora from different domains.

In the experiment of this section, the data consists of sentences tagged with
POS information, extracted from OntoNotes (Weischedel et al., 2009). For more
details about the OntoNotes corpus, see Section 3.5.

4.2.2 Selection experiment

For the experiments, the three domains from OntoNotes (bc, bn, and nw) are
rewritten into a format that can be read by the memory-based tagger, which
also has been used in previous sections. This enables us to conduct three rounds
of experiments: each domain is taken once as the test domain and the other two
domains are combined into one large, out-of-domain training set. The training
set is randomized at the sentence level and the algorithm from Figure 4.1 is
implemented (with ε = 0).
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Quality of the selected subset

The selection from the labeled out-of-domain data that is obtained through the
training data selection experiment, is called the selected subset. It is possible
to repeat the experiments using any distance metric in step 4 of the algorithm
in Figure 4.1. For the first set of experiments, the distance metric is the Rényi
divergence (α = 0.99), but experiments have also been run with the Jensen-
Shannon divergence, the sUWR1, and the overlap metric.2 The size of the final
selected subset depends on the type of metric that is used.

The selected subset can be used as the training corpus in a memory-based POS-
labeling experiment, with the test corpus that has been used during training data
selection as the test corpus. The POS-labeling accuracy can be compared with
two reference accuracies: the accuracy when the entire out-of-domain corpus is
used as the training set and the accuracy when a random subset with the same
size as the selected subset is taken from the out-of-domain data.

Table 4.1 shows the outcome of the experiments with Rényi as the distance
metric. There are three columns for each domain: the first column (full corpus)
shows the figures when all data from the other domains is used as training
data, the second column (selected subset) shows the figures when training data
selection has been carried out on the full corpus, and the third column (random
subset) shows the figures when a random sentence sample is taken from the full
corpus. The random sample is of the same size as the selected subset. The first
row gives the number of sentences in the training corpus and the second row
gives the same number, but relative to the full corpus. The third row shows the
Rényi (α = 0.99) divergence between training and test corpus. The higher the
value (less negative), the closer training and test corpus are to each other. The
last row shows the overall accuracy of a default POS-tagging experiment with
the memory-based tagger.

From Table 4.1, it can be seen that – for the three domains – the training corpus
can be compressed to approximately 40% through training data selection with
only little accuracy loss.3 There is a small accuracy gain when comparing the
accuracy of the training data selection to the accuracy of a random sample. This

1The fraction of tokens in the test corpus that are not in the training corpus.
2The fraction of tokens in the training corpus that are not in the test corpus.
3In a preliminary version of this experiment the Wall Street Journal data was not included

in the full training data for bc and bn. As a consequence, the distance between training and
test data was slightly larger. In contrast to the experiments in Table 4.1, the result of these
preliminary training data selection experiments was a 0.1% accuracy gain for both bc and bn.
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full corpus selected subset random subset

broadcast conversation (bc)
size 39,719 14,753 14,753
relative size 100% 37.1% 37.1%
distance -15.03 -14.70 -16.85
accuracy 88.96% 87.37% 86.97%

broadcast news (bn)
size 41,984 16,655 16,655
relative size 100% 39.7% 39.7%
distance -5.58 -5.38 -8.14
accuracy 95.28% 95.02% 94.32%

newswire (nw)
size 26,559 11,044 11,044
relative size 100% 41.6% 41.6%
distance -13.16 -12.94 -17.70
accuracy 92.29% 92.24% 91.08%

Table 4.1: Training data selection with Rényi (α = 0.99) divergence as the distance
metric for POS labeling experiments. The accuracies for the selected subsets are sig-
nificantly smaller than those for the full training corpus on a 0.01 significance level
with approximate randomization tests. The random subset is the average of ten folds.
Significance cannot be computed but the size of the accuracy difference can be com-
pared with those between the full corpus and the selected subset: most probably the
accuracy differences between the selected subset and the random subset are significant.
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indicates that there is an advantage in using a distance metric for training data
selection.

The experiment is repeated with ε = 1 (a new sentence is allowed to increase
the distance with a value of 1) and ε = −1 (a new sentence should decrease the
distance with at least -1). Changing ε did not improve on the final result. With
ε = 1, all original sentences are included in the selection. With ε = −1, too few
sentences are included in the selection. Increasing ε to −0.01 did not lead to the
selection of more sentences than with ε = −1.

From the results of the training data selection experiment, it can be concluded
that a large training corpus can be compressed to approximately 40% without
overly harming the performance. Training data compression can be useful when
data storage is limited, but it can also speed up algorithms. Many machine-
learning algorithms are hindered by a time-consuming training phase. For eager
learning, the training phase will get considerably shorter when the training data
is half its original size. For lazy learning, the test phase will get shorter. Training
data compression as it has been carried out in this experiment, is not suited to
increase performance. It is possible to obtain a compressed training corpus that
is closer to the test data than the full training corpus, although the effect is not
sufficient to overcome normal variation.

Using other distance metrics

The Rényi divergence score is used for the experiments that are reported in
Table 4.1. The same experiments are repeated with Jensen-Shannon divergence
as the distance metric. The Jensen-Shannon divergence is chosen for two reasons:
contrary to the Rényi divergence it is a symmetric divergence

(
JS(P ;Q) =

JS(Q;P )
)
, and Plank (2011) reports that Jensen-Shannon clearly outperforms

the Rényi divergence – albeit for a different task. The results are reported in
Table 4.2.

In general, the selected subsets acquired with Jensen-Shannon divergence as the
distance metric are smaller than those for the Rényi divergence. The accuracies
are also slightly lower than for the Rényi divergence, but this can be attributed
to the smaller subset size and should not be attributed to a lower quality of
the selected data as will be shown in the next subsection. The fact that the
selected subsets obtained with the Jensen-Shannon divergence, are smaller than
the ones obtained with the Rényi divergence can be attributed to a different way
of quantifying the distance.
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full corpus selected subset random subset

broadcast conversation (bc)
size 39,719 8,165 8,165
relative size 100% 20.6% 20.6%
distance 0.219 0.118 0.226
accuracy 88.96% 86.82% 85.75%

broadcast news (bn)
size 41,984 11,902 11,902
relative size 100% 28.3% 28.3%
distance 0.147 0.089 0.155
accuracy 95.28% 94.77% 93.72%

newswire (nw)
size 26,559 6,677 6,677
relative size 100% 25.1% 25.1%
distance 0.183 0.118 0.205
accuracy 92.29% 91.75% 90.32%

Table 4.2: Training data selection with Jensen-Shannon divergence as the distance
metric for POS labeling experiments.

full corpus selected subset random subset

sUWR
size 39,719 5,378 5,378
relative size 100% 13.5% 13.5%
distance 0.218 0.218 0.456
accuracy 88.96% 86.47% 85.36%

Overlap
size 39,719 2,932 2,932
relative size 100% 7.4% 7.4%
distance 0.760 0.004 0.501
accuracy 88.96% 84.22% 84.13%

Table 4.3: Training data selection for the broadcast conversation (bc) domain with
sUWR and overlap as the distance metric for POS labeling experiments.
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selected subset random subset relative size r2

Rényi 87.37% 86.97% 37.1% 0.990
JS 86.82% 85.75% 20.6% 0.840
sUWR 86.47% 85.36% 13.5% 0.925
overlap 84.22% 84.13% 7.4% 0.187

Table 4.4: Results for the broadcast conversation (bc) domain regrouped from Ta-
bles 4.1, 4.2, and 4.3 together with the correlation r2 from Table 3.4.

Table 4.3 shows the results for two other distance metrics: sUWR and overlap.
The sUWR is chosen because it has a different theoretical basis than the Rényi
divergence and because McClosky (2010) has reported on its qualities. Overlap
is included because of its very low correlation with the performance of a POS
labeling task, see Table 3.4.

The results are reported for the broadcast conversation (bc) domain only, be-
cause the other domains show similar trends. As can be seen, the selected subsets
are smaller than for the Jensen-Shannon and Rényi divergence. Nevertheless,
the scores in Table 4.3 indicate that the usage of a distance metric leads to a
more qualitative subset than a random sample of comparable size, although the
accuracy difference between selected and random subset for the overlap metric
is not encouraging.

The data for the broadcast conversation (bc) domain from previous tables is
repeated in Table 4.4. Examination of Table 4.4 leads to the conclusion that
a better correlation between distance and performance does not guarantee a
better training data selection – sUWR is better correlated than Jensen-Shannon
divergence, but the accuracy for the selected subset is higher for Jensen-Shannon
divergence. Despite this observation, there appears to be a positive influence of
a better correlation on the improvement of the selected subset over the random
subset. The correlation for the overlap metric is very low, but even then the
accuracy of the selected subset hints at the fact that using a distance metric –
albeit a badly correlated metric – helps when data has to be selected from a larger
corpus. The difference between the accuracy of the selected subset for overlap
(84.22%) and the random subset (84.13%) is not significant4 though.

Using a metric helps when selecting data, regardless of the quality of the corre-
lation between the metric and performance. The fact that the correlation has

4At 95% significance level with approximate randomization testing on sentence level.
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selected subset random subset

Rényi 84.87% 84.13%
JS 84.87% 84.13%
sUWR 84.43% 84.13%
overlap 84.22% 84.13%

Table 4.5: POS-tagging accuracy with training data selection for the broadcast con-
versation (bc) corpus with Rényi, Jensen-Shannon (JS), sUWR, and overlap as the
distance metric. All training corpora are samples of 2,932 sentences. According to
approximate randomization tests (99% significance level), Rényi and JS perform sig-
nificantly better than sUWR. sUWR performs significantly better than overlap. The
difference between the overlap metric and a random selection is not significant.

an influence on the outcome of the training data experiment can also be seen in
Table 4.5 despite the non-trivial relation between correlation and the outcome
of the experiment. In order to calculate the scores in this table, a sample of the
size of the smallest subset, i.e. the subset obtained with the overlap metric, is
taken from the selected subsets for the broadcast conversation (bc) domain for
four metrics (Rényi, JS, sUWR, and overlap) from previous experiments. The
reason for this is to eliminate corpus size effect. The disadvantage of downsizing
is that a training corpus of 2,932 sentences is rather small. The samples are used
to carry out a POS labeling experiment. The scores in Table 4.5 illustrate that
better correlated metrics (Rényi, JS, and sUWR) tend to perform better than a
badly correlated metric (overlap).

The observations of this subsection can be summarized as follows: using a metric
during training data selection helps when compared to random selection. Al-
though the link between the quality of the correlation and the outcome of the
experiment is not very strong, the link seems to indicate that well correlated
metrics lead to better results during a training data selection experiment.

Learning curves

In the previous subsection, we found that the Rényi divergence was able to select
a subset that obtained the best accuracy for a POS labeling experiment, although
the selected subset is also the largest subset of all alternatives that is selected. We
found that well correlated metrics tend to perform better, but the link between
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Figure 4.2: The learning curves for training data selection experiments. The x-axis
represents the number of sentences in the increasing training corpus selection. The
y-axis represents the overall accuracy of the POS-labeling experiment. The Rényi
lines are the training selection experiments for which the Rényi divergence was used to
measure the distance between test corpus and the subset selected from the full corpus.
The lines for the experiments with Jensen-Shannon as the distance metric and the
reference lines are also given. For the reference lines, a sample of a given size is taken
from the full corpus, without taking into account any distance metric. The dotted
lines are experiments on the broadcast news (bn) domain, the dashed lines are for
the newswire (nw) domain, and the solid lines are for the broadcast conversation (bc)
corpus.

correlation and the final result is not straightforward. It is interesting to have
an additional view on the training data selection experiments.

During the experiments, the size of the selected training corpus continuously
increases as long as a newly added sentence decreases the distance between the
training and the test corpus. This setup enables us to draw learning curves.

The curves of Figure 4.2 and 4.3 are based on ten samples collected during the
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data selection process. Since the selected subset for the broadcast conversation
(bc) domain contains 14,753 sentences, the size of the selection increases with
steps of 1,475 sentences. The other curves are constructed in the same manner,
except that a data point is created by taking smaller or bigger steps according
to the size of the selected subset.

The first learning curve is obtained by plotting the size of the selected subset
versus the accuracy when that subset is used in a memory-based POS label-
ing experiment. Figure 4.2 contains the learning curves for the experiments of
Tables 4.1 and 4.2. The experiments are carried out for three domains, which
are represented by different line styles: solid lines (bc), dotted lines (bn), and
dashed lines (nw). The Rényi lines are for the selected subsets of Table 4.1, viz.
with Rényi as the distance metric, the JS lines are for Table 4.2, viz. with the
Jensen-Shannon divergence. Reference lines are also given. These reference lines
are obtained by random sampling the full corpus, although a sample is always
contained in the next (larger) sample.

The learning curves of Figure 4.2 show that the Jensen-Shannon (JS) curves
are positioned higher than the Rényi curves. Both curves show quicker learn-
ing than the reference, obtained through random sampling. The curves for the
Jensen-Shannon divergence do not reach as far as the curves for the Rényi di-
vergence because fewer sentences are selected for the final subset. For example,
for broadcast conversation (bc): 14,753 sentences are selected for Rényi against
8,165 sentences for Jensen-Shannon.

The fact that the JS curve is positioned above the Rényi curve is an indication
that the Jensen-Shannon divergence is better at quantifying the distance between
test and training corpus for the memory-based POS labeling experiment. At any
moment, the Jensen-Shannon divergence is able to select a better sentence than
the Rényi divergence. This behavior cannot be linked to a better correlation
between the divergence and the performance (aspect b), but can be attributed to
the different internal structure of the Jensen-Shannon divergence when compared
to the Rényi divergence (aspect a).

A second view on the experiments can be obtained by plotting the distance
between the test corpus and the snapshots of the selected training corpus versus
the accuracy. Figure 4.3a contains the plot where the Rényi divergence is used to
compute the distance. Note that the JS lines are still experiments with Jensen-
Shannon as the distance metric, but here the distance at any given moment is
expressed in terms of the Rényi divergence. Figure 4.3b contains the plot with JS
distances. During the data selection experiment, the distance between the test
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(a) Rényi divergence

Figure 4.3: The learning curves for training data selection experiments. The x-axes
represent the distance value of different metrics. The y-axes represent the overall
accuracy of the POS-labeling experiment. The Rényi lines are the training selection
experiments for which the Rényi divergence was used to measure the distance between
test corpus and the subset selected from the full corpus. The JS lines are for the
experiments with Jensen-Shannon as distance metrics. The reference lines are also
given. For the reference lines, a sample of a given size is taken from the full corpus,
without taking into account any distance metric. The dotted lines are experiments on
the broadcast news (bn) domain, the dashed lines are for the newswire (nw) domain,
and the solid lines are for the broadcast conversation (bc) corpus. The plots are
different views on the same experiments of Figure 4.2. (continues).
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(b) Jensen-Shannon divergence

Figure 4.3: (continued)
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corpus and the current selection decreases (becomes less negative in Figure 4.3a
– less positive for Figure 4.3b).

Shorter lines – measured along the x-axis – in Figure 4.3 may represent slower
learning. This is most clear when comparing the bc-line for random selection on
Figure 4.3b with the bc-line for Rényi. As can be seen in Figure 4.2, the final
corpus size of both experiments is similar, but in Figure 4.3b it can be seen that
the JS distance varies less per step for the reference line than it does for the
Rényi line, indicating that adding approximately the same amount of data does
bring the training and test corpus more quickly together when the Rényi metric
is used.

A second observation that can be made, is that the lines for Figure 4.3a coincide
when the same test corpus is used. All solid lines coincide because for each
line the bc test corpus is used to measure the distance. This is not the case
for Figure 4.3b, in which lines for the same test corpus are only approximately
similar. This difference can be attributed to the different nature of the metrics.
If the solid lines would be extended by adding all data until the full corpus is used
as the training corpus, all lines would end in the same point. On Figure 4.3a this
point is at Rényi distance 15.03, accuracy 88.96%, see Table 4.1. On Figure 4.3b,
the same point is at JS distance 0.219, accuracy 88.96%, see Table 4.2.

If the Rényi divergence is used to look at the experiment (Figure 4.3a), the
way the end point is approximated only depends on the test corpus. If the test
corpus and the distance between test corpus and training corpus are known,
the accuracy is determined – all solid lines coincide. The nature of the Jensen-
Shannon divergence is different. Figure 4.3b shows that there is not only an
influence from the test corpus, but the training corpus also has an influence
– the solid lines do not coincide. This can be illustrated by reconsidering the
definitions of the Rényi divergence and the Jensen-Shannon divergence:

Rényi(P ;Q;α) =
1

(α− 1)
log2

(∑
k

pαk q
1−α
k

)
with α ≥ 0 (4.1)

JS(P ;Q) =
1
2

[
KL

(
P ;

P +Q

2

)
+KL

(
Q;

P +Q

2

)]
(4.2)

For the Rényi divergence, there is only one factor expressing the difference be-
tween P and Q, namely the factor pαk q

1−α
k . If the test corpus P is fixed, the
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full corpus selected subset random subset

Adding 5 sentences
size 41,984 26,790 26,790
relative size 100% 63.8% 63.8%
distance -5.58 -5.52 -6.68
accuracy 95.28% 95.20% 94.90%

Adding 10 sentences
size 41,984 31,850 31,850
relative size 100% 75.9% 75.9%
distance -5.58 -5.55 -6.14
accuracy 95.28% 95.22% 95.09%

Adding 20 sentences
size 41,984 37,080 37,080
relative size 100% 88.3% 88.3%
distance -5.58 -5.57 -5.76
accuracy 95.28% 95.25% 95.15%

Table 4.6: POS-tagging accuracy with training data selection for the broadcast news
(bn) corpus – adding five, ten, and twenty sentences simultaneously.

only variance comes from the divergence of Q from P . For the Jensen-Shannon
divergence, there are two factors expressing a distance, namely log2( pk

1
2 (pk+qk)

)
and log2( qk

1
2 (pk+qk)

).This means that the variance of the JS divergence does not
only come from the difference between (a fixed variant of) Q and P (the first
factor), but also from the way the training corpus Q differs from a fixed variant
of itself (the second factor). This second factor is the reason that the evolution
of the JS divergence during training corpus selection depends not only on the
test corpus P , but also on the training corpus Q. This observation emphasizes
the importance of the different ways the distance between two distributions is
quantified by different metrics.

Adding more sentences per step

In the previous experiments, only one sentence was added per step, in this
subsection the influence of taking steps of more sentences at a time is inves-
tigated.
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Table 4.6 contains results for three experiments with the broadcast news (bn)
corpus – similar to the experiments of Table 4.1 – except that five, ten, or twenty
sentences are added simultaneously during step 3 of the algorithm presented in
Figure 4.1. The Rényi divergence is used as distance metric.

The results show that adding more sentences per step leads to a higher accuracy
compared to adding only one sentence per step. The disadvantage of adding
more sentences is the final corpus size: when adding one sentence the full corpus
is reduced to 39.7% of its sentences, when more sentences are added the size
of the selection ranges from 63.8% to 88.3% of the original training corpus.
If distance based training corpus selection is to be used in an application, the
minor accuracy gain at the cost of a bigger corpus may favor the implementation
with adding one sentence per step instead of adding more sentences, since in the
former setup the reduction of the training corpus will be more marked.

The experiment has also been repeated adding 100 sentences per step, but adding
100 sentences to the selected subset always makes the selected subset more sim-
ilar to the test corpus, leading to a selection that is equal to the full training
corpus.

4.2.3 Conclusion

The Rényi metric is found to produce the subset with the highest accuracy,
although the learning curves reveal that the Jensen-Shannon divergence is most
interesting when it comes to efficiently selecting sentences from a large corpus.
The fact that Jensen-Shannon quantifies the distance between test and training
corpus in a more efficient manner, cannot be deduced from the correlation of
the divergence with the performance of POS labeling experiments, because it is
rooted in a different aspect of the metric. These results show that it is important
to know which is the major aspect influencing the usage of the metric. For the
experiments in this section the way in which distance is measured, is important
for the quick selection of interesting instances. The self-training experiments
of Section 4.4 are an example of experiments where the distance–performance
correlation has a more pronounced influence.
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4.3 Feature selection

4.3.1 Introduction

The relation between token frequency distributions and machine learning per-
formance has been the focus of the previous chapter. As defined in Chapter 3,
the relation between a corpus C and a distribution D is defined by the mapping
M :

M : C → D (4.3)

In this section, the mapping will use the features of the actual machine learning
instances instead of relative token frequencies. Additional information becomes
available when feature instances are used to compute distances between corpora.
We test whether this additional information can be used to carry out feature
selection.

Because the mapping takes into account the separate features, detailed infor-
mation about the behavior of features may become available. Access to this
fine-grained information about separate features leads to the following concept
that is to be tested and that is explained in more detail later:

A useful feature influences the correlation between a distance and the perfor-
mance of a feature-based machine learner in a different way than a superfluous
or harmful feature.

Feature selection algorithms have been studied before and can be divided into
two groups depending on the availability of class label information during se-
lection. Supervised feature selection uses class label information and can be
divided into three groups: filters, wrappers, and a hybrid based on both previ-
ous methods (Liu & Yu, 2005; Gheyas & Smith, 2010). An example of a hybrid
method is a combination of a simulated annealing algorithm and a genetic algo-
rithm (Gheyas & Smith, 2010). Both algorithms are based on processing cycles
in which new feature subsets are evaluated on a test set.

If no class information is used during feature selection, the method is called un-
supervised feature selection or feature selection for clustering (Liu & Yu, 2005).
The research of unsupervised feature selection can be classified in two categories:
(1) clustering features into categories, and (2) eliminating redundant features by
investigating their interdependence (Mitra et al., 2002). The feature selection
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method that we propose, is similar to the second category in the sense that
candidate features are discarded according to the similarity between a feature
subset with and without the candidate feature.

The setup of the experiments is given next in this section, together with the def-
inition of an instance. What is meant by an instance and a feature is described
in detail, because of the ambiguous usage of these terms in natural language
processing. The definition of an instance serves as an introduction to the def-
inition of instance distance. Finally, the introductory subsection is followed by
two subsections with experiments: one with experiments based on synthetic
data and one with experiments based on real data, viz. the British National
Corpus.

4.3.2 Experimental setup

In previous experiments, the correlation between a memory-based POS-tagger
and its performance is found to be linear. The input of the POS-tagger consists of
tokens, grouped into sentences. This input is internally rewritten into instances
that can be used by the machine learning components of the POS-tagger. For
the experiments in this section, these instances will be used to compute the
distances and these distances will be compared to the performance of the machine
learner that uses the instances and not to the overall performance of POS-
tagger. The goal of the experiments is to see whether removing features from the
instances has an influence on this distance–performance correlation and whether
the influence contains clues about the usefulness of the removed feature.

Before the correlation is tested, more details are presented on how an instance
distance can be obtained.

Obtaining feature distributions

Many natural language processing tools are based on instances. An instance is
constructed by applying feature functions fi to observations x in order to obtain
feature values. The combined output of all feature functions is an instance. If
there are n feature functions, the instance will contain n feature values. The term
feature function can also be abbreviated to feature. In the POS experiments, two
instances are created for each token in the corpus: one instance for the known
words classifier and one instance for the unknown words classifier.
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The TiMBL5 implementation of the kNN algorithm is used for the experiments
(Daelemans et al., 2010). The TiMBL implementation is specially designed
to facilitate natural language processing. For TiMBL, the feature values are
categorical as opposed to the feature values for SVMs, which are – in their most
basic form – binary. Since the feature values for TiMBL are categorical, it is
easy to obtain a distribution Pi based on the ith feature function for a corpus
of instances:

Pi =
{
pi,k : relative frequency of feature value k returned by fi

}
(4.4)

If a feature function fi would return the token on which the instance is based,
the set of feature values would cover all tokens in the corpus and Pi would be
the relative token frequency, as it has been used in previous experiments.

Instance distance

When only relative token frequencies are used to compute the distance between
corpora, only one distribution is extracted and the distance between two such
corpora can be obtained by applying any metric d to the extracted distributions.
When features instead of only tokens are used to extract distributions, it is
possible to yield a distribution for every feature. If an instance has n features,
this leads to n distributions. In order to reduce the distance to a single number,
the instance distance between two instance corpora P and Q is computed as
follows:

instance distance(P,Q) =

√√√√ n∑
i

di
(
Pi, Qi

)2 (4.5)

with
Pi = distribution based on feature xi; extracted from corpus P
Qi = distribution based on feature xi; extracted from corpus Q
di = metric for feature i
n = number of features

5http://ilk.uvt.nl/timbl
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Defined in this way, the instance distance can be regarded as the Euclidean norm
of a vector for which each di defines a dimension. In the experiments in this
section, each metric di is the Rényi divergence (α = 0.99).

Note that this is not the only way to compute a distance based on instances: an
alternative definition could include the harmonic mean of the feature distances
instead of the root of the summed squares. Neither is it necessarily the case that
the feature distance di is the same for each feature.

Correlation based on instance distance

One condition has to be tested before the instances can be used for feature
selection experiments: there should be a linear correlation between a distance
based on the instance and the performance of the machine learner.

The input of the memory-based tagger is tokens grouped into sentences. In
previous experiments, we found that a token-based distance is well correlated
with the performance of the memory-based tagger. As explained on page 56, the
memory-based tagger consists of two components: a classifier for known words
and a classifier for unknown words. The input of the memory-based tagger is
rewritten into feature instances and these instances are classified by the two
classifiers.

The condition that there should be a correlation between the instance distance
and the performance of a memory-based tagger component can be tested using
the definition for instance distance presented above. Both internal classifiers of
the memory-based tagger are a TiMBL classifier and the condition can be tested
for the unknown words classifier and known words classifier.

Figure 4.4 contains the plots for both classifiers of the memory-based tagger.
The x-axes represent the instance distance between the training corpus and the
test corpus. The y-axes show the performance of the kNN-classifier.

There is a data point for each of the nine domains of the British National Corpus.
One domain is taken as the test corpus and all other domains are grouped into
one large training corpus. More background information about the experimental
setup and the classifiers is given in Section 4.3.4.

Figure 4.4 shows that there is a reasonably good correlation between the instance
distance and the performance for both the unknown words and the known words
kNN classifier.
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Figure 4.4: Correlation between instance distance and performance for two memory-
based classifiers.

The r2 correlation for the unknown words classifier is 0.669; for the known words
classifier, it is 0.910, which indicates a good relation between instance distance
and performance. At the right of Figures 4.4a and 4.4b, there is an outlier,
namely when the imaginative domain is taken as the test corpus. Removing this
outlier would decrease the correlation between the instance distance and the
micro-averaged F-score. Although there is no reason to exclude the imaginative
domain, the lower correlation would indicate that the instance distance is not
sufficiently sensitive to capture smaller differences between domains.

The result shows that the correlation between distance and performance for a
memory-based tagger also holds for the internal classifiers of the tagger. Now
that the correlation is confirmed for the instance distance, the influence of sepa-
rate features on the correlation can be investigated and the instance distance may
be used for feature selection, if it can be showed that useful features influence
the correlation in a different way than superfluous or harmful features.

4.3.3 Analysis using synthetic data

Experiments on real data are essential, but it may be harder to get deeper
knowledge about the problem because the inevitable variance of real data can
introduce a lot of artifacts. In this first subsection, a range of experiments with
highly controlled data should give more insight into the strengths and weaknesses
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of the techniques, before they are applied to real data. The synthetic data in
this subsection consists of instances that are created using a random generator
and by applying some basic rules.

Feature construction

In this section, synthetic data is produced by using an instance generator. The
instance generator can produce good features, bad features, and random features.
The different types of features are defined as follows:

Good feature. A good feature is a feature that increases the performance when
it is inserted into the instances.

A good feature is constructed by taking the same number of feature values as
there are class labels in the corpus of instances and each feature value is uniquely
linked to a class label. An instance with a given class label will have the same
associated feature value in the training corpus and in the test corpus. With this
setup, a simple look-up strategy would suffice to solve the problem, because the
feature value is directly linked to the class label.

Ambiguity is created by introducing a small chance α of inserting an incorrect
feature value. The α value is a measure of the goodness of the feature. The
smaller α, the better the association between the feature value and the feature.
With real data, a feature can be better for one class label and another feature
can be better for another class label. To mimic this behavior, α should vary
along with the class labels.

Bad feature. A bad feature is a feature that introduces classification errors
when it is inserted into the instances.

A bad feature is constructed by inverting the small chance of selecting an incor-
rect feature value to 1 − α for the test corpus, while the chance of inserting an
incorrect feature remains α for the training corpus. Because a feature value is
associated with a class label with a high chance 1−α in the training corpus and
with a small chance α in the test corpus, the machine learner will mistakenly
assume that it should depend heavily on the feature. This will introduce a lot
of classification errors.

Random feature. A random feature does not contain any information about
the classification task and has no or little influence on performance.
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A random feature is constructed by taking the same number of feature values as
there are classes. However, there is no link between a feature value and a class
label and the feature values are distributed randomly over the instances.

Instance construction

For the experiments, a set of five class labels is chosen in such a way that there
is no class imbalance. This means that 20% of the instances in the test and
training corpus carries class label A. The other class labels B, C, D, and E are
represented to the same extent. To mimic the varying quality of a feature for
different class labels, class label A is associated with an α value of 0.10. For class
labels B, C, D, and E, α will be 0.20, 0.30, 0.40, and 0.50.

The random feature has a random value with no link to the class label.

For the good feature (the second feature), there is a good chance for the feature
value to be the same in both training and test data. For class label A, the
chance to have a good feature value in both test and training is (1− α)(1− α)
or 0.90× 0.90 = 0.81.

The chance that the bad feature has the same feature value in training and test
data is small. For class label A, the chance to have a good feature value in a test
instance is α and to have a good feature value in a training instance is 1 − α.
The chance to have a good feature value in both training and test instance then
becomes α(1− α) or 0.10× 0.90 = 0.09.

Because of the high correlation 1−α of a good feature value with the class label
in the training data, the machine learner will learn to depend heavily on both
the good feature and the bad feature, although during test time the bad feature
will mislead the classifier.

In the first set of experiments, 2,000 TiMBL instances with five features are
created per data file. The first three features are random features, the fourth
feature is a good feature and the last feature is a bad feature. The fact that
not one but three random features are included is to minimize the number of
instances in the test corpus that can be exactly matched with an instance in the
training corpus.
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Corpus construction

The corpora for the experiments are organized as follows: nine test corpora of
2,000 instances with five features are created and to each test corpus a training
corpus of 2,000 instances with five features added. The result is that nine default
TiMBL experiments can be run with these corpora.

The number of instances is limited to 2,000 to minimize the number of exact
matches between instances from a test corpus and from a training corpus. This is
necessary to retain the need for a machine learner in a context with few different
feature values per feature.

TiMBL has an option to exclude a feature from processing, making it possible to
repeat the nine TiMBL experiments, while excluding one or more features.

Experiments

Nine test/training pairs are created and nine default TiMBL experiments are
carried out. The average micro F-score for these nine experiments is 42.89%
when all five features are included. The goal of the experiments is to find features
that cause an increase in performance, when removed from the instance. The
effect of removing one feature is studied by rerunning the nine experiments, while
removing one feature at a time. The average F-scores for the nine experiments
when a feature is excluded are shown in the second column of Table 4.7. The
third column contains the difference with the performance when all features are
included. The performance with all features is given in the last row of the table.
A negative difference signals a negative effect on performance when the feature is
excluded from the instances. As can be seen, removing the good feature (feature
4) is harmful, removing the bad feature (feature 5) is beneficial and removing a
random feature (features 1, 2, and 3) has almost no effect.

First, Table 4.7 can be used to carry out a sanity check. It can be seen that ex-
cluding the good feature (feature 4) causes the performance to drop with 16.79%.
Excluding the bad feature (feature 5) leads to a similar performance increase and
excluding a random feature has only a minor effect on the performance. The
minor effect of the random features may come from the fact there are only five
feature values. This small set of feature values offers the machine learner the
chance to learn something from the random features: any feature value may
co-occur a little bit more often with a certain class label. Since there is nothing
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excluded
feature

F-score performance
difference

r2 distance
deviation

description

1 43.69% 0.80% 0.228 0.7% random feature
2 43.15% 0.26% 0.209 0.5% random feature
3 43.58% 0.69% 0.226 0.7% random feature
4 26.10% -16.79% 0.208 0.6% good feature
5 59.52% 16.63% 0.038 79.7% bad feature

none 42.89% – 0.214 – all features

Table 4.7: Micro-averaged f-score and r2 when removing features.

to be learned, all inferred knowledge is deceptive. Removing the random feature
will lead to a small performance gain.

Now that the influence of feature exclusion on performance is established, the
relation between the instance distance and the performance can be investigated.
To get a better insight into this relation, a plot of the instance distance versus
the performance is presented in Figure 4.5. The information present in this
figure will be discussed in the next paragraphs.

Because there are nine experiments per excluded feature, it is possible to com-
pute the correlation r2 between the test/training distance and the performance.
It is possible to recompute this correlation for every set of experiments for which
the same feature is excluded. These correlations are given in the fourth column
of Table 4.7. The data points of the nine experiments when the bad feature
(feature 5) is excluded are inside the grey selection of Figure 4.5. According
to Table 4.7, the correlation between these nine data points is 0.038. The data
points when one of the good or random features is excluded and when no features
are excluded, do all coincide at the right of Figure 4.5.

From the data points in Figure 4.5, it can be seen that there is information in the
instance distance that separates the bad feature (in the grey selection) from the
other features. There is no information separating the random features from the
good feature. The experiments needed to compose Table 4.7 and Figure 4.5 have
been repeated three times to see if the correlation contains useful information
for selecting bad features. The conclusion is that the correlation that differs
the most from the correlation for the experiments with the complete instance,
is mostly a bad feature. But this observation does not always hold. The reason
for this is clear when looking at Figure 4.5. The correlation – which is a single
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Figure 4.5: Effect on instance distance–performance plot when removing a feature.
The x-axis is the Rényi divergence based instance distance. The y-axis is the micro
F-score of the synthetic kNN experiment. The data points of the nine experiments
when the bad feature (feature 5) is excluded are inside the grey selection.
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figure describing the linearity of data points – is not the best way of describing
the difference between the data points inside the grey selection and the other
data points.

A better way to describe the difference between the data cloud when feature 5
is excluded, is by computing the average relative difference between the distance
of the entire instance and the distance when the feature is excluded:

distance deviation =
d− di
d

(4.6)

with
d = distance when all features are included
di = distance when feature i is excluded

The distance deviations are given in the fifth column of Table 4.7. The bad
feature (feature 5) is behaving clearly different from the other features when the
distance deviation is used to describe the data. The bad feature has the highest
distance deviation, namely 79.7%.

More features

The instances in the previous experiments only have five features. Many prob-
lems require instances with more features in order to capture the information
needed to solve the problem. To investigate the effect of more features, the
previous experiment is repeated with instances that have four good and four
bad features. All good features are created with the same instance generator.
This means that they are similar in nature. The same holds for the bad fea-
tures. In addition to the good and bad features, four random features are also
included.

The data is used twice. Table 4.8 contains data for an experiment that is an exact
replica of the experiment of the previous subsection; only one feature is excluded
when computing the distances. The results are presented in the same manner
as in Table 4.7, except that the correlation r2 is not reported because we have
shown that r2 does not contain interesting information. Secondly, Figure 4.6
shows the results when four features are excluded simultaneously.
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excluded
feature

F-score performance
difference

distance
deviation

description

1 75.00% 0.01% 0.2% random feature
2 75.03% 0.01% 0.2% random feature
3 75.07% 0.05% 0.1% random feature
4 75.02% 0.00% 0.2% random feature
5 64.46% -10.56% 0.2% good feature
6 64.35% -10.67% 0.1% good feature
7 65.36% -9.66% 0.1% good feature
8 64.17% -10.85% 0.0% good feature
9 76.99% 1.97% 13.5% bad feature
10 77.08% 2.05% 11.8% bad feature
11 77.19% 2.17% 15.1% bad feature
12 76.96% 1.94% 12.7% bad feature

none 75.02% – – all features

Table 4.8: The effect of removing one feature on performance and distance.

In Table 4.8, the third and fourth column are the most interesting. The fourth
column contains the distance deviation – i.e. the difference between the test/-
training distance of the complete instances and the test/training distance of the
instances when a feature is removed – and the results show that the distance
deviation of the bad features (features 9, 10, 11, and 12) is still clearly different
from the distance deviation from the good features (features 5, 6, 7, and 8) and
random features (features 1, 2, 3, and 4). It has to be noted that the effect is
less pronounced when compared to the experiment with only one bad feature.
This can be attributed to the fact that the bad features are all the same, while
removing only one feature, still leaves three bad features to have an influence on
the distance measure.

Another aspect that could be an influence is the fact that TiMBL does not take
correspondences between features into account.

The distance deviation can still be used to identify bad features when there are
more bad features in an instance. It would be interesting to see the effect of
removing more features simultaneously.

The instances of the experiment have twelve features in total. This means that
there are 495 combinations of four features. Presenting such an amount of data in
a table does not help to gain insight. We therefore present the results in a graph.
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0 bad features excluded

4 bad features excluded

3 bad features excluded

2 bad features excluded

1 bad feature  excluded

Figure 4.6: Effect of removing four features on performance and distance.

Figure 4.6 shows the result when four features are excluded simultaneously. A
data point in Figure 4.6 is the averaged result of nine TiMBL-experiments.

The distance deviation is on the x-axis of Figure 4.6; the average performance
is on the y-axis. The horizontal line is the average performance when all the
features are used. Data points above this line come from sets that are a com-
bination of features that harm performance when they are included in the in-
stances.6

When focusing on the distance deviation alone, it can be seen that there are five
discernible groups. Each group has its symbol in Figure 4.6 and the last group
(triangle) consists of only a single data point. These groups coincide with the
number of features in the set of four removed features that are bad. The first
group at the left (circles at distance deviation ∼0.0) are the combinations that
do not contain any bad feature. This means that for these experiments all bad
features are still included in the instances. The second group (open circles, at
distance deviation ∼0.14) are the combinations that contain one bad feature. As
can be expected, the average performance of these experiments is higher than the

6The performance for these sets is higher because the performance is computed by removing
the selected set from the set of all features: only good features remain.
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performance of the first group. The third and fourth group are the groups when
two and three bad features are removed. The last data point at distance ∼0.86
are the experiments when all four removed features are bad features.

These groups can be further divided into subgroups when the average perfor-
mance is taken into account. The distance deviation does not vary for these
subgroups, but the performance does. The varying performance comes from the
different proportions of random and good features that are in the set of removed
features. The more good features there are in the set of excluded features, the
lower the performance. All subgroups of a given group have the same distance
deviation value. This observation supports the previous one that the distance de-
viation technique can detect bad features, but cannot detect differences between
good and random features.

Different number of feature values

In the previous subsection, the effect of the number of features per instance is
discussed. In this subsection, the effect of the number of feature values will be
discussed.

The experiments are set up as in the previous sections except for the creation of
the instances. The instances have six features:

2 random features: one random feature that is a sample from a set of five
feature values and one random feature that is a sample from a set of 50 feature
values,

2 good features: one good feature with five feature values (one for each class la-
bel) and one good feature with 250 feature values (50 for each class label),

2 bad features: one bad feature with five feature values (one for each class
label) and one bad feature with 250 feature values (50 for each class label).

The features with five feature values (feature 1, 3, and 5) are exactly the same
as the features in the previous experiments. The features with 50 feature values
(feature 2, 4, and 6) only differ in the number of feature values that are associated
with a given class. For example, there would be only one feature value a1

referring to class label A for feature 1, but there would be 50 feature values {a1,
. . . , a50} for class label A in feature 2.

Table 4.9 contains the data from the experiment – excluding one feature at a
time. It can be seen that the performance difference for the features with 50
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excluded
feature

F-score performance
difference

distance
deviation

# feature
values

description

1 47.41% 1.26% 0e−6 5 random feature
2 46.23% 0.08% 17.5% 50 random feature
3 30.55% -15.60% 0e−6 5 good feature
4 44.65% -1.51% 17.2% 50 good feature
5 63.12% 16.97% 1e−6 5 bad feature
6 46.24% 0.08% 20.9% 50 bad feature

none 46.15% – – – all features

Table 4.9: The effect of removing one feature on performance and distance when
features have a varying number of feature values.

feature values behaves as expected, but that the extent is much smaller than the
performance for features with only five feature values. The bad features have
the highest distance deviations: 1e−6 for the bad feature with five feature values
and 20.9% for the bad feature with 50 feature values.

When taking only into account the features with 50 feature values, the bad
feature is the feature with the highest distance deviation. This is consistent with
previous observations. For the features with five feature values, the observation
also holds, but the values approach the significant digits threshold, which makes
the observation less strong.

The conclusion of this experiment is that mingling features with a different
number of feature values can make the distance deviation impractical to use.
Features with many feature values tend to weigh too heavily on the distance score
compared to features with fewer values. As can be seen in Table 4.9, the features
with many feature values have an influence on the distance deviations of the
features with five values. The distance deviations of the latter are considerably
smaller than the comparable ones reported in Table 4.7 on page 118. When
features with many feature values are mixed with features with fewer values, the
distance deviation for the latter may become too small to use.

Differentiating random and good features

Although the most interesting application for feature selection is an application
that identifies features that harm performance, it may be interesting to be able
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feature
information
gain

gain ratio description

1 0.02 0.01 random feature
2 0.84 0.12 random feature
3 0.93 0.41 good feature
4 1.47 0.21 good feature
5 0.92 0.40 bad feature
6 1.47 0.21 bad feature

Table 4.10: The information gain (IG) and gain ratio (GR) of the features in Table 4.9.

to separate random from good features.

The relation of feature distributions with the performance is examined in the
previous experiments, without considering the relation of a feature with the class
labels of the instance. This information about the class label/feature relation
is available for the training corpus and can be used for feature selection. A
common way of exploring the amount of information that a given feature con-
tributes to the knowledge of the correct class label, is by computing the gain
ratio (Daelemans et al., 2010). The gain ratio (GR) (Quinlan, 1993) is a normal-
ized version of the information gain (IG) (Quinlan, 1986) in order to abstract
from the number of feature values per feature.

Since there is a training corpus that contains class labels, the gain ratio can be
computed for the training corpus. The gain ratio from the training corpus can
then be used to infer the randomness of a feature.

The information gain and gain ratio of the features for the experiments of Ta-
ble 4.9 are given in Table 4.10. The random features have a lower gain ratio when
compared to features with the same number of feature values. For example, ran-
dom feature 1 has a gain ratio of 0.01 while the good feature 3 and bad feature
5 have values of 0.4. The gain ratio difference between random and good/bad
features becomes smaller when there are more feature values involved.

If the information in Table 4.9 and Table 4.10 is combined, good, bad and random
features can be identified. Based on the distance deviation for features with the
same number feature values, it can be inferred from Table 4.9 that feature 5 and
6 are bad features for the task. Hence, features 1 through 4 are either random
or good features. Based on the gain ratios in Table 4.10, it is possible to say
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that feature 1 and 2 contain less information about the correct class labels – are
more random – than features 3 and 4. Since it is known that feature 3 and 4 are
not bad features they should be good features.

The gain ratio captures different information than the distance deviation does.
Gain ratio is a measure of how good a feature is linked to its class label. The
gain ratio gives information about the randomness of a feature. The distance
deviation captures how different an instance is when a given feature is in- or
excluded. In previous sections, we showed that this difference can be linked to
the badness of a feature. Both variables are required to separate good, bad, and
random features from each other.

Conclusion

The feature with the highest distance deviation from the distance between test
and training corpus when the entire instance is used, is a feature that contributes
the least to a good performance – or will even harm performance. The conditions
that should be satisfied for this conclusion to hold are: (1) that the number of
different feature values is the same for every feature, (2) that the quality of a
feature is different for different class labels (here expressed by the α parameter),
and (3) that the performance decrease induced by a bad feature, is sufficiently
large.

The link between distance and performance can be used to get an indication of a
bad feature, but discriminating between good and random features is not possible
this way. Information gain and gain ratio can be of help when investigating the
amount of information a feature contains, thus becoming a tool to distinguish
between good and random features.

The conclusion also holds when excluding more than one feature simultaneously,
although the contribution of the separate features may get obscured. The con-
clusion holds to a lesser extent when condition (1) is not met. The influence
of a different number of feature values per feature may obscure the information
present in the distance deviation.

The conclusions of this section are all reached by controlling the exact nature
and the amount of features and feature values involved. The clear boundaries
between random, good and bad features can most probably not be drawn when
conducting real data experiments because real data will contain features that are
a mix of good and bad characteristics. When instances are created for real data,
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there will be interdependences between the features. These interdependences can
be hard to detect and they may alter the correlation between instance distance
and performance.

In the next subsection, it is examined whether the techniques from this subsec-
tion are still relevant for real data.

4.3.4 Analysis using real data

In the previous subsection, the applicability of distance deviation when estab-
lishing the quality of features is investigated by means of synthetic data. In this
subsection, the method is put to the test with real data. Real data will not
necessarily satisfy the conditions that are responsible for the clear separation
of bad features from other features. For real data, in general, the number of
feature values will not be the same for each feature. Nor will it be guaranteed
that a feature contains a different amount of information about each class la-
bel. And most importantly, in real data the extent to which a bad feature will
harm performance will not be as large as it is for synthetic data. Because some
conditions cannot be satisfied with real data, additional experiments are needed
to see to what extent the technique can provide information in less controlled
setups.

Experimental setup

For the experiments in this section, the memory based POS experiments on
the British National Corpus from Section 3.4 are recreated. The memory-based
tagger consists of two kNN-classifiers: one classifier for tokens that are in the
training corpus and one classifier for tokens that are not. The first classifier will
be referred to as the known words classifier and the second will be referred to as
the unknown words classifier.

The instances for the known words classifier contain 14 features:7 POS-tags of
the five tokens at the left of the focus token, the token at the left, the ambitag
and token of the focus token, the token at the right, and the ambitags of the
five tokens at the right.

7MBT pattern: dddddwfWwaaaaa.
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The instances of the unknown words classifier contain 15 features:8 POS-tags of
the three tokens at the left of the focus token, the token at the left, the token at
the right, the ambitags of the three tokens at the right, the begin character of
the focus tokens, the three last characters of the focus token, and three binary
indicators: an indicator for the presence of a capital, the presence of a hyphen,
and whether the focus contains a number or not.

The results of the experiments are obtained through cross-validation experiments
of the same type as for the synthetic data excluding one feature at a time. For
every domain, all other corpora are merged into one large training corpus.9 The
test corpus and the training corpus are split into three parts and a TiMBL
experiment is run with all possible test/training pairs. The performance and
distance scores reported in the tables below are based on the averages of those
nine TiMBL experiments.

Experiment with real data

In a first setup, the corpora for the unknown words and known words classifier are
used, as explained in the experimental setup. The outcome of these experiments
is presented in Table 4.11 and Table 4.12.

The first column of the tables contains the index of the feature that is excluded
and for which the other columns report the results. The last column contains a
description of the excluded feature.

For the unknown words classifier, the average micro F-score when no features
are excluded, is 68.20% (std. deviation 1.73%). For each of the 15 features, this
experiment is repeated while one feature is excluded from the instances. The
performance difference of these TiMBL experiments with the performance using
all features, is presented in the second column of Table 4.11. A negative value
in column 2 indicates that the given feature is a good feature and removing it
from the instances causes performance loss. A positive value is an indication of
a bad feature.

For the known words classifier, the average micro F-score when no features are
excluded is 93.67% (std. deviation 0.74%). Column 2 of Table 4.12 contains the
performance deviation from this value when a feature is excluded.

8MBT pattern: dddwFwaaachnpsss.
9Because the corpora for known words are too large, a sample is taken of 200,000 instances

per domain.
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excluded
feature

performance
difference

distance
deviation

# feature
values

gain ratio description

13 -2.80% 0.5e−3% 2 0.25 hyphen
14 -2.05% 1.6e−3% 2 0.39 capital
15 -0.29% 2.0e−3% 2 0.73 numeric

11 -4.58% 8.4e−3% 76 0.16 -2 end character
12 -12.04% 12.0e−3% 73 0.25 -1 end character
10 -2.12% 12.2e−3% 76 0.12 -3 end character
1 -0.68% 17.2e−3% 72 0.14 initial character

4 0.13% 4.9e−3% 92 0.02 -3 left context tag
5 0.01% 6.0e−3% 92 0.05 -2 left context tag
6 -2.72% 10.9e−3% 92 0.13 -1 left context tag

2 -0.46% 0.8% 169 0.10 left context token
3 -0.05% 4.4% 166 0.10 right context token

8 0.12% 15.6% 3967 0.04 +2 right context ambitag
9 0.14% 16.9% 3889 0.03 +3 right context ambitag
7 -0.88% 16.9% 3589 0.12 +1 right context ambitag

Table 4.11: unknown words feature selection experiments.

The third column of the tables contains the distance deviations. As has been
seen for the experiments with synthetic data, a high distance deviation is an
indication of a bad feature, although mixing features with a different number
of feature values may interfere with this rule of thumb. The features in the
tables are sorted on increasing distance deviation, but are loosely grouped on
the basis of the number of feature values. The fourth column gives the number
of different feature values for a feature. Finally, the fifth column contains the
gain ratio values.

The results in Table 4.11 and Table 4.12 cannot be easily interpreted. At first
sight, the conclusion that a higher distance deviation is reserved for bad features
(a positive performance difference) cannot be deduced from the tables. The
fact that features with a high number of feature values have a more outspoken
distance deviation can also be seen in the tables.

Something that can be concluded from comparison of the tables for the real data
with Table 4.9 for the synthetic data, is that the extent to which a feature harms
the performance is much smaller for the real data than it is for the synthetic data.
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excluded
feature

performance
difference

distance
deviation

# feature
values

gain ratio description

4 0.02% 3.0e−3% 92 0.01 -5 left context tag
5 0.02% 3.1e−3% 92 0.01 -4 left context tag
6 0.02% 3.3e−3% 92 0.02 -3 left context tag
7 -0.06% 3.5e−3% 92 0.07 -2 left context tag
8 -1.33% 3.9e−3% 92 0.23 -1 left context tag

3 -0.05% 1.0% 164 0.21 right context token
1 -0.25% 1.1% 164 0.20 left context token
2 -0.57% 1.2% 163 0.67 focus token

14 0.03% 6.3% 2895 0.03 +5 right context ambitag
13 0.03% 7.0% 2953 0.03 +4 right context ambitag
12 0.03% 7.7% 3014 0.04 +3 right context ambitag
11 -0.01% 8.5% 3062 0.08 +2 right context ambitag
10 -0.56% 9.3% 3136 0.20 +1 right context ambitag
9 -20.82% 9.8% 3277 0.72 focus ambitag

Table 4.12: known words feature selection experiments.

Indeed, for Table 4.11 the worst feature yields only a performance difference of
0.14%, which is small compared to 16.97% in Table 4.9. For Table 4.12, the
worst feature only harms the performance with 0.03%.

This observation touches on the heart of the problems that occur, when distance
deviation is applied on real data in a feature selection setup: the real natural
language data used in this experiment, does not contain features that are as
harmful as the bad features in a synthetic setup. Most real feature values will
not be highly informative for the class label in the training data and highly
disinformative in the test data, as is the case for the bad features in synthetic
data. The result is that bad features for real data can harm the performance,
but not sufficiently so for the distance deviation method to pick it up.

Mixed real/synthetic data experiment

To test whether extremely bad features would behave in the same manner as in
the synthetic data, a bad feature – feature 16 – is added to the real data. For
these experiments, only a small subset of the BNC corpora is taken. The bad
feature is constructed in the same manner as the bad features in the synthetic
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excluded
feature

performance
difference

distance
deviation

# feature
values

performance
difference

distance
deviation

13 -2.14% 0.2e−3% 2 -1.14% 0.2e−3%
14 -2.75% 0.5e−3% 2 -2.96% 0.4e−3%
15 -1.21% 13.2e−3% 2 -2.87% 12.3e−3%

16 – – 65 29.37% 2.5%

10 -0.83% 18.7e−3% 73 -0.73% 17.6e−3%
12 -10.65% 19.7e−3% 70 -4.80% 18.5e−3%
11 -3.14% 29.4e−3% 71 -1.49% 27.6e−3%
1 -0.01% 39.1e−3% 69 -0.36% 36.7e−3%

4 0.07% 6.6e−3% 91 -0.11% 6.2e−3%
5 -0.09% 8.1e−3% 90 -0.54% 7.7e−3%
6 -2.51% 14.6e−3% 87 -1.85 13.8e−3%

2 -0.53% 0.3% 145 -0.73% 0.3%
3 0.22% 0.6% 144 -0.64% 0.6%

8 0.14% 17.3% 940 -0.19% 16.3%
7 -0.70% 18.3% 865 -0.87% 17.3%
9 0.16% 18.6% 942 0.01% 17.6%

Table 4.13: Unknown words feature selection experiments on a small subset of the
corpus. With and without a bad synthetic feature 16 included.

data experiments: one feature value for each class label (with α = 0.05). The
results are in Table 4.13. The first column contains the excluded feature; the
second and third column contain the performance difference and distance de-
viation when only the real features are used. The fourth column contains the
number of feature values for a feature. The fifth and the sixth column contain
the performance difference and distance deviation when a synthetic feature is
included.

As can be seen, feature 16 has a higher distance deviation (2.5%) when compared
to features with a comparable number of features (17.6e−3% – 36.7e−3%) . This
observation is consistent with the observation for synthetic data: bad features
have a higher distance deviation.

This latter experiment has been repeated with a good and a bad synthetic feature
with approximately 830 feature values. The bad synthetic feature behaves also
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as expected. Excluding the bad feature leads to a performance gain of 1.28%
and the distance deviation for the bad feature is 67.1%, which is higher than the
distance deviation of comparable features 7 – 9. Because the bad feature with 830
feature values has a higher number of feature values than feature 16 of Table 4.13,
the performance difference is less outspoken. The good synthetic feature also
behaves as expected. Excluding the good feature leads to a performance loss of
31.5%, while the distance deviation is 1.9%. A possible conclusion that can be
made, based on these extra experiments, is that for the part-of-speech instances,
the performance difference linked to a single feature is too small to be picked up
by the distance deviation, since including a synthetic bad feature leads to the
same observations as for entirely synthetic data.

Feature selection based on distance deviation

Using distance deviation for feature selection might be useful in some specific
situations: when one expects that sufficiently harmful features are present. Next,
we suggest how the feature selection could be put into practice.

Feature selection could be carried out as follows. First, a random and a bad
synthetic feature are introduced for each group of features with a comparable
number of features. These synthetic features will function as reference points
for the distance deviation. Next, for a set of test/training pairs, the distance
between the test and training corpus is computed, using the full feature vectors
and excluding each of the features. Based on these distance values, all distance
deviations can be computed. When all distance deviations are computed, it is
possible to compare the deviations of a real feature with the deviations of the
bad and the random feature for each group of features. We have seen that bad
features always have a distance deviation that deviates maximally from the dis-
tance deviation of random features. If the deviation of a real feature approaches
the deviation of the bad feature, the real feature is probably a harmful feature
too.

Another application could be the identification of features that deserve more
attention during instance construction. If a feature is associated with a high
distance deviation value, it may be a good idea to investigate its role during
machine learning and maybe change to way the feature is defined.
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4.3.5 Conclusion

In this section experiments were designed to test the following idea:

A useful feature influences the correlation between a distance and the perfor-
mance of a feature-based machine learner in a different way than a superfluous
or harmful feature.

It has been found that computing the instance distance by taking the length of
the distance vector that consists of a distance per feature, sufficiently preserves
the correlation between the distance metric and performance.

Contrary to the idea that has been tested, it is not the useful feature that stands
out when the distance is used for feature selection. Instead, it is the harmful
feature that becomes traceable. The distance deviation is an indicator that can
be used to separate bad features from good features and superfluous features.
This conclusion is based on experiments on synthetic data as well as on real
data.

The knowledge of this different behavior leads to a feature selection method
based on instance distances, but, when real data is used, parameters such as
a different number of feature values and dependencies between features have a
detrimental effect on the information provided by the distance deviation. For
the moment, the influence of these parameters makes it impractical to use the
distance deviation as a general indicator good and bad features.

A second disadvantage of distance deviation-based feature selection is that for
real data, the performance loss due to a single feature is not sufficiently pro-
nounced to be picked up by the distance deviation.

The experiments in this section confirmed the existence of a relation between the
harmfulness of features and a distance metric for memory-based experiments,
although further research is needed for finding a generally applicable way of
exploring this relation for feature selection.

4.4 Selecting corpora for self-training

Adding more data to a training corpus is found to be beneficial, but adding only
a small amount of carefully chosen data can also help a lot. This conclusion is
drawn by Chelba & Acero (2006), while presenting work on adapting maximum
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entropy Markov models. Similar reasoning is the basis of active learning, as
it is presented by Lewis & Gale (1994), see Figure 1.2 for the algorithm. The
uncertainty of a classifier is used to identify instances that can be interesting for
the classifier to have in its training corpus.

Another way of determining the suitability of an instance could be through the
use of a distance metric. In this section, self-training experiments are set up
to investigate the usefulness of a distance metric in selecting unlabeled corpora
that would increase the performance of a classifier, if they were added to the
training corpus. Or expressed in a more condensed manner: a distance metric
is used to select the best-suited unlabeled data for self-training.

4.4.1 Introduction

Self-training is a semi-supervised learning method, intended to create additional
training data for supervised learning in resource-scarce situations. The basic
self-training algorithm is explained in Figure 1.3 on page 11.

The experiments in this section will show that adding an unlabeled corpus to
the training corpus of a memory-based POS labeler through self-training, will
not always have a positive influence on the performance. For this reason, this
section is dedicated to investigating whether distances can help self-training by
indicating which unlabeled data should or should not be added to the training
corpus.

Sagae (2010) argues that self-training is only beneficial in those situations where
the training and test data are sufficiently dissimilar, but other factors – such
as labeling accuracy of the unlabeled data – may have an influence too. The
question is: when are the test and training corpora too similar to draw benefit
from self-training and, more fundamentally, when is an unlabeled corpus no
longer suited for self-training? It can be expected that the answer to these
questions will be task-specific, but nevertheless this section contains an attempt
to formulate a general answer.

First, a performance indicator is designed to be able to benefit from the informa-
tion that may be present in the distance metric, because, later in this section, it
will be shown that simply using the distance is not an option for a self-training
setup. The performance indicator should be based on unlabeled data and it
should indicate whether a given combination of test corpus, training corpus and
unlabeled corpus can be expected to benefit from self-training.
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In the remainder of this section, the design of the performance indicator is
explained. Next, self-training experiments for a memory-based POS-labeler are
carried out in order to test the performance indicator.

4.4.2 Designing a performance indicator

The goal of a self-training experiment is to find the corpus that should best be
added to the training corpus, meaning that adding the extra data would result
in an increase of the accuracy. A performance indicator is needed to find the
best corpus to add to the training corpus. As has been shown in Chapter 3
for a straightforward experiment, a distance based on relative token frequencies
is already a good performance indicator. For the self-training experiments, a
new performance indicator will be proposed. The performance indicator should
provide information about the performance of a POS-tagger after the complex
process of self-training. As a consequence of the self-training cycle, the perfor-
mance indicator cannot consist of a single distance metric. Nevertheless, the
observation that there is a good relation between distance and accuracy for reg-
ular POS labeling experiments, remains the theoretical starting point for the
design of the performance indicator.

The relation between distance and performance

In Section 3.4, we saw that there is a good linear relation between the Rényi
divergence and the labeling accuracy of (memory-based) POS-taggers. The cor-
pora that will be used in the section are only slightly different from those in Sec-
tion 3.4, but nevertheless, the relation with the distance metric is recomputed
and presented in Figure 4.7. The distance is the Rényi divergence (α = 0.99)
between a training corpus (applied sciences) and the respective test corpora –
whose labels are alongside the associated data points in Figure 4.7. As expected,
there is a good correlation (r2 = 0.890).

During self-training, data is added to the training corpus, but nothing is changed
to the experimental setup of the previous paragraph. The only difference is
that the training corpus is extended. The black dots in Figure 4.8 represent the
experiments where applied sciences is used as the training corpus and imaginative
texts is used as the test corpus. For each data point, one domain10 is added to
the training corpus before running the POS labeling experiment. The names of

10With gold standard labels.
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Figure 4.7: Correlation between Rényi (0.99) distance and POS labeling performance.
The applied science domain is the training corpus for each experiment. The names of
the test corpora are given alongside the data points.

which corpora are added to the training corpus, are given alongside each data
point. As expected, there is a very good correlation between the divergence
metric and the labeling accuracy, r2 = 0.967.

Until now, the data points from Figures 4.7 and 4.8 that are discussed, are only
a repetition of the experiments in Chapter 3. The diamonds in Figure 4.8 are
obtained in a different way, namely through self-training. For these data points,
the corpus that is added to the training corpus is not provided with the gold
standard labels, but with the labels as they are assigned in the labeling step,
step 2 of the self-training algorithm. Because the distance between training
and test corpus is computed without the use of the class labels, all distances
remain the same: each diamond is on the same vertical line as its gold standard
counter part. As can be seen, adding the newly labeled corpora as opposed to
adding the gold standard does harm the performance substantially. The dotted
line represents the performance when no extra data is added to the training
corpus. Adding newly labeled corpora sometimes even harms performance to
such extent that adding data through self-training leads to worse results than
plainly using the training corpus to label the test corpus. The r2 correlation
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Figure 4.8: Correlation between Rényi (0.99) distance and POS labeling performance.
The applied science domain is the training corpus for each experiment; the imaginative
texts domain is the test corpus. Different corpora are added to the training corpus and
their names are given alongside the black data points. The black dots are obtained
when the added corpus contains the gold standard labels. The diamonds are obtained
when the corpora are added through self-training. Each diamond is exactly below its
gold standard counter part – as indicated by the vertical dashed line. The dotted line
is the accuracy when no additional data is added to the training corpus before using
it to label the test corpus.
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of the diamonds is 0.637, which is lower than for the black data points. This
implies that the correlation between distance and performance gets lost when
self-training is involved.

Additional observations

In the previous experiment, we found that the linear correlation between distance
and performance gets lost when self-training is involved, but it remains a fact
that the labeling step – step 2 of the self-training algorithm – will be better when
the unlabeled data is closer to the training corpus. This is a first observation
forming a basis for the application of distance metrics in self-training. The
accuracy of step 2 will be referred to as the labeling accuracy in the remainder
of this section.

A second observation is that the correlation between distance and the accuracy
for train/test pairs does not get lost when a particular corpus is added to each
of the training corpora.

In a self-training setup, one expects a good correlation between the final accuracy
and the distance between the test corpus and the expanded training corpus,
when the added data has gold standard labels (the black dots in Figure 4.8).
The expanded training corpus is a term denoting the training corpus after the
addition of extra data to the original training corpus. It would be interesting
if this correlation would still hold when the distance is computed on the test
corpus and the unlabeled data alone.

In Figure 4.9, the accuracy is the POS labeling accuracy when the expanded
training corpora are used to label the test corpus (natural & pure science). The
training corpus is arts and the labels of the added unlabeled data are indicated
in the figure.

The distance is computed twice: once as the divergence between the extended
training corpora and the test corpus11 (•), and once as the divergence between
the unlabeled corpora and the test corpus12 (I). For the expanded training
corpora the r2 correlation is 0.964, for the unlabeled corpora the correlation is
0.960.

Because the measurement of the distance is the only difference between the
bullets and the triangles, the performance is the same for a triangle and its

11In the next subsection, this distance will be called d3.
12In the next subsection, this distance will be called d4.
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Figure 4.9: Correlation between two distances and (gold) self-training performance.
The distance is computed twice: once as the divergence between the extended training
corpora and the test corpus (d4, •), and once as the divergence between the unla-
beled corpora and the test corpus (d3, I). For the expanded training corpora the r2

correlation is 0.964, for the unlabeled corpora the correlation is 0.960.
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bullet counterpart. The result is that the triangles are on the same horizontal
line as the bullets. The data points are shifted to the left of the graph when only
the unlabeled corpus is used to compute the distance. Or, putting it differently,
the distances increase when only the unlabeled corpora are used to compute the
distance.

Instead of looking at the data points as being the result of adding extra data to
a training corpus, one may also interpret them as being the result of adding a
fixed, constant corpus (the original training corpus, arts) to a set of experiments
with a different training corpus (the gold standard unlabeled corpora). The
conclusion that can be drawn from this interpretation is that including a fixed
corpus when computing distances, does not influence the degree of correlation
between a distance metric and the performance. Indeed, the correlation changes
from 0.960 to 0.964.

Therefore, when proportionality13 is the only matter of interest, computing the
distance using only the variable part of a training corpus, is sufficient to find the
proportionality between distance and performance. In terms of the self-training
experiments that will be conducted later, this implies that the distance between
the unlabeled data and the test data can act as a proxy for the distance between
the extended training corpus and the test data: d3 ≈ d4. This will make it easier
to compute the distances that are used in the performance indicator that will
be derived in the next subsection.

The performance indicator

In the previous subsections it has been found that in self-training, the distance
between training and unlabeled data is of importance in the labeling step (obser-
vation 1) and that the distance between the self-trained model and the test data
is important in the final usage of the model. The latter distance is equivalent
with the distance between the unlabeled data and the test data (observation 2).
A good performance indicator for unlabeled corpus selection would incorporate
all these distances14 that are involved during self-training. The distances are
conceptually represented in Figure 4.10:

13Proportionality: accurracy ∝ 1
distance

.
14The distances are expected to be strictly positive and a higher value means that the

corpora are more dissimilar.
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Figure 4.10: The various distances when self-training.

Test/training distance d1: This is the distance between the training corpus
and the test corpus. This distance is inversely proportional to the accuracy of
the default experiment involving only training and test corpus.
Unlabeled/training distance d2: This is the distance between the training
corpus and the unlabeled data to be used during the labeling step of self-
training. This distance is inversely proportional to the accuracy of the labeling
step.
Test/unlabeled distance d3: This is the distance between the unlabeled cor-
pus and the test corpus. Following the observation in the previous subsection,
viz. d3 ∝ d4, this distance can act as a proxy for the distance between the ex-
tended training corpus and the test corpus (d4). This means that the distance
d3 is inversely proportional to the accuracy of the situation when the labeling
step is 100% accurate.
Test/unlabeled+training distance d4: This is the distance between the
extended training corpus and the test corpus.

The idea of how to combine all distances into one performance indicator, is il-
lustrated with Figure 4.11. The black column at the left of the Figure (acc4)
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Figure 4.11: Comparing accuracies for self-training.

indicates the accuracy when the correctly labeled unlabeled data are added to
the training data. This situation is the ideal self-training situation, if we presup-
pose that adding the correctly labeled data to the training data will maximally
increase the testing accuracy. The column at the right of Figure 4.11 reveals the
internal components of self-learning. The total accuracy is the sum of the accu-
racy of the experiment without any self-training (default experiment, acc1) and
the accuracy gain that comes from self-training. If the labeling step would be
perfect, this sum adds up to the same accuracy as the column at the left.

If the accuracy of the default experiment would increase, the self-training ac-
curacy gain would be smaller, since we presupposed that the sum of acc1 and
the gain equals the maximally attainable accuracy acc4. This behavior can be
expressed as:

gold self-training accuracy (acc4)
default experiment accuracy (acc1)

∝ self-training gain (4.7)

and gain can be expected from self-training as long as:
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gold self-training accuracy (acc4)
default experiment accuracy (acc1)

> 1 (4.8)

This condition can be expressed by the factor:

∣∣acc4
acc1
− 1
∣∣

acc4
acc1
− 1

(4.9)

which will be +1 if there is gain to be expected and -1 otherwise.

acc4 is inversely proportional to the distance d4, but only because the correctly
labeled unlabeled data is used to compute acc4. acc1 is inversely proportional to
distance d1. This means that the proportion of the accuracies can be rewritten
to:

d1

d4
∝ self-training gain (4.10)

A linear relation has the format y = ax + b and for the distance–performance
relation this becomes:

acc1 = k1d1 + c1 with k1 < 0 (4.11)
acc4 = k4d4 + c4 with k4 < 0 (4.12)

Equation 4.8 can then be rewritten to a formula that expresses when self-training
gain can be expected:

d1

d4
> K with K =

k4

k1
+
c4 − c1
k1d4

(4.13)

From the formula for K, it can be seen that the actual switching point between
self-training gain and self-training loss depends on the distance between the
expanded training corpus and the test corpus (d4), and on the distance between
the training corpus and the test corpus (d1).

When the performance indicator is being used in a real self-training experiment,
the performance is the actual object of investigation and consequently it is not

143



4.4. SELECTING CORPORA FOR SELF-TRAINING

available to compute the slopes k1 and k4. It is possible to estimate a general
value for K by introducing some approximations.

Both k’s reflect the proportionality between distance and accuracy for the same
type of experiment, therefore it can be expected that k1 ≈ k4. The second term
in the definition of K depends on the accuracies – at zero distance between
test and training corpus – when using the training corpus together with the
unlabeled data (c4) and without the unlabeled data (c1). In both cases, there is
no difference between test and training corpus and it can be expected that the
accuracies will be similar, c1 ≈ c4. These approximations lead to the reduction:
K ≈ 1.

Distances d1 and d4 may be incomparable because of corpus size effects. The
distance d1 is measured between the training corpus and the test corpus in
contrast to d4, which is measured between the expanded training corpus and
the test corpus. Based on Figure 4.9, it has been found that d4 ≈ d3 with d3

the distance between the unlabeled data and the test corpus. It is possible to
choose the amount of unlabeled data to be equal to the amount of training data,
leading to a d3 that is comparable to d1. This comparable d3 can be used as a
proxy for d4. Rewriting the self-training gain now becomes:

d1

d3
> 1 (4.14)

This condition can be expressed by the factor:

∣∣d1
d3
− 1
∣∣

d1
d3
− 1

(4.15)

This factor will be +1 if there is gain to be expected from self-training and -1
when no gain is expected. This factor is deduced for a situation where the unla-
beled data is perfectly labeled. This cannot be expected in a realistic self-training
experiment. The labeling accuracy is inversely proportional to the distance be-
tween the training corpus and the unlabeled corpus (d2). We assume that a
higher labeling accuracy leads to a higher self-training gain:

1
d2
∝ self-training gain (4.16)
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The same proportionality holds for d1 and d3 and the harmonic mean of all
distances can be included in the performance indicator to express the dependency
of self-training accuracy on the various distances.

The final performance indicator now becomes:

performance indicator =

∣∣d1
d3
− 1
∣∣

d1
d3
− 1

( 1
d1

+
1
d2

+
1
d3

)
(4.17)

The absolute value of this performance indicator is expected to be proportional
to the self-training accuracy and the sign of the performance indicator signals
whether self-training gain can be expected or not. In the next subsection, the
usage of the performance indicator is tested for self-training experiments with a
memory-based POS-labeler.

4.4.3 Experiments

Evaluating the performance indicator

The nine part-of-speech corpora from British National Corpus are used for the
memory-based POS-tagger experiments in this section. To abstract from size
effects, samples are taken from the corpora. The size of the samples approximates
1,500,000 tokens per domain, keeping sentences intact.

For the self-training experiments, one domain is taken as the labeled training
corpus and another domain is taken as the test corpus. Because there are nine
domains, this leaves seven domains to be used as unlabeled data. Each of those
seven domains is used in a separate self-training experiment. With this setup,
72 self-training experiments can be run, in which each experiment is designed to
find the best corpus out of the seven unlabeled corpora. The result is 504 data
points that should be split into seven groups: the group of experiments with a
positive self-training outcome and the group with negative outcomes.

For the experiments, all distances are computed using the Rényi divergence
(α=0.99).

In the previous subsection, a performance indicator for the suitability of unla-
beled data for self-training was developed. This performance indicator is now
empirically validated with 504 self-training experiments. The data points for
all experiments can be seen in Figure 4.12, in which the performance indicator
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Figure 4.12: Correlation between performance indicator and self-training perfor-
mance.

is plotted against the final self-training accuracy. The experiments for which
self-training is beneficial compared to the default test/training experiment, are
indicated with bullets (•), the experiments where self-training is harmful are
indicated with crosses (+).

As can be seen, positive self-training experiments have a positive performance
indicator value. This means that the performance indicator can be computed
using the distances when a choice of unlabeled data is available. If the perfor-
mance indicator is positive, there is a good chance that adding the unlabeled
data through self-training will increase performance.

It can also be seen that the self-training performance is correlated with the
absolute value of the performance indicator. A larger absolute value of the
performance indicator signals a higher self-training performance. Note that a
higher self-training performance does not represent better self-training, since the
default performance can already be high. For the right side of Figure 4.12 the
r2 correlation is 0.689, for the left side 0.498.

The right correlation is reasonable; the left correlation is not so good. The
difference in r2 may be linked to the fact that the performance indicator has
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negative indicator positive indicator total

self-training loss 234 142 376
self-training gain 18 110 128
total 252 252 504

Table 4.14: Contingency table based on Figure 4.12.

Selection metric precision recall F1-score r2

Overlap 23.20 45.31 30.53 0.187
Jensen-Shannon 43.25 85.16 57.37 0.840
sUWR 43.25 85.16 57.37 0.925
Kullback-Leibler 43.65 85.94 57.89 0.988
Rényi (0.99) 43.65 85.94 57.89 0.990

Reference 25.40 100 40.51 –

Table 4.15: Evaluation scores for different metrics. The Rényi scores (0.99) are
based on contingency Table 4.14. The distance–performance correlation r2 comes from
Table 3.4.

been designed, starting from a situation where self-training helps. Since the
main goal of the performance indicator is to separate suitable from unsuitable
unlabeled data, no effort has been made to mediate this low correlation.

Table 4.14 is the contingency table for Figure 4.12. The precision for the positive
self-training experiments can be computed from this contingency table. The
precision for this experiment is given in Table 4.15 together with the recall
and the F1-score. This precision of self-training using Rényi as the metric is
43.65%. When every unlabeled corpus is expected to contribute to a better
performance, the reference precision would be 25.40%. The result is that the
chance of adding good unlabeled data is 1.7 times higher, when the performance
indicator is used.

The recall for the positive self-training experiments is 85.94%, leading to an F1-
score of 57.89%. Recall would be 100% if all unlabeled data were expected to con-
tribute to a better performance, leading to a baseline F-score of 40.51%.

It is possible to apply a χ2 test for independence on the contingency Table 4.14.
The null hypothesis is that the sign of the performance indicator is independent
of the outcome of the self-training experiment. Based on the contingency table,
the χ2 test statistic is 88.64. This is associated with a p-value of 5e−21 (1 degree
of freedom), which is lower than 0.05: the null hypothesis is not accepted. This
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Selection metric precision recall F1-score r2

Rényi (0.10) 36.51 71.88 48.42 0.312
Rényi (0.20) 40.08 78.91 53.16 0.537
Rényi (0.30) 42.46 83.59 56.32 0.672
Rényi (0.40) 42.46 83.59 56.32 0.758
Rényi (0.60) 42.46 83.59 56.32 0.864
Rényi (0.50) 43.25 85.16 57.37 0.818
Rényi (0.70) 43.25 85.16 57.37 0.903
Rényi (0.80) 43.25 85.16 57.37 0.939
Rényi (0.99) 43.65 85.94 57.89 0.990
Rényi (0.90) 44.05 86.72 58.42 0.974
Rényi (0.95) 44.05 86.72 58.42 0.987

Optimized Rényi (0.99) 58.78 67.97 63.04 0.990
Optimized Rényi (0.90) 61.61 65.62 63.40 0.974
Optimized Rényi (0.95) 63.85 64.84 64.34 0.987

Table 4.16: Evaluation scores for different values of the α parameter in the Rényi
metric. The distance–performance correlation r2 comes from Table 3.4.

indicates that the sign of the performance indicator contains information about
the outcome of the self-training experiments.

Using other distance metrics

It is possible to substitute the Rényi divergence in the performance indicator
with any other distance metric. Table 4.15 contains the evaluation scores when
overlap, Jensen-Shannon, sUWR and Kullback-Leibler are used to calculate the
performance indicator. The fifth column contains the correlation of the distance
with the performance as it has been found in Chapter 3.

As can be seen, there is a correlation between the distance–performance corre-
lation of a metric and the F1-score. As a result, the correlation can be used
to select the distance metric that is best included in the performance indica-
tor.

To get an idea of the correlation, the experiment is repeated with Rényi diver-
gences with α values that vary between 0.1 and 0.99. The reason to use only
variants of the Rényi metric is that the quantification of the distance will grad-
ually change between the different version without changing the entire nature
of the metric. Rényi divergences with slightly different α’s will compute the
distance in a more similar way than e.g. the sUWR does. This is done to ensure
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that no other influence than the varying distance–performance correlation can
be expected to be at play in the figures of Table 4.16.

Table 4.16 contains the evaluation metrics for the self-training experiment to-
gether with the distance–performance correlation. It can be seen that the F1-
score increases together with the r2 score – the correlation between the two
variables being 0.904.

Optimizing K

During the deduction of the performance indicator, some approximations were
introduced to estimate the value of parameter K. Since in the experimental
setup, the self-training accuracies are known, it is possible to optimize the value
of K.

K =
k4

k1
+
c4 − c1
k1d4

(4.18)

As can be seen from the definition, K depends on the task at hand and no
conclusions about the value of K in other machine learning experiments can be
linked to the outcome of the optimization, as it is carried out here.

For the optimization, the calculation of the performance indicator, based on the
Rényi (0.99) divergence of Figure 4.12, is recalculated varying the value of K
from 0 to 3 with steps of size 0.05. The F1-score is plotted against the value of
K in Figure 4.13.

The best K value is 1.15, which leads to a positive self-training precision of
58.78%, a recall of 67.97%, and an F1-score of 63.04%. Repeating the optimiza-
tion for the top 2 divergences from Table 4.16, shows that the best score can be
obtained with an α value of 0.95. The F1-score of this setup is 63.34 as can be
seen at the bottom of Table 4.16. For both α = 0.90 and α = 0.95, the best
K value is 1.20. In a practical situation, K cannot be estimated, but if future
research would lead to a way to better estimate the value of K these results
could become obtainable.
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Figure 4.13: Evolution of F1-score with a varying parameter K.

4.4.4 Conclusion

In this section, we showed that the correlation between a distance metric and
the accuracy can be exploited to find the best unlabeled corpus to be used in a
self-training setup. For this reason, a performance indicator is designed and it
is applied to memory-based POS labeling experiments. We found that using the
performance indicator increases the chance of beneficial self-training 1.7 times.
With ideal parameters, this factor increases to 2.5 times. It is also found that
metrics that are better correlated with the performance of the POS-tagger in
a simple test-training setup, are better suited to be used in the performance
indicator.

A slightly different application of the performance indicator is to select unlabeled
corpora in resource-scarce situations. Consider a human annotator that wants to
annotate additional data for a domain for which no extra resources are available
because there is no digital or not even written data available. The performance
indicator could be used to select corpora from other domains that are most
likely to increase performance when they are annotated and added to the small
existing corpus.
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4.5 Conclusions

In this chapter, three applications that can benefit from the use of a distance
metric were carried out: training data selection (Section 4.2), feature selection
(Section 4.3), and corpus selection (Section 4.4).

We found that the Rényi metric produces the subset with the highest accuracy
during the training data selection experiment, but examination of the learning
curves reveals that the Jensen-Shannon divergence is most interesting when it
comes down to efficiently selecting sentences from a large corpus. In this work,
this difference is attributed to the fact that a metric has two aspects: aspect
a, quantifying the (dis)similarity of the corpora, and aspect b, linking distance
to performance. The preference of one metric over the other depends on which
aspect is more important for a given task. For the training data selection exper-
iment, it seems to be that aspect a is more important, although the influence of
aspect b is noticeable.

In the section about feature selection, we found that harmful features influence
the correlation between distance and performance in a different way than useful
or superfluous features. Superfluous features are features with little information
content. This result shows that not only do distance metrics contain information
when token frequency distributions are used, but also when a different mapping
from corpus to distribution is used. In these experiments a feature-based in-
stance distance was used. A disadvantage of using the distance deviation for
an experiment with real data is that few features are truly harmful for real
data.

In the corpus selection experiments, we found that the usage of the metric de-
pends more on the relation with the performance (aspect b) than it does for
the training data selection experiments. We showed that a performance indi-
cator that is based on a well-correlated metric, helps to detect combinations of
a test corpus, a training corpus, and an unlabeled corpus that will result in a
performance gain, when they are combined in a self-training setup.

We can conclude that distance metrics can be successfully used in various appli-
cations and, to a certain extent, it is possible to select a metric that is best for a
given task on the basis of the degree of correlation between the distance values,
produced by that metric and the performance of a given machine learner.
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Chapter 5

Conclusions

A summary of the experimental results and the insights acquired from a close
inspection of the experiments is given in this final chapter. In addition to the
summary, some more speculative ideas are addressed; how can the domain no-
tion be understood? The final section of this chapter contains ideas for further
research and is dedicated to the limitations of this dissertation.

The introductory Chapter 1 contained a definition of some basic concepts, a gen-
eral overview of related literature and the research questions that are addressed.
Chapter 2 was an introduction to various distance metrics and how these metrics
can be applied to natural language corpora. Chapter 3 was dedicated to the cor-
relation that exists between relative token frequency-based distance metrics and
the performance of NLP tools. In Chapter 4, the usage of the distance metrics
in three different applications was investigated. Because one of the aims of this
dissertation is to make the experiments reproducible, an overview of the scripts
is given in Appendix B and the source code is made available online.

5.1 Summary

Distance metrics have been used in domain adaptation techniques in various
ways. A basic assumption that gives this research a theoretical grounding, is
that there is a correlation between the distance between two corpora and the
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performance of a natural language processing tool for which the domain adap-
tation technique has been designed. Although this assumption is intuitive and
practice shows that the assumption is valid, the actual choice of the right dis-
tance metric is often not based on insight into the actual behavior of the metric.
The main motivation of our research was to gain a better understanding of the
weaknesses and strengths of distance metrics in a given setup.

The first chapters were dedicated to the behavior of the metrics in different set-
tings. A first influential factor is (a)symmetry. Metrics like the Kullback-Leibler
divergence and the unseen word ratio (sUWR) are asymmetric in the sense that
d(x, y) does not necessarily equal d(y, x). This behavior follows from the defi-
nition of the metrics and is commonly known. In the introductory Chapter 2,
detailed attention was given to asymmetry and its significance for the usage of
the metric in machine learning experiments.

Metric properties that cannot be straightforwardly derived from the definition,
were investigated more closely in Chapter 3. In a first experiment, the British
National Corpus (BNC) was used to investigate the correlation between various
distance metrics and the performance of a part-of-speech tagger for symmetric
and asymmetric usage of the metrics. We found that the distance – between
a test corpus and a training corpus from different domains – is linearly corre-
lated with the performance of a memory-based POS-tagger using those corpora.
Depending on the metric, this correlation is better or worse. The fundamental
research question of this dissertation was whether the distance–performance re-
lation is monotonic. A linear relation is a monotonic relation. Monotonicity is
important in the applications: It ensures that the distance metric can be used
to rank experimental setups.

Entropy based metrics (like Rényi divergence and Kullback-Leibler divergence)
exhibit the best linear correlation in the asymmetric and symmetric setup, but,
in the symmetric setup, the differences between the bulk of the selected metrics
decreases.

After finding the monotonic relation between distance and performance, the
traceability of the relation was investigated. The template for these part-of-
speech tagging experiments was the same as for the previous experiments, but
the focus switched: going from the influence of the algorithm and the influence
of the corpus to the influence of linearly combining different metrics.

Running the experiments with different algorithms revealed that using a baseline
algorithm, an SVM-based POS-tagger or a memory-based POS-tagger does not
have a major influence on the linearity of the correlation. This indicates that
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the observed performance drop during out-of-domain POS-tagging experiments
is directly linked to the training data and the influence of the actual process-
ing of the data is of minor importance. It should be noted that none of the
three selected algorithms uses external information like, for example, additional
wordlists or semantic information that is not present in the training corpus. Us-
ing a more complex setup may influence the easily traceable linear correlation
between distance and performance. In our research, we found that the more elab-
orate processing cycle belonging to self-training, is already sufficiently different
from the simple test/training cycle to distort the linear correlation.

Apart from the experiment with the BNC corpus, the single metrics were also
used for the experiments with the OntoNotes corpus and the presence of the
linear relation was confirmed. The linear correlation appears to be independent
from the corpus. Also, the POS experiments were repeated using a combination
of single metrics. The metric combinations perform better than the single metrics
for POS-tagging experiments on the BNC, but when the same combinations were
tested on the OntoNotes corpus they were no longer performing best. This may
be an indication that combining metrics introduces overfitting.

In-domain POS-tagging experiments were the last of the series of POS-tagging
experiments in Chapter 3. The distance between training and test corpus is
smaller for in-domain experiments than for out-of-domain experiments. We
found that the linear correlation is lost for in-domain experiments and that
the loss of the linear correlation could not be attributed to insensitivity of the
metrics. This observation could be a starting point for the objective assessment
of the homogeneity of a set of corpora.

Prepositional phrase (PP) attachment experiments have been carried out in ad-
dition to POS-tagging experiments. Switching from the POS-tagging experiment
to the prepositional phrase attachment experiment, shows that the latter is less
sensitive to domain shifts. Our point of view is that the insensitivity comes from
the minor importance of the lexical features when carrying out out-of-domain
PP attachment experiments. The basis for this view comes from the observation
that excluding lexical features does not harm the out-of-domain performance
or may even increase it. Previous research has shown that for in-domain ex-
periments, the lexical features do contribute to a better attachment accuracy.
This may be an indication that lexical features lead to overfitting to the domain
on which the PP attachment system is trained. This is not a major problem,
since the PP attachment system does not rely heavily on lexical features, but
for systems that do need lexical information, domain adaptation may yield the
best results when focusing on the lexical features.
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In the final part of Chapter 3, a shortcoming of a distance based on relative token
frequencies alone, was investigated. For a machine learner, the joint probabilities
P (X,Y ) are important for the obtainable performance. The joint probability
can be resolved into two factors P (X,Y ) = P (X)P (Y |X). The relative token
frequency distance only takes into account the first factor P (X), because we
wanted to use the distance in an unsupervised manner, but experiments showed
that the second factor P (Y |X) cannot be disregarded if one wants to accurately
predict the performance of a POS-tagging system.

In the first section of Chapter 4, the importance of the two aspects of a distance
metric became clear. These aspects are:

Aspect a: quantifying the (dis)similarity of the corpora, Aspect b: linking dis-
tance to performance.

The training data selection experiments showed that the Jensen-Shannon diver-
gence quantifies the distance between test and training corpus in a more efficient
manner, although the metric with the better distance–performance correlation
(Rényi divergence) produces the best performing training data subset. This
can be attributed to a lesser importance of aspect b, when compared to the
importance of aspect a for this type of usage of the metrics.

For the self-training experiments, the importance is reversed. For these exper-
iments, a performance indicator was designed, based on the assumption that
there is a linear correlation between distance and performance for POS-tagging
experiments. It can be expected that basing the performance indicator on this
assumption will make aspect b more important. The results confirmed this ex-
pectation.

The feature selection experiments of Chapter 4 drew upon the idea that it is
possible to obtain a distance based on other distributions except relative token
frequencies. We found that an instance distance based on the feature value
distributions of an instance, can be used to retrieve a linear relation between
this instance distance and the performance of a memory-based classifier. The
research question that was investigated is whether a useful feature influences the
correlation between a distance and the performance of a feature-based machine
learner in a different way than a superfluous or harmful feature. We found
that it is possible to identify harmful features based on the deviation of the
distance computed with and without the harmful feature. This observation
came from synthetic data. For real data, the identification of harmful features
is hampered by the fact that the different features tend to be associated with a
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different number of feature values and by the fact that, for real data, the negative
influence of a single feature on the performance is limited.

Finally, we can formulate cautious answers to the research questions presented
at the beginning of this dissertation.

1.4.1 : Is there a monotonic relation between performance and dis-
tance? We found that there is a monotonic correlation between perfor-
mance of POS-taggers and relative token frequency distances between
the training and test corpus. The nature of the correlation depends on
the task. This monotonic correlation is manifest for some metrics, but
many metrics hint at a similar correlation. Depending on the context in
which the metric is used (symmetric or not), the degree of correlation
of many metrics can be increased.

1.4.2 : Is the correlation easily traceable? For POS labeling, the correla-
tion is shown to be linear, independent of the corpus, and independent
of the labeling algorithm. The correlation is found not to be easily
traceable for an NLP tool, viz. a PP attachment tool, that does not ex-
tensively use lexical information, while the distance is being calculated
using relative token frequencies.

1.4.3 : Can the relation be exploited? The correlation between distance
and performance can be exploited in domain adaptation setups. An
important remark is that there are two aspects to a metric: (a) quan-
tifying the (dis)similarity of the corpora, and (b) linking distance to
performance. When choosing a metric for an application, it depends on
the exact usage of the metric which aspect will be predominant. The
degree of correlation between distance and performance (r2) can be used
to select a suitable metric only for those applications for which aspect b
is more important.

5.2 Subjectivity of the domain notion

Several chapters of this dissertation have been assigned to research that tries
to answer questions concerning the relation between the test/training corpus
distance and the performance of an NLP tool. There is also a question that
is not explicitly investigated in those chapters because answering it has less
practical value and may be subjective. The question is whether the notion of
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test 1 test 2 test 3

training 1 d1,1 d1,2 d1,3
training 2 d2,1 d2,2 d2,3
training 3 d3,1 d3,2 d3,3

Table 5.1: Distances d between all domains in out-of-domain experiments. training
i and test i are the same domain, only the role in the experiment differs. E.g. the
distance between domain 1 as the training corpus and domain 2 as the test corpus is
d1,2. All combinations are given because distances can be asymmetric.

domain is merely an expansion of the notion of test and train set difference or
whether the notion contains additional information about corpora.

The question is not whether domain labels do contain information. The fact
that they do contain information, can be easily derived from the experiments.
Very few machine learning experiments will obtain 100% accuracy because of the
inconsistencies between the test and training sets. These inconsistencies can be,
for example, unseen words, unseen structures, or the ambiguous usage of words.
When annotators are assigning domain labels to corpora, they will derive the
labels from the semantic content or the source of the corpora. Grouping texts
into domains is a method to minimize the inconsistencies between a test and a
training corpus that belong to the same domain. The fact that domain label-
ing provides information, can be seen when the out-of-domain experiments in
this dissertation are compared to the in-domain experiments. Removing out-of-
domain texts from a domain effectively leads to a better in-domain performance.
This means that domains do capture information, but the labels are subjective
and discontinuous – there are no fixed gradations defined for domains.

From our point of view, it would be better to supplement the domain labels with
a table containing the distances between the domains. Table 5.1 is an example
of such a table for three domains. E.g. the distance between domain 1 as the
training corpus and domain 2 as the test corpus is d1,2. When the distance
information is given, domain labels are no longer considered equivalent to each
other: one pair of domain labels may cover corpora that are actually much more
similar than the corpora covered by a second pair of domain labels. A continuous
gradation is introduced. In addition, providing the distance information is an
objective way of differentiating between corpora. Information about the distance
may be interesting for domain adaptation experiments: it may be easier/harder
to carry out domain adaptation for corpora that are further apart. This behavior
would go unnoticed when only domain labels are used.
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It should be noted that the distances of Table 5.1 are not necessarily obtained
using distance metrics. They may as well be the performances of the NLP
tool under investigation, since the performance can be a good measure for the
difference between corpora. This would mean that distance d1,1 is the in-domain
performance.

When domain labels are supplemented with distance tables, the notion of domain
becomes a subjective expansion of the objective concept distance. Using domain
labels can be considered to be a concise way of saying that the dissimilarity
between the test and training corpus is large and may be so large that even
humans can see that they are different – for example, because the semantic
content of the corpora is different. If a researcher would adhere to this view on
domains, the notion would lose its connotation of domain as a clearly distinctive
subdivision of a language. It would also mean that any technique devised to
carry out domain adaptation, could also be useful for in-domain usage.

Finding an objective way to define domains would consist of finding a threshold
on the distance scale. Corpora with a mutual distance below this threshold
would belong to the same domain, corpora with a larger distance would belong
to different domains. Such a threshold may even not exist, but if the threshold
exists, it will not be trivial to find its exact value.

5.3 Further research

This dissertation is an attempt to obtain a better understanding of distance
metrics in natural language processing. There are many applications of distance
metrics conceivable and further research is needed.

When designing a natural language processing tool, it is not necessary to re-
strict the training data to a single source. Information is increasingly becoming
available and there are no restrictions on the incorporation of this additional
information into the NLP tool. Using such a complex setup may influence the
relation between the core of the training data and the performance of the tool.
The influence of the use of external information is yet to be investigated and
may lead to interesting results. For example, how can the additional information
be incorporated in the distance metric and how will this affect the linearity of
the correlation?

Reconsidering the two aspects of a metric, it is clear that the degree of corre-
lation between distance and performance only contains information about the
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second aspect – viz. linking distance to performance. Would it be possible to
find a predictor, apart from the actual application of the metric, that provides
information about the first aspect – viz. quantifying the (dis)similarity of the
corpora? Or would it be possible to find a method to assess the relative impor-
tance of the two aspects for a machine learning task? These are fundamental
and interesting questions that are not addressed in this dissertation.

A final indication for further research may deal with the unsupervised feature
selection. We found that distance-based feature selection is achievable in a con-
trolled situation. Obstacles arise when the feature selection method is applied
to real data and distance-based feature selection becomes impractical. Further
research is needed to clarify the various parameters that cause the feature selec-
tion method to become ineffective. It is only by getting a clearer view of these
parameters that a realistic distance-based feature selection method may become
available.
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Appendix A

Background information

A.1 Triangle inequality and its application

x

y

1

0.3

0.6

Figure A.1: Two corner points, x and y, of a triangle and the arcs for an undefinable
third point, z.
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A.1. TRIANGLE INEQUALITY AND ITS APPLICATION

Figure A.1 shows two corner points, x and y, of a triangle (x, y, z). Each point
represents a text corpus. A divergence, d, gave the following distances:

d(x, y) = 1
d(x, z) = 0.6
d(y, z) = 0.3

Points x and y are drawn in Figure A.1. Point z should be on a circle with radius
0.6 centered at point x, but it should also be on a circle with radius 0.3 centered
at point y. As can be seen in the figure, the circles do not intersect, leaving the
position of point z undefined. This is due to the fact that the triangle inequality
does not hold for every pair of points, viz. d(x, z) + d(y, z) < d(x, y). If the
triangle inequality would hold, the circles would intersect and the third point z
could have been found.

A true mathematical metric (see Section 2.3) can be used to build up a multidi-
mensional space. This means that a set of points for which all pairwise distances
are given, can be plotted, although dimensionality reduction may be needed. In
the collection of metrics in Table 3.3, the best metric, i.e. a metric in the math-
ematical sense, is the Bhattacharyya distance (r2 0.425). Disappointingly, the
relation between the metric score and the accuracy is not that strong. This
means inferring POS labeling accuracy from a plot of the domains from the
British National Corpus, is not reliable. Nevertheless, the plot can be made and
can be seen at the left of Figure A.2.

The first step in the construction of the plot in Figure A.2 is the computation of
the coordinates for every domain. Coope (2000) presents an algorithm that can
compute these coordinates based on a set of distances. The basis is the triangle
inequality in the sense that after establishing coordinates for two points, the
third point can always be found in the manner as explained earlier (after adding
a dimension to the space). For three points, a fourth point can be found and so
on. For n domains, a space is build with at maximum n dimensions.

A multidimensional space with n > 3 cannot be plotted easily. That is why a
second step is introduced. The multidimensional space is projected onto two
dimensions using principle component analysis (PCA). The pitfall of using a
PCA-driven projection in order to be able to plot a multidimensional space, is
that through the loss of essential information two data points may get positioned
very close to one another even though they are far apart.
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(a) Bhattacharyya distance (b) sUWR

Figure A.2: A mapping of the Bhattacharyya metric and the sUWR in a 2-
dimensional plane.

Even when keeping the weak relation with the accuracy and the projection issue
in mind, it is possible to consider Figure A.2 as an interesting insight in the
space of domains, but no claims can be made based on the visual representation
alone. The algorithm that is used to construct the Bhattacharyya plot can be
applied to distance values from metrics that are not truly mathematical metrics
and the algorithm may finish without errors. The sUWR (r2 0.677) was the
best metric for which this is the case and the plot is included at the right of
Figure A.2. As can be seen, both plots look similar (in both cases there is some
relation with the accuracy), but they are sufficiently different to illustrate that
sUWR may perform better than the Bhattacharyya distance.

A.2 Computing the Mahalanobis distance

As defined earlier, the Mahalanobis distance is given by the formula:

Mahalanobis(x; y;M) =
√

(x− y)TM(x− y) (A.1)
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(c) Kullback-Leibler divergence

Figure A.3: POS-tagger accuracy vs. metric value for samples of 500 random tokens.

in which the matrix M is a parameter that has to be chosen or learned. In this
section, the ITML1 algorithm (Davis et al., 2007) is used to learn the matrix M ,
when computing the Mahalanobis distance between domains. This algorithm
aims to minimize the difference between the Mahalanobis and the Euclidean
distance, while stating that the distance between data points from the same
class must be smaller than a given threshold u and the distance between data
points from different classes must be greater than a threshold l. It is already
clear that the Mahalanobis distance is not well suited to compare domains,
since there is only one data point for every domain – viz. a vector containing

1http://www.cs.utexas.edu/∼pjain/itml [Last visited: January 2012].
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the relative token frequencies – meaning that the threshold u cannot be applied.
Nevertheless, it is possible to run the ITML algorithm to compute the matrix
M using token frequency vectors.

The corpora for the BNC domains, see Section 3.3, are used to construct one
token frequency vector x for each of the nine domains. Each vector gets a differ-
ent class label – the domain. The matrix M is computed and is used to establish
the Mahalanobis distance between the domains. Because of computational lim-
itations, only 500 tokens are taken into account when constructing the vectors.
This is done twice: once taking the 500 most frequent tokens and once taking
500 random tokens. This working method is far from ideal, since finding the
distance between domains, requires the entire domain. After obtaining the dis-
tance between the domains, the data points can be plotted against the accuracy
of the memory-based tagger resulting in plots similar to the ones in Figure 3.4
on page 59. The plot for the Mahalanobis distance is plotted alongside the plot
for the Euclidean distance and the Kullback-Leibler divergence in Figure A.3.
The x-axis represents the value of the distance metric and the y-axis represents
the POS-tagger accuracy. At first glance, it is obvious that the correlation is
weaker than in Figure 3.4. This can be attributed to the constraint of taking
only 500 tokens into account. The exact correlation coefficients are 0.483 for
the Mahalanobis distance, 0.296 for the Euclidean distance, and 0.482 for the
KL-divergence. These unsigned figures can also be found in Table A.1 along
with the figures for the experiments with the 500 most frequent tokens and with
all tokens.2

The Mahalanobis distance could not be computed for all tokens due to compu-
tational constraints.

corpus Euclidean Mahalanobis Kullback-Leibler

500 random tokens 0.296 0.483 0.482
500 most frequent tokens 0.475 0.514 0.097
All tokens 0.477 – 0.804

Table A.1: Pearson correlation coefficients for three metrics and two distributions.

From this simple comparison, we conclude that, apart from computational con-
straints, the Mahalanobis distance can be used to compute the distance between

2There is a small difference with the r value in Table 3.3, because, in this section, the
corpora were not pruned to contain an equal amount of sentences, neither are the distances
computed with a cross-validation technique.
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domains, and most likely it will show a better correlation with POS-tagging ac-
curacy than the Euclidean distance. The second conclusion is that the Kullback-
Leibler divergence is the metric of choice when looking at the correlation of the
distance metric with the accuracy because of its practicality and better results
when applied on the entire corpus.

A.3 Confidence interval for a predicted ob-

servation

The result of a linear regression analysis is an equation of the form:

f(x) = β0 + β1x (A.2)

This formula can be used to predict the response for a new point, xnew. This
response is then called ynew. Because β0 and β1 are estimations, there is a degree
of uncertainty associated with the newly obtained ynew. This uncertainty can
be expressed through the determination of a confidence interval, [lower, upper],
that will contain ynew with a confidence of 1− α:

ynew ∈ [lower, upper] with 1− α certainty (A.3)

The prediction interval is defined by the formula

[ynew − t1−α2 SEynew , ynew + t1−α2 SEynew ] (A.4)

with
n : the number of observations used to construct

the regression equation
t : the student t distribution with n− 2 degrees of

freedom

SEynew can be regarded as a proxy for the classical standard deviation in com-
mon confidence intervals. It can be computed as the following:
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SE2
ynew = MSE +MSE

(
1
n

+
(xnew − x̄)2∑
i (xi − x̄)2

)
(A.5)

MSE =
∑
i

(
yi − f(xi)

)2
n− 2

(A.6)

x̄ =
1
n

∑
i

xi (A.7)

For example, the plots in Figure 3.4 are based on 72 combinations of domains.
If we want to obtain the confidence interval for the prediction of one data point
using all other data points, we have 71 observations. This means that the value
of t1−α2 with 69 degrees of freedom (71−2 = 69) for a confidence of 95% (α = 0.5)
becomes 1.9949. The only thing missing to compute the confidence interval is
the SEynew , which should be computed using the values for the individual data
points.

Note that the confidence interval is computed for the new observation xnew.
The computation differs from computing the confidence interval for the mean
response at xnew.

A.4 Divergence metrics on artificial data

In this section, artificial distributions are used to gain insight on the subtle
variety in the extensive collection of divergences. The advantage of using self-
created distributions is that they can be kept very small, such that interpreting
the difference between two distributions can be done by only looking at the fre-
quencies themselves. The possibility to pair evaluation by human interpretation
and distance values produced by the metrics, provides a technique to get a deeper
understanding of the nature of the metrics. Like for all empirical experiments,
the conclusions of this section depend on the hypotheses that the researcher had
in mind when setting up the experiment. Those hypotheses are decisive in se-
lecting the distributions in Table A.2. While creating the distributions, efforts
have been made to cover a number of case studies, but nevertheless the collection
is tentative.

The basic idea for the experiments in this section is that a reference distribution,
R, is selected. The reference distribution – which would be the distribution based
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on the training corpus in a practical application – consists of three tokens, see
Table A.2. The first row in Table A.2 gives the exact figures for the frequencies
as they have been chosen. Token 1 has a relative frequency of 9.1%, token 2 has a
share of 11.1% in the distribution and the most prevailing token has a frequency
of 79.8%. Needless to say that the sum of the frequencies totals 100%. One
token of the reference distribution prevails clearly over the other two. Setting
up the distribution this way has as a result that the distribution becomes an
extremely simplified version of a Zipfian distribution – which is the expected
distribution for the tokens of a textual corpus.

In the experiments, the distance between the reference distribution and a distri-
bution from a collection of dissimilar distributions is computed. In Table A.2 the
frequencies of these distributions are presented as well as an interpretation of the
property that accounts for the dissimilarity to the reference distribution.

id token1 token2 token3 description

R 0.091 0.111 0.798 Reference distribution (training set)
1 0.495 0.505 – Absence of most frequent token
2 0.141 – 0.859 Absence of average frequent token
3 – 0.141 0.859 Absence of least frequent token
4 0.081 0.121 0.798 Small difference for less frequent tokens
5 0.101 0.101 0.798 Less frequent tokens are equally frequent
6 0.111 0.091 0.798 Switched frequencies for less frequent tokens
7 0.798 0.111 0.091 Reverse frequencies
8 0.091 0.121 0.788 Small decrease for most frequent token
9 0.091 0.101 0.808 Small increase for most frequent token
10 0.273 0.333 0.394 Same frequency order, but smaller differences
11 0.333 0.333 0.333 Equally frequent tokens

Table A.2: Artificial distributions.

Figure A.4 presents the distributions from Table A.2 visually. The x-axis is
the three tokens and the y-axis contains the associated frequencies. Although
the lines from the distributions that barely diverge from the reference, appear
superimposed, it can be deduced from the figure that some distributions greatly
differ from the reference. Most notably, the lines for the distribution with the
absence of the most frequent (id 1), with reverse frequencies (id 7), with smaller
differences (id 10), and with equally frequent tokens (id 11) do not resemble the
line for the reference distribution.
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Figure A.4: A visual representation of the distributions in Table A.2.

A.4.1 Kullback-Leibler and Rényi divergence

Figure A.5 shows a comparison of the distances as computed with the Kullback-
Leibler and the Rényi divergence (with varying α)). The various distributions
are put on the x-axis; the y-axis shows the relative distance value for a given
metric. The relative distance value is 1 for the distribution that is furthest apart
from the reference, according to a given metric and 0 for the distribution that
is closest. The distance values for the other distributions are linearly scaled to
fall in this interval. The reason for the rescaling is that it permits to compare
different metrics.

A first observation that can be made from Figure A.5 is that the distance val-
ues per distribution show a smooth transition with varying α’s and that the
Kullback-Leibler divergence blends in nicely. This can be expected, since the
Kullback-Leibler divergence is the same as the Rényi divergence with limα→1.

Since Kullback-Leibler and Rényi are closely related, it is interesting to know
which properties the α parameter emphasizes and which ones are de-emphasized.
Inspecting the figure with the relative distance values, we see that there is a
downward trend with increasing α for the distributions with an absence of a token
(id 1, id 1, and id 3). This means that an increase of α lowers the sensitivity of
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Figure A.5: Relative values of Kullback-Leibler and the Rényi divergence.

the metric with respect to missing tokens – a missing token enlarges the distance
less quickly. This effect is amplified when surpassing the value α = 1.

Decreasing the sensitivity to missing values is coupled with an increase of the
sensitivity to the relative magnitudes of the token frequencies. This can be seen
when looking at the distributions with reverse frequencies (id 7), with smaller
frequency differences between the tokens (id 10), and with equally frequent to-
kens (id 11). The trend of increasing sensitivity to relative magnitude is also
present for the corpora for which no bars are shown in Figure A.5, but the rela-
tive distance values are too small to be visible. The common property of all these
distributions is that all tokens are present, but that the frequencies differ more
or less from the reference distributions. An increasing α stresses the frequency
differences.

Finally, a note has to be made on this increasing sensitivity. The evolution of
the outcome of the Rényi divergence is more complicated than discussed here.
A hint of the complexity can be captured by plotting the formula for the Rényi
divergence while using α as the independent variable and with e.g. pk = qk = 0.5
while restricting both distribution to one value, |P | = |Q| = 1. In our opinion
though, the most important values of α are included in our analysis.

In the next section, we will only report on the Kullback-Leibler divergence,
since the Rényi divergence shows the same behavior, as has been shown in this
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section.

A.4.2 Difference based metrics, proportion based met-
rics and others

In this section, some token frequency based metrics are compared using the same
setup as in the previous section. The simple unknown word rate (sUWR) can
also be regarded as being based on token frequencies, but this metric is too crude
for the small sizes of the artificial distributions. The sUWR has the maximum
value when a token is missing and has 0 otherwise.

The metrics that we do look at, are the KL-divergence as the exemplar of diver-
gences that contain the proportion of the token frequencies in their formula, the
Euclidean distance as the exemplar of divergences that contain the difference of
the token frequencies in their formula and the cosine distance, which is a more
complicated metric. Figure A.6 is setup in the same way as Figure A.5.
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Figure A.6: Relative values of Kullback-Leibler, Cosine and Euclidean divergence.
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A first observation that can be made from Figure A.6 is that small changes (id 4,
5, 6, 8 and id 9), even if they occur with the most frequent token, are not captured
by any metric. This can be regarded as a suitable property, because corpora –
i.e. the distributions – are mere samples of a domain and thus subject to normal
deviations typical of taking samples. Overall the distance measures follow the
visual difference between the corpora in FigureA.4 – the less its frequency line
in the figure resembles the reference line, the higher the distance value.

A second observation is that the cosine divergence is almost equally sensitive
to small changes (id 4, 5, 6, 8 and id 9) compared to the absence of less fre-
quent tokens (id 2 and id 3). The KL-divergence and the Euclidean distance are
also insensitive to small changes, but they do pick up the absence of a token.
This means that for the cosine divergence, change is not different from complete
absence. From a domain distance measuring perspective, there may be an im-
portant difference between these two situations: a token frequency change from
0.798 to 0.788 may be unimportant to distinguish domains, but the absence
of a token with a frequency of 0.111 may indicate that this is a low frequent
domain specific token and it may be good to capture this in the final distance
value.

In the beginning of this section, the sUWR was mentioned. The absence of
tokens is exactly the type of behavior that the sUWR measures, so when the
cosine divergence is used to measure the distance between distributions, it may
be combined with the sUWR to make up for the cosine divergence’s insensitivity
to missing tokens. And in fact, this is what comes up from the experiments in
McClosky (2010). In his experiments, he finds that combining the cosine diver-
gence with, among other metrics, the sUWR has the most outspoken predictive
power for parser accuracy.

The next observation that can be made from Figure A.6, is that the Euclidean
distance is more sensitive to changes than the cosine and KL-divergence. The
different sensitivity of the Euclidean and KL-divergence can be read from the
curves in Figure A.7. In this figure, the evolution of the Euclidean divergence
and the KL-divergence with increasing deviation of the measured distribution
from the reference distribution from Table A.2 on page 168, is visualized. On
the x-axis the decrease of the token frequency of token 3 is given – which is also
double the increase of the token frequency of token 1, and double the increase of
the token frequency of token 2. The choice of decreasing the token frequency of
token 3 and distributing the loss evenly among the other two tokens, is arbitrarily
made, but the frequencies are tied to each other in the sense that they always
must sum up to 1.
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Figure A.7: Evolution of divergences with increasing token frequency deviation. The
dotted line is the difference between the two divergences.

On the y-axis the relative distance value can be read. For the maximal distance
this is 1. The decrease is limited to 0.798, because this is the token frequency
of token 3, so a greater decrease is impossible. The dotted line is the difference
between the Euclidean and KL-divergence. It can be seen that the Euclidean
divergence is more sensitive to changes: it indicates a greater relative distance
between a distribution and the reference distribution at any decrease. The dif-
ference is the highest when token 3 has lost approximately half of its frequency
count. This effect can also be retrieved from Figure A.6. For the distributions
where token 3 has lost approximately half of its frequency count (id 10 and
id 11), Euclidean distance is discernibly greater that the KL-divergence. For
the other distributions, the difference with the KL-divergence is smaller. The
curves in Figure A.7 can be drawn for any pair of divergences and they will all
disclose the different sensitivities of the divergences. It is hard to state a theo-
retical preference of one divergence over the other, based on these curves. Is it
better to have a metric that is a bit more sensitive in the beginning or is the
opposite better? This type of questions can only get an answer in a practical
application.

In this section, we showed that most divergences are dissimilar in the way they
weigh frequency differences, but often they show the same trends. Sometimes it
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is possible to state a theoretic preference based on the differences, but mostly
a preference will not emerge until using the divergences in a practical applica-
tion. In Chapter 4, we explored the possibility to use the Pearson’s correlation
coefficient to select the best-suited metric for a given task.

A.4.3 Kendall’s τ on token frequencies
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Figure A.8: Relative values of Kullback-Leibler and Kendall’s τα and τβ .

A pair of metrics not included in the previous section, are Kendall’s τα and τβ .
The nature of this metrics is such that it measures ordering rather than the
difference between token frequencies. Because of this property, the τ ’s catch
characteristics of the distributions that seem undesirable when measuring the
distance between domains, as can be seen in Figure A.8. The figure is build
up in the same way as Figure A.5, but the distance value is rescaled such that
the original τ values closer to -1 are mapped to the greatest relative distances
(viz. 1) and values closer to 1 are mapped to the smallest relative values (viz.
relative distance 0). It can be seen that the τ ’s are sensitive to situations when
there are only minor changes to the reference distribution – more specific, when
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the distributions of the lesser frequent tokens are equal (id 5) or switched (id
6). Another less desirable property is that τ fails to capture changes in the
token frequencies, if the ordering remains the same (id 10). The fact that τ does
not capture the absence of the least frequent token (id 3) is not harmful, since
for larger corpora not capturing the loss of only the least frequent token will
not have such an influence on the measured distance, as it has with the artificial
distributions. Nevertheless, it is implausible that small changes in lesser frequent
tokens are essential when trying to distinguish between domains so we disregard
the usage of the τ ’s.

k pk qk rk sk tk

token 1 0.01 0.02 0.40 0.00 0.37
token 2 0.09 0.08 0.34 0.43 0.37
token 3 0.10 0.10 0.16 0.27 0.16
token 4 0.30 0.25 0.07 0.17 0.07
token 5 0.50 0.55 0.03 0.13 0.03

n = 5 1.00 1.00 1.00 1.00 1.00

Table A.3: Artificial distributions with varying token frequency ordering.

To gain more insight in the different behavior of τα and τβ , we introduce a new
set of artificial distributions. Consider the collection of corpora P , Q, R, S and
T with token frequencies in Table A.3. When knowing that τ varies between -1
and 1, we can make the following observations:

- For corpus P and corpus Q, there are no two tokens in a corpus that have
the same token frequency, so there are no ties. The order of the tokens, when
sorted according to their frequency, is the same for P and Q, so τα = τβ = 1.

- There are no ties in corpus R. The order of the tokens in R is the reverse of
the one in P (and in Q), so τα = τβ = −1.

- There are no ties in corpus S. The most frequent token in R, token 1, is
not in S. The order of the other tokens is similar in both corpora, this gives
τα = τβ = 0.2. If token 2 would be missing in S, τ would be 0.4. Missing token
3 increases τ to 0.6 – meaning that a less frequent value has a lower impact
on the final distance value, τ , since without any missing values tau would be
1 when measuring the distance between R and S.

- There is one tie in corpus T , ttoken1 = ttoken2. This gives τα = 0.9 and
τβ = 0.95 when compared with R. τβ is less sensitive to ties, which is a
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Label A Other label
Predicted label A true positive false positive
Predicted another label false negative true negative

Table A.4: Performance table for instances labeled with a class label A .

desirable property, because, when comparing corpora, the fact that two tokens
occur equally frequent does not seem to be an important fact.

The list of observations shows some good properties of τ , but overall it is hard
to argue why τ would be a better metric than the other metrics presented in
Chapter 2. Furthermore, calculating Kendall’s τ for large corpora is a compu-
tationally challenging task, which makes it an unfavorable metric.

A.5 Evaluation measures

Over the years, various evaluation measures for machine learning experiments
have been devised. Many of them are common knowledge among computational
linguists, but nevertheless it is necessary to specify them in order to avoid confu-
sion. Also in this section, the Pearson correlation coefficient is introduced.

A.5.1 Performance scores

Performance scores are indispensable when it comes to developing natural lan-
guage processing tools. Although the use of specific performance scores for a
task may be under discussion, the fact that a performance score is required,
is undisputed. Making use of performance scores will not only supply a more
objective basis to evaluate NLP tools, it will also facilitate the development of
NLP tools by making comparison available. Recall, precision, F-score and ac-
curacy are all well-known performance scores that are employed throughout the
research here presented.

van Rijsbergen (1975) specifies recall (R) and precision (P ) for information re-
trieval purposes. The idea is that a query is carried out and that one wants to
know what proportion of answers is correct (precision) and what proportion of
potentially good answers was found (recall). For the class labeling experiments
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that were conducted in this dissertation, the query may be ‘What are the in-
stances with class label A?’. The labeling system should then indicate which
are those requested instances. This query can be repeated for every class label
defined in the ongoing task. Looking at Table A.4, one can easily deduce how to
compute the precision and recall. The columns give the two mutually exclusive
options for an instance: either it carries the class label A or it carries another
(undefined) label. The rows give the labels as they are assigned by the labeling
system. The cells of the table are filled with instance counts; represented by
names for the sake of generality. The precision is the proportion of answers that
is correct. The complete answer of the labeling system consists of all instances
that are predicted to carry class label A, i.e. the sum of the true and false pos-
itives. The instances that are assigned another label, are not an answer to the
question which instances carry class label A. The proportion of answers that is
correct, is then given by:

precision =
true positives

true positives + false positives
(A.8)

The number of potentially good answers is given by all instances that carry the
class label A. The proportion of potentially good answers that is indeed found
is given by:

recall =
true positives

true positives + false negatives
(A.9)

Because both recall and precision are interesting measures a parameterized com-
bination has been proposed by van Rijsbergen (1975), E, the effectiveness. The
effectiveness is commonly used in a slightly rewritten form: the F-score or F-
measure :

F-score(β) =
(1 + β2)PR
β2P +R

(A.10)

The F-score is the parameterized version of the harmonic mean of precision and
recall.

As van Rijsbergen (1975) explains, when β → 0, the influence of the recall
becomes less pronounced in the final value. When β → ∞, precision becomes
less important. This may not be clear when looking at the formula for F , but
the original definition of effectiveness E in van Rijsbergen (1975) may be of
help.
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Effectiveness(α) = 1− 1
α
P + 1−α

R

(A.11)

with α = 1
β2+1 and E = 1− F .

Throughout this work, we may use the letter P to refer to precision, R to refer
to recall and F1, or simply F , to refer to F-score with β = 1.

For classification tasks with multiple class labels, the F-scores can be aver-
aged. It is possible to obtain a micro-averaged F-score and a macro-averaged
F-score:

macro F -score =
1
n

∑
c∈C

F (c) (A.12)

micro F -score =
∑
c∈C

P (c)F (c) (A.13)

with
F (c) = the F-score for class label c
C = the collection of class labels
n = |C|, the number of different class labels

P (c) =
the number of instances with class label c

the total number of instances

Note that when there is a test and training division of the corpus, C, n, and P (c)
can be taken from the test or from the training corpus. In this work, they will
be taken from the training corpus.

The accuracy is a general measure, like averaged F-score, and is defined as:

accuracy =
tp
N

(A.14)

with
tp = true positive for any class label
N = the total number of instances
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A.5.2 Correlation coefficient

Various methods to quantify the linear correlation between two variables have
been developed, making it possible to express the degree of correlation with a
single figure, viz. a correlation coefficient. For experiments that focus on finding
a correlation between two variables – e.g. between corpus distance and ma-
chine learner performance – this correlation coefficient can be used to identify
the distance measure, is most informative about the machine learner perfor-
mance.

A well-known correlation coefficient is presented in the work of Pearson (1896).
This coefficient of correlation is defined as

r =
∑n
i (xi − x̄)(yi − ȳ)

nσxσy
(A.15)

with
x, y = paired observations
n = the number of observations

x̄, ȳ = the average value of x and y

σ2
x =

1
n

n∑
i

(xi − x̄)2 and σ2
y =

1
n

n∑
i

(yi − ȳ)2

r is also called the Pearson product-moment correlation coefficient. The coeffi-
cient ranges between −1 and 1. A value of 0 indicates that there is no correlation
between property x and property y of the subjects. A value of 1 indicates a
perfect positive linear relation, and −1 means that there is a perfect negative
correlation. There are other correlation coefficients available – like Spearman’s
ρ – but because we want to test for linearity rather than for a monotonic corre-
lation, Pearson’s coefficient will be used throughout this work. The assumptions
for the application of the correlation coefficient on data are that both x and y
are normally distributed and that a xy-plot does not show a pattern indicating
a complex non-linear correlation.

If the sign of r is not important, one can report r2. Of course, the behavior of
r2 is slightly different of r because of the quadratic proportion.

During linear model fitting, adding a regressor will increase r2, although adding
a regressor does not always mean that the model is better. While adding re-
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gressors, there is a risk of overfitting. The adjusted r2, adjr2, has been devised
to make r2 more comparable over models with a different number of regressors.
This is done by taking into account the degrees of freedom. The relation between
r2 and the adjusted r2 is:

adjr2 = 1− dftot
dferr

(1− r2) (A.16)

with
dftot = the number of observations − 1
dferr = dftot − the number of regressors

The adjusted r2 is more robust with respect to the addition of regressors,
meaning that adjr2 is particularly useful when carrying out linear model se-
lection.

A disadvantage to the usage of Pearson’s correlation coefficient is that it contains
only information about the degree of linearity of the correlation. It is possible to
have two variables that are correlated in a non-linear manner. The correlation
coefficient is not able to detect such non-linear correlations. Because of this, it
is always necessary to inspect a plot of the data in addition to the computed
correlation coefficient.

A.5.3 Statistical tests

Statistical tests can be used to obtain more objective judgements about the dif-
ference between outcomes produced by different NLP tools. In this dissertation,
two statistical tests are used: the χ2 test of independence and approximate ran-
domization testing. The first test is used to establish the dependence between an
indicator, deduced in Section 4.4 and the outcome of self-training experiments.
The second test is used in Section 4.2 to compare POS labeling systems.

χ2 test of independence

The χ2 test of independence3 can be used to test for the independence of two
nominal variables on the basis of a contingency table, such as Table A.5. If the

3A description of the χ2 test of independence can be found in many statistical handbooks.
On online example is at http://udel.edu/∼mcdonald/statchiind.html [October 2011].
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left right total

top 18 110 128
bottom 234 142 376
total 252 252 504

Table A.5: Example contingency table to illustrate the χ2 test of independence.
There are two nominal variables (left/right) and (top/bottom). The counts of all
possible combinations are given in the table, together with the totals.

χ2 test is used in this works, it is carried out as explained below.

Consider the contingency table A.5, it contains two nominal variables (left/right
and top/bottom) and the frequency count of the presence of each of the two
different values of the variables. The counts in the table are the observed values,
with O1,2 the value in the first row and the second column, viz. 110. The χ2

test is designed to indicate, if observed values differ significantly from expected
values. The null hypothesis is that they do not differ significantly, meaning that
the two nominal variables are independent. An expected value is calculated
as:

Ei,j =
∑
k Oi,k

∑
k Ok,j∑

k,lOk,l
(A.17)

χ2 is then calculated as:

χ2 =
∑
i,j

(
Oi,j − Ei,j

)2
Ei,j

(A.18)

In the example, χ2 is 88.6. The probability of this χ2 value can be retrieved
from tables or software. The degrees of freedom for a 2×2 contingency table
is 1, computed as: (number of rows)–1 × (number of columns)–1. It can be
found that the probability associated with the χ2 value is 5e−21, which is a lot
smaller than the generally accepted 0.05 significance level. This means that the
null hypothesis is rejected and that the two nominal variables are not indepen-
dent.
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Significance of accuracy differences

A good statistical test developed for assessing the significance level of the dif-
ference between two complicated evaluation measures, such as F-score, is the
approximate randomization test (Noreen, 1989). This test gives an answer to
the question whether the outcome of an experiment using one technique could be
obtained when the experiment was run with another technique, while assuming
that both techniques are equal (Yeh, 2000).

The approximate randomization test is well suited for situations with a high
number of responses (> 20), as will be the case in a machine learning setup with
thousands of instances. If the number of responses is small, an exact randomiza-
tion test becomes available (Yeh, 2000). A second advantage of the test is that it
does not make any assumption about the nature of the underlying distribution
of the responses. The last advantage is that an approximate randomization test
can handle paired observations – in the sense that the test can compare the
performance of two different systems labeling the same set of instances.

Inter-instance dependencies appear when the label assigned to a first instance,
has an influence on the label predicted for the following instance. This is the
case for conditional random fields (CRFs), machine translation systems and the
memory-based tagger (MBT), when looking at the token level. If the previous
token is labeled correctly, the likeliness increases that the current token will
be labeled correctly to boot. This property makes the approximate random-
ization test unsuited for significance testing on the token level, since the inter-
dependencies will make that probability of the outcomes of two labeling systems
will no longer be uniquely defined by the possible permutations of the predicted
labels. A good illustration of this behavior is given by Yeh (2000).

A possible solution for the inter-dependency problem is not to take tokens as
the minimal unit to shuffle, but to shuffle sentences. Indeed, when the labeling
system is stateless, the labels assigned to one sentence will not depend on the
labels given to the previous sentence. An example for machine translation can
be found in Riezler & Maxwell III (2005).

In the remainder of this subsection, an example of exact randomization testing
for two instances is given.

For exact randomization testing, the labels given by two different systems are
randomly shuffled between the two systems, see Table A.6. For a test set of
two instances, it is possible to shuffle the predictions in four different manners.
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system1 label1 label1 100%
system2 label2 label2 0%

100%

system1 label1 label2 50%
system2 label2 label1 50%

0%

system1 label2 label1 50%
system2 label1 label2 50%

0%

system1 label2 label2 0%
system2 label1 label1 100%

100%

reference label1 label1 –

Table A.6: All permutations of the labels given to two instances by two systems.
The first row contains the labels as they are given by system1. Both labels are named
label1, but the label given to the first instance (column 2) does not have to be the same
as the label given to the second instance (column 3). The index merely indicates that
the label has originally been given by system1. The last column contains the accuracy
when the two predicted labels are compared to the reference (last row). The absolute
accuracy difference between the two systems is indicated in bold.

A label assigned to one instance can never be switched with a label given to
another instance, only labels assigned to the same instance by a different systems
are switched. The first two rows of Table A.6 represent the original systems.
The absolute accuracy difference between the two systems is 100%. The H0
hypothesis to test is that system1 performs equally to system2 and that the
predicted labels are interchangeable. Under H0, all permutations of Table A.6
are equally likely to occur.

From Table A.6, it can be seen that the accuracy difference between the two
systems is greater than or equal to the original accuracy difference for two shuffles
out of 4. This means that under H0, the original accuracy difference of 100%
has a probability of 0.5. The H0 hypothesis would be rejected if the probability
drops below a predefined significance level (often 0.05 or 0.01). This means that
H0 is not rejected and that there is no significant difference in the accuracy of
system1 and system2.

The number of possible permutations rapidly increases with the number of
instances. In practice, this means that exact randomization testing becomes
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impractical for larger test sets and approximate randomization testing can be
used.

During approximate randomization testing, the permutations of Table A.6 are
not computed, but the predicted labels are shuffled randomly between the two
systems – keeping the label–instance relation intact. When the number of shuffles
is sufficiently large, the probability of the original accuracy difference can be
estimated with the formula:

prob =
1 + nge

1 + number of shuffles
(A.19)

with nge the number of shuffles for which the absolute accuracy difference is
greater than or equal to the original accuracy difference.

For part-of-speech accuracy, the elements that should be shuffled are not the
single part-of-speech labels, but the labels of entire sentences. Meaning that in
this case label1 in Table A.6 stands for all labels of a single sentence. This is
due to the already mentioned inter-dependencies.
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Software

In this Chapter, the scripts that are written to carry out the experiments in this
dissertation are listed. The scripts are the result of evolving research and are
implemented, while obtaining progressing knowledge about the subject. This
leads to inefficient and graceless coding. The scripts are provided with all id-
iosyncrasies included and no support is provided. Nevertheless, when presenting
results in computational linguistics research, the influence of specific decisions
during code writing cannot be underestimated. For this reason, the code must
be accessible to the reader of this work thus offering her/him the minimum that
is needed to validate, to reproduce or even to ameliorate the presented research.
The scripts are made available at:

http://www.clips.ua.ac.be/∼vincent/thesis-software

More information about a script can be found when running the script with the
-h option:

$ python script.py -h

but in most cases looking at the source code will provide more interesting infor-
mation.1

1Some of the scripts depend on software that is freely available on the Internet. The links
in this chapter were all visited in January 2012.
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Scripts that are more generally applicable are available at:

http://www.clips.ua.ac.be/∼vincent/software.html

B.1 Divergences and other measures

getdistances.py :
A script to compute some distances between two files that contain data in
a format that can be used by the memory-based tagger (MBT). This script
depends on distribution.py and metric.py. distribution.py contains a
collection of functions to read distributions from files. metric.py contains one
function to compute a collection of distances based on distributions.

asl.py :
A script to compute the average sentence length of files that contain data in a
format that can be used by the memory-based tagger (MBT).

cosinetopk.py :
A script to compute the cosine divergence of files that contain data in a format
that can be used by the memory-based tagger (MBT). The cosine divergence
is computed with vectors of predefined length. Depends on Numpy.2

perplexity.py :
A script to calculate the perplexity of an MBT file when another MBT file is
used to construct the language model. Based on SRILM.3

mmd.py :
A script4 to compute the maximum mean discrepancy (mmd) for vectors of
integers as defined by Gretton et al. (2007). Depends on Numpy.

hdivergence.py :
A script to compute the H-divergence as presented by Ben-David et al. (2010).
Depends on SVM light5 (Joachims, 1999) and binarize.py.6 To compute the
H-divergence, the Huber loss is needed. From the output of svm learn of

2http://numpy.scipy.org
3http://www.speech.sri.com/projects/srilm
4The script is validated against http://people.kyb.tuebingen.mpg.de/arthur/mmd.htm
5http://svmlight.joachims.org/
6http://www.clips.ua.ac.be/∼vincent/software.html#binarize

186

http://www.clips.ua.ac.be/~vincent/software.html
http://numpy.scipy.org
http://www.speech.sri.com/projects/srilm
http://people.kyb.tuebingen.mpg.de/arthur/mmd.htm
http://svmlight.joachims.org/
http://www.clips.ua.ac.be/~vincent/software.html#binarize


APPENDIX B. SOFTWARE

SVMlight, the Huber loss can be approximated with L1 loss
2n , with n the to-

tal number of instances. An overview of various loss functions can be found in
Rosasco et al. (2004).

art.py :
A script to carry out approximate randomization tests.

B.2 Domain distance and performance

wordcount.py :
A script to count the number of tokens and sentences in MBT style files.

approx.py :
A script to crop and randomize MBT style files to a given number of sentences
or tokens.

bncpos.py :
A script to extract MBT style files from BNC version 2 for nine domains.

nfold.py :
A script to split an MBT file into parts that can be used for cross-validation.

ontonotes.py : A script to extract MBT style files from OntoNotes 3.0. De-
pends on NLTK.7

size experiment.py, size report.py :
Two scripts to produce the plots for the metric stability experiments. They
depend on matplotlib8, Numpy and various divergence scripts.

experimentloop.py, experiment report.py :
The scripts to investigate the correlation between distance metrics and machine
learner performance. Depends on
nfoldmbtmetrics.py, Scipy9, Numpy, and MBT. More information about how
to use the scripts can be found in correlation readme.txt.

learner.py, baseline.py, SVMTool.py, selfloop.py :
Three scripts to switch from MBT as the POS-tagger to SVMTool10 or the

7http://www.nltk.org/
8http://matplotlib.sourceforge.net
9http://www.scipy.org

10http://www.lsi.upc.edu/∼nlp/SVMTool
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majority algorithm in experimentloop.py. selfloop.py can be used to carry
out in-domain experiments.

statistic2.py :
A script to compute confidence intervals for new observations. This script
contains the function called check(), an extended version of the analyzedata()
function presented in experiment report.py.

erroranalysis.py :
A script to investigate the effect of P (Y |X) on performance. More information
about how to use the script can be found in
erroranalysis readme.txt.

robust.py, timbl.py :
A script to run TiMBL experiments with different sets of ignored features.
Can be used to investigate the effect of omitting lexical features. Depends on
TiMBL and Numpy.

B.3 Applying distances

selection.py selection report.py :
Two scripts for training data selection experiments. Depends on MBT. The
textfile trainingdata readme.txt contains more information about how to
use the scripts.

featureselection.py, featureselection2.py, getdists.py :
Scripts to investigate the correlation between distance and performance for
separate features. featureanalyzer.py can be used to analyze the data.
addfeature.py, adddummy.py can be used to construct files with synthetic
data. Depends on Numpy. More information about the experimental proce-
dure can be found in featureselection readme.txt and an example of how
to create synthetic data can be found in prepare.sh.

selftrain.py, selftrainloop.py, selftrain report.py :
Scripts to carry out self-training experiments. More information about how
to use the scripts can be found in selftraining readme.txt. Depends on
Numpy and matplotlib.
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B.4 Background information

nspheres.py, topology.py :
Two scripts to visualize the distances, as produced by a metric. Depends on
visual.11

prepare for itml.py :
Computing the Mahalanobis distances involves finding the matrix M with the
ITML algorithm12 (Davis et al., 2007).
prepare for itml.py can be used to extract a matrix of token frequency vec-
tors for the BNC domains and to put the output from a POS labeling exper-
iment into a matrix. The created files can then be used with the matlab
scripts: RelatedDistance.m, MetricLearningAutotuneCorr.m, KL.m. Some
of these scripts are adaptations of the original ITML scripts and should be
used together with these original scripts. The steps involved in computing the
Mahalanobis distance are given in mahalanobis readme.txt.

compdiv.py :
A script that computes distances between artificial distributions.

11http://www.clips.ua.ac.be/∼vincent/software.html#visual
12http://www.cs.utexas.edu/∼pjain/itml
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Alumäe, T., & Kurimo, M. (2010). Domain adaptation of maximum entropy language models.
In Proceedings of the ACL 2010 Conference Short Papers, (pp. 301–306). Uppsala, Sweden:
Association for Computational Linguistics.

Argamon, S., & Koppel, M. (2010). The rest of the story: Finding meaning in stylistic
variation. In S. Argamon, K. Burns, & S. Dubnov (Eds.) The Structure of Style, (pp.
79–112). Springer-Verlag, Heidelberg.

Atterer, M., & Schütze, H. (2007). Prepositional phrase attachment without oracles. Compu-
tational Linguistics, 33 (4), 469–476.

Bacchiani, M., & Roark, B. (2003). Unsupervised language model adaptation. In Proceedings
of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
(pp. 224–227). Hong Kong, China: IEEE.

Batu, T., Fortnow, L., Rubinfeld, R., Smith, W. D., & White, P. (2000). Testing that distribu-
tions are close. In Proceedings of the 41st Annual Symposium on Foundations of Computer
Science, (pp. 259–269). Redondo Beach, CA, USA: IEEE.

Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., & Vaughan, J. (2010). A
theory of learning from different domains. Machine Learning, 79 , 151–175.

Bhattacharyya, A. (1943). On a measure of divergence between two statistical populations
defined by their probability distributions. Bulletin of the Calcutta Mathematical Society,
35 , 99–109.

Biber, D. (1988). Variation across speech and writing. Cambridge, UK: Cambridge University
Press.

Biber, D., & Gray, B. (2010). Challenging stereotypes about academic writing: Complexity,
elaboration, explicitness. Journal of English for Academic Purposes, 9 (1), 2–20.

Bikel, D. (2004). Intricacies of Collins’ parsing model. Computational Linguistics, 30 (4),
479–512.

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation. Journal of Machine
Learning Research, 3 , 993–1022.

Blitzer, J., Dredze, M., & Pereira, F. (2007). Biographies, Bollywood, boom-boxes and
blenders: Domain adaptation for sentiment classification. In Proceedings of the 45th Annual
Meeting of the Association of Computational Linguistics, (pp. 440–447). Prague, Czech Re-
public: Association for Computational Linguistics.

Blitzer, J., McDonald, R., & Pereira, F. (2006). Domain adaptation with structural correspon-
dence learning. In Proceedings of the 2006 Conference on Empirical Methods in Natural
Language Processing, (pp. 120–128). Sydney, Australia: Association for Computational
Linguistics.

191



BIBLIOGRAPHY

BNC (2001). The British National Corpus, version 2 (BNC world). Available at
http://www.natcorp.ox.ac.uk (Last accessed: March 2012).

Chan, Y. S., & Ng, H. T. (2007). Domain adaptation with active learning for word sense
disambiguation. In Proceedings of the 45th Annual Meeting of the Association of Compu-
tational Linguistics, (pp. 49–56). Prague, Czech Republic: Association for Computational
Linguistics.

Charniak, E. (1997). Statistical parsing with a context-free grammar and word statistics.
In Proceedings of the Fourteenth National Conference on Artificial Intelligence and Ninth
Innovative Applications of Artificial Intelligence Conference, (pp. 598–603). Rhode Island,
USA: MIT Press.

Chelba, C., & Acero, A. (2006). Adaptation of maximum entropy capitalizer: Little data can
help a lot. Computer Speech and Language, 20 (4), 382–399.

Chen, B., Lam, W., Tsang, I., & Wong, T.-L. (2009). Extracting discriminative concepts
for domain adaptation in text mining. In Proceedings of the 15th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, KDD ’09, (pp. 179–188). Paris,
France: ACM.

Chen, S. (2009). Performance prediction for exponential language models. In Proceedings
of Human Language Technologies: The 2009 Annual Conference of the North American
Chapter of the Association for Computational Linguistics, (pp. 450–458). Boulder, CO,
USA: Association for Computational Linguistics.

Cohen, A., Mantegna, R. N., & Havlin, S. (1997). Numerical analysis of word frequencies in
artificial and natural language texts. Fractals, 5 (1), 95–104.

Collins, M. (2003). Head-driven statistical models for natural language parsing. Computational
Linguistics, 29 (4), 589–637.

Coope, I. D. (2000). Reliable computation of the points of intersection of n spheres in Rn. Aus-
tralian and New Zealand Industrial and Applied Mathematics Journal (ANZIAM), 42 (E),
C461–C477.

Daelemans, W., Buchholz, S., & Veenstra, J. (1999). Memory-based shallow parsing. In Pro-
ceedings of the Third Conference on Computational Natural Language Learning (CoNLL),
(pp. 53–60). Bergen, Norway: Association for Computational Linguistics.

Daelemans, W., & van den Bosch, A. (2005). Memory-Based Language Processing. Studies
in Natural Language Processing. Cambridge: Cambridge University Press.

Daelemans, W., Zavrel, J., van der Sloot, K., & van den Bosch, A. (2010). Timbl: Tilburg
memory-based learner, version 6.3. Tech. Rep. ILK 10-01, Tilburg University.

Dahlmeier, D., & Ng, H. T. (2010). Domain adaptation for semantic role labeling in the
biomedical domain. Bioinformatics, 26 (8), 1098–1104.
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