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ABSTRACT 
 
 

This thesis describes the first attempt to semantically analyse Dutch noun compounds using the 

distributional hypothesis. The automatic analysis of compound semantics has its uses in machine 

translation, information extraction, information retrieval and question answering systems. Using Ó 

Séaghdha (2008) as a source of inspiration, a list of 1802 noun compounds was constructed and 

annotated. The annotators had an annotation scheme and guidelines available. This scheme described 

six specific semantic categories (BE, HAVE, IN, ACTOR, INST, ABOUT) and five categories for les 

specific categories or incorrect compounds. An inter-annotator agreement of 60.2% was found on a 

500 compound subset.  

The task of automatically analysing compound semantics was considered a classification task for 

which we can use machine learning algorithms. Context information on the constituents of the 

compounds was used to create instance vectors for the classifier to train on. In certain variants of the 

experiment, principal component analysis (PCA) was used as a means of reducing the vector’s number 

of dimensions. Implementations of support vector machines and instance-based learning were used for 

the machine learning experiments. A maximum F-score of 49.0% was reached on the normal bag-of-

words (BOW) vectors using the SVM algorithm. The PCA vectors yielded a maximum F-score of 

45.2%. These scores should be compared with a most frequent class baseline of 29.5%. The achieved 

results in both main variants significantly outperform this baseline. Furthermore, the BOW approach 

significantly outperforms the PCA approach on the recall of the smaller categories. The distributional 

hypothesis, having already proven its value in English research on compound noun semantics, turns 

out to also work well on Dutch compounds. Further research to improve our initial results is desirable. 
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1. INTRODUCTION 

 
 

1.1. Contextualisation 

 

Whether a computer will ever fully understand natural language is a question that does not yet have a 

conclusive answer. Some researchers believe this will never happen (e.g. Winograd & Flores, 1986; 

Salaberry, 1996). Others are more optimistic and proclaim that it will become possible when natural 

language processing (NLP) technology and methods have sufficiently advanced (e.g. Ogden & 

Bernick, 1997; Wolfram, 2010). The issue of computational understanding of natural language 

remains the topic of quite some debate in the research field of NLP. If computers are ever to really 

understand natural language, there are still many problems we will have to deal with. Solving any of 

these problems brings us closer to a better system at every turn. 

 

One of the problems that a computer faces in trying to understand natural language is the productivity 

that a language exhibits in using newly created words.  

 

The ability of a language to constantly produce new words is practically endless. The processes 

responsible for this word formation are derivation and compounding. Derivation does not pose much 

of a problem since many derivations of words are already present in the lexicon as known words and 

new derivations can easily be analysed by reducing the word to its stem and derivation morphemes. A 

derivation is merely a syntactic variation of the word stem with almost the same meaning. The small 

variations in meaning are due to the shift to a different part of speech. Compounding, however, is not 

an easy problem to deal with. 

 

There are several reasons why compounds form a greater problem in the computational understanding 

of natural language. The four reasons below were identified by Girju et al. (2005). 

- The meaning of a compound is a combination of the meaning of its constituents and the 

semantic relations between these constituents are only implicitly present.  

- The meaning of compounds can be idiosyncratic. For example, in order to understand UN 

meeting, you need to know that ‘UN’ stands for ‘United Nations’. 

- Sometimes, more than one semantic relation can be identified between the constituents of the 

compound.  

- The interpretation of compounds can be highly context-dependent. For example, chair city can 

have different meanings in different contexts. It might mean that it’s a city where a lot of 

chairs are produced. It can also mean that this city is the chair of some kind of board or 

council of cities. 
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1.2. Research Goals 

 

The intention of this thesis is to develop a first-generation automatic semantic classifier for Dutch 

compounds. The specific research goals can be summed up as follows: 

- The creation of a semantically annotated list of compounds. 

- Exploratory research on the feature creation for the classification of Dutch compounds and 

presenting initial performance results. 

- The investigation of the performance of the experiments using measures of dimensionality 

reduction, like Principal Components Analysis (PCA)1. 

 

1.3. Applications 

 

Section 1.1 stated that natural language understanding would benefit from the semantic analysis of 

compounds. There are some specific applications in natural language processing that are worth 

discussing in this section because they are directly influenced for the better by an improved compound 

understanding. 

 

An obvious application that would benefit from automatic compound analysis is machine translation 

(MT). Since not every language uses compounds as productively as English or Dutch, being able to 

paraphrase a compound and then translate it, is essential for a machine translation system (Nakov, 

2008). For example, if the system cannot analyse Antwerp hostel to mean ‘hostel in Antwerp’, it could 

not so easily be translated to the French ‘auberge à Anvers’. 

 

Information extraction (IE), information retrieval (IR) and question answering (QA) systems can also 

be improved by better compound understanding. The system needs to know which compounds and 

(para)phrases co-refer to be able to gather the necessary data on the considered topic (Nakov, 2008).  

 

1.4. Structure 

 

In Chapter 2, the theoretical linguistic background of compounds is discussed. This chapter focuses on 

the problem of defining the notion of compounding and it presents different semantic considerations 

on the topic. 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  

1	
  You will find an introduction to PCA in section 5.2.3. 
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Chapter 3 provides an overview of the related research on automatic processing of compound 

semantics. This chapter has been divided in sections on the annotation process and guidelines and 

sections on the methods of compound comparison. 

 

Chapter 4 is a description of the annotation guidelines and process. The adaptation of the annotation 

guidelines that were adopted from Ó Séaghdha (2008) is here presented, together with statistics on 

how our annotators performed on this task. The complete and detailed annotation guidelines can be 

found in the Appendix. 

 

In Chapter 5 we present our own experimental setup. First the important theoretical assumptions that 

lie at the heart of our research, such as analogical learning and the distributional hypothesis, are 

presented. These are followed by an explanation of the vector creation for our compound classification 

experiment. Following these practical notions are some sections on the machine learning aspect of the 

experiment. The algorithms used are presented, as well as the statistical measures of evaluating the 

outcome of the experiment. 

 

Chapter 6 provides and analyses the results of the different variants of our experiments.  

 

Finally, Chapter 7 discusses these results and attempts to formulate some conclusions on compound 

processing in Dutch. A number of suggestions for further research conclude this thesis.  
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2. LINGUISTIC DESCRIPTION OF THE DOMAIN 

 
 

The following chapter will provide some linguistic background on compounding. The focus will be on 

noun compounds, but this will be integrated in a general overview of compounding. We will first 

discuss the definition of compounding and some issues surrounding this definition. Morphology and 

grammar of compounds will also be addressed, as well as the linguistic research on semantic aspects 

of compounds. These properties of compounding will be treated in general and will also be applied 

specifically to Dutch. 

  

2.1. Definition  

 

Over the years, several linguists have formulated a definition for the process of compounding. A 

consensus is unfortunately nowhere in sight. Intuitively, one would say that a compound is a new 

word formed by joining two or more words together. Our intuition is here supported by Katamba 

(1994 in Benczes, 2006), Bauer (2009) and Plag (2003), among others. However, defining the notion 

of a compound is not as easy as it seems. In English, this definition already provides some problems. 

The claim that a compound is a new word can be disputed since English does not always 

morphologically connect compounds. Although the constituents are joined in a syntactic structure, the 

surface form does not show one new word. Spaces can be left between the joined words.  

 

A word thus has to be understood as ‘lexeme’ in this definition (Bauer, 2009). We will elaborate on 

this alternative definition below. 

 

The problem with finding a definition of compounding exists on two levels. On the micro level, we 

should ask ourselves whether the constituent elements of a compound are free-standing words or 

rather stems or roots. Second, it is sometimes problematic to distinguish compounds from phrases or 

derived words. This problem is situated on the macro level (Lieber & Štekauer, 2009). 

 

2.1.1.  Micro-Level Problem 

 

The micro problem is partially solved by Bauer (2009) by changing ‘word’ in the definition to 

‘lexeme’. A lexeme is an abstract unit of language that is closely connected to the notion of ‘lemma’. 

Lexemes are all morphemes that have a semantic interpretation of their own, even if they never occur 

alone (SIL International, 2003). This nuance in terminology was needed to include e.g. neoclassical 

compounds, where lexemes of Greek or Latin are combined with another lexeme to form new 

combinations that were not present in the original language (Plag, 2003).  Some English examples of 
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neoclassical compounds are: ‘hydropower’, ‘retro-design’ or ‘bibliography’, but they also exist in 

Dutch (e.g. ‘democratie’, ‘biologie’, ‘elektromotor’) and other languages (Lüdeling, 2009). These 

Greek or Latin morphemes do not occur on their own and are therefore not to be considered words. 

This type of lexemes can also be found in compounds of the language in question. An example for 

Dutch is: oertijd (prehistory), where ‘oer’ means something like ‘primal’ and ‘tijd’ is ‘time’.  

 

The micro problem is with this only partially solved. There are still other elements that can be 

constituents of compounds that aren’t really words. A compound like ‘pipe-and-slipper husband’ takes 

a phrase as left-hand constituent. If we take this kind of compounds into account, our final definition 

of compounding should be that ‘a compound is a word that consists of two elements, the first of which 

is either a root, a word or a phrase, the second of which is either a root or a word’ (Plag, 2003:135). 

Note that ‘words’ are still part of the definition. Roots or stems do not explain the compounds with 

inflected constituents, e.g. ‘parks commissioner’ or ‘woman’s magazine’. The compound as a whole is 

uninflected, but the left-hand member is here plural or genitive (Plag, 2003; Lieber & Štekauer, 2009).  

 

The abovementioned definition considers a compound as consisting of two elements. Of course there 

are compounds that have more constituent elements. It is however ‘generally possible to analyse 

polymorphemic words as hierarchical structures involving binary (i.e. two-member) subelements’ 

(Plag, 2003:133). In other words, derivations, inflections and compounds (words with more than one 

morpheme) are always constructed on top of each other. They do not affect the base element at the 

same time. We can represent these analyses in bracketed notations or tree structures (Plag, 2003). Here 

is an example of the notations for the analysis of the binary structure of words. 

 

e.g. bus drivers association 

a. [ [ [ bus [ drive + r ] ] s ] association ] 

 b. 

 

N	
  

N	
  

N	
  

N	
  

bus	
  

N	
  

V	
  

drive	
  

Derivational	
  
Morpheme	
  

-­‐r	
  

InBlectional	
  
Morpheme	
  

-­‐s	
  

N	
  

association	
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When analysing multi-word compounds, they will all have a similar binary structure. Since a 

compound is considered a word and the constituent elements of compounds can naturally be words, it 

is safe to state in our definition that each compound combines two elements.  

 

Where compounding and derivation both have this binary structure, only compounding has a property 

that allows the repeated creation of the same kind of structure. We can say that the compound 

formation rules are recursive, whereas derivation is generally not as recursive as compounding. A 

derivation can be made of a derivation, e.g. ((friendN + ly)Adj + ness)N or in Dutch ((twijfelN + 

achtig)Adj + heid)N ‘dubiousness’, but this is always finite. Only 2 or 3 derivations can be made, 

whereas the process of compounding is theoretically infinite. Note that the longer and more complex a 

compound becomes, it will be harder for the language user to produce or understand it. We will 

therefore seldom come across compounds with more than 5 constituents. 

 

The most common interpretation of a compound in English (and Dutch) is that it has the left-hand 

member modifying the right-hand member. There is a modifier-head structure present in these 

compounds wherein the head is grammatically and semantically the most important unit (Plag, 2003; 

Lieber & Štekauer, 2009). Semantically, the entities denoted by the compound are a subset of the 

entities denoted by the head. For example, ‘bookshelves’ are a subset of ‘shelves’ and a ‘bar manager’ 

is a type of manager. Grammatically, the compound inherits its grammatical features from the head. 

This is called feature percolation. If we take the ‘parks commissioner’ example again, Plag (2003:136) 

shows us schematically the inheritance of grammatical features from the head. Here we have an 

example of the inheritance of the plural inflection, but other features are of course possible, e.g. gender 

inflection in languages that make these distinctions. 

 

  

 

 

 

 

 

 

 

 

In English, it happens to be that the modifier-head structure almost always has the head after the 

modifier. Because this appeared to be an important feature of English compounding, Williams 

(1981:248 in Plag, 2003; Lieber & Štekauer, 2009) formulated this as the Right-Hand Head Rule.  
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The modifier-head structure is not the only possible structure. A compound can also have coordinated 

elements. In section 2.3.1.3 we will provide you with some more details on these coordinated 

compounds. 

 

2.1.2.  Macro-Level Problem 

 

The macro problem with compounding is situated on the syntactic level and is far less solved than the 

micro problem. Sometimes it is hard to distinguish between phrases and compounds (Lieber & 

Štekauer, 2009). The problem is especially present with noun compounds. Some academics consider 

noun compounds altogether as noun phrases with a head noun preceded by a modifying noun that 

assumes the function of an adjective. However, a distinction has to be made because it is not only 

possible to mistake a compound for a phrase, it is also possible that one mistakes a phrase for a 

compound (Plag, 2003). 

 

The inseparability criterion is one of the best criteria to distinguish compounds from phrases in 

English. We will demonstrate this with an example from Lieber & Štekauer (2009:11). ‘While it is 

possible to insert another word into the phrase a black bird, e.g. black ugly bird, no such insertion is 

permitted with the compound blackbird.’ This criterion works very well, although there are still 

exceptions to this rule (Coolen, 1994; Lieber & Štekauer, 2009). 

 

Another alleged way to make the distinction between phrases and compounds in English (and again, 

also in Dutch) is phonological. The stress in pronunciation is supposed to be on the left-hand element 

in a compound and on the right-hand element in a phrase. This compound stress rule, as opposed to 

the nuclear stress rule in phrases that places the stress on the last word of the phrase, was formalised 

by Chomsky and Halle in 1968 (Plag, 2003). There are however a lot of exceptions to this rule. 

Giegerich (2009) even claims the rule to be a myth. We will not elaborate on this subject, since we’re 

mostly interested in the written version of compounds. 

 

More information on compound stress can be found in the following publications: Plag (2006), Plag 

(2003), Lieber & Štekauer (2009), Don (2009) for Dutch, and Giegerich (2009). 

 

2.1.3.  Compounding in the World’s Languages 

 

The word formation process of compounding has received very little attention in linguistic typology so 

far (Guevara & Scalise, 2009). It is however very present in the world’s languages. Some scholars 

even suggest compounding to be a language universal (Bauer, 2009). There is some evidence for this 

hypothesis, for example the widespread presence of compounds in pidgin languages. There are, 
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however, also several cases of languages whose grammar does not mention compounding. The 

definition of compounding also plays a large role in this respect because some languages only have 

disputed forms of compounding (e.g. noun incorporation, which is the combination of a noun modifier 

and a verb head where “the verb head can behave just like any other finite verb form” (Spencer, 

2005:89)) that - depending on the definition - can be seen as compounds (Bauer, 2009).  

 

In the Germanic languages, compounding is the major means of vocabulary expansion. Other 

languages (e.g. Turkana) use compounds only in the formation of names. There is evidently a huge 

variation in the use and productivity of compounding. The trouble is that this variation is seemingly 

random. There does not appear to be evidence for any correlation with other elements in the language 

structures (possibly because for many languages we do not have qualitative descriptions of word 

formation processes), therefore, the construction of a typology on compounding remains impossible 

(Bauer, 2009). 

  

2.2. More on Morphology: Linking Letters 

 

In the sections above, we have already discussed some morphological aspects of compounding. Yet, 

there is still a morphology-related topic that we would like to deal with: linking letters. This is an 

important trait of Dutch compounding that cannot be ignored. 

 

Linking letters - or linking elements, in general - between the compound’s constituents occur in many 

languages. These linking letters are typically semantically empty, but often have the genitive (and 

sometimes the plural) inflectional morpheme as its etymological source (Booij, 2010; Bauer, 2009; 

Don, 2009). Linking letters are most prevalent in Germanic languages (except for English), but also 

occur in other language families (Krott et al., 2007).  

 

Linking letters with genitive origin: 

- ‘her-en-huis’ (Dutch for ‘mansion’, lit. ‘lord’s house’) 

- ‘koning-s-kroon’ (Dutch for ‘king’s crown’) 

(Booij, 1996) 

-  ‘koken-s doar’ (Frisian for ‘kitchen door’) 

(Booij, 2010) 

 

2.3. Semantics 

 

In this section on compound semantics, we will discuss two ways of looking at compound semantics. 

We will give them different names for clarity’s sake. The first approach takes the status of the head of 
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the compound as the defining factor to classify a compound in the different semantic classes (Scalise 

& Bisetto, 2009). In the second approach, semantic models are developed to describe and classify the 

semantic relation between the compound constituents. 

 

2.3.1.  Semantic Classes 

 

The following section will provide you with an overview of the prevalent semantic classes that are 

present in the linguistic literature on compounds (e.g. Coolen, 1994; Plag, 2003; Scalise & Bisetto, 

2009). However, not all scholars accept theses classes. Some have small variations on these classes, 

some have proposed new classes and others do not recognise all these classes. Still, there is a large 

consensus on three main classes with a number of subclasses. For a complete overview and 

comparison of possible classification methods of compounds, we refer to Scalise & Bisetto’s chapter 

‘The Classification of Compounds’ in The Oxford Handbook of Compounding (2009). 

 

As mentioned before, when talking about the modifier-head structure, these semantic classes are based 

on the status of the head of the compound. In section 2.1.2, we remarked that the notion of ‘head’ can 

have a semantic and a syntactic interpretation. Both interpretations will be discussed below. 

 

2.3.1.1. Endocentric Compounds 

 

The endocentric compound has its semantic head within the compound itself. This means that the 

compound ‘denotes a subclass of the referents of the head’ (Plag, 2003:145). In other words, ‘[t]he 

compound as a whole is a hyponym of the head element’ (Coolen, 1994:6). These endocentric 

compounds are mostly noun compounds and are the most common compounds in English and Dutch. 

For example, ‘boekenrek’ (Dutch) or ‘book shelf’ is a kind of shelf that is used to hold books.  

 

As for a syntactic interpretation of endocentricity, a compound can be said to be syntactically 

endocentric when it has its syntactic head within the compound itself and the compound ‘inherits most 

of its […] syntactic information from the head’ (Plag, 2003:135). 

 

According to the right-hand head rule (see above), the right-hand member of the compound will 

almost always be the syntactic and semantic head of the compound in most Germanic languages.  

 

2.3.1.2. Exocentric Compounds 

 

The exocentric compounds are a small class of compounds. In contrast to the endocentric compounds, 

the compounds in this class have a semantic head outside the compound (Plag, 2003). For example, a 
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‘must-have’ is not some sort of ‘have’, nor is a ‘lion heart’, in its usual metaphorical meaning, a 

subtype of the entity ‘heart’. Exocentric compounds have such specific meanings that most of them 

are lexicalised. This class is obviously less productive than the endocentric class. Exocentric 

compounds also occur more with adjectives than with nouns.  

 

Another term that is used quite often for this class of compounds is bahuvrihi. This term comes from 

the Sanskrit grammar tradition and originally means ‘(having) much rice’ (Scalise & Bisetto, 2009). It 

currently applies to all exocentric compounds, but traditionally refers to what is presently called 

possessive compounds. Possessive compounds are exocentric compounds that ‘denote an entity that is 

characterized (sometimes metaphorically) by the property expressed by the compound’ (Plag, 

2003:146). ‘Redskin’ and ‘roodhuid’ (Dutch) are great examples. They refer to an entity, which is a 

person here, that has a red skin, namely a Native American.   

 

While an endocentric compound is practically always both syntactically and semantically endocentric, 

this is not the case with exocentric compounds. A compound can be syntactically and semantically 

exocentric, but can also be semantically exocentric and syntactically endocentric. An example of the 

former can be ‘must-have’, which is a noun as a whole but has a verb as its syntactic head. There is 

also no semantic head present in this compound. An example of the latter is: ‘redskin’ which is not a 

subset of the noun ‘skin’ but we observe that it does adopt some syntactic features of the head, namely 

the part of speech (Plag, 2003). 

 

2.3.1.3. Copulative Compounds 

 

A third main class of compounds is the copulative class. This class is also called dvandva in the 

Sanskrit tradition, which means ‘couple’. This refers of course to the fact that in copulative 

compounds there is no semantically more prominent constituent.  Both members of the compound 

equally contribute to the interpretation and meaning of the compound (Plag, 2003). Compounds like 

‘bittersweet’, ‘woman doctor’ or ‘Austria-Hungary’ are examples of this class (Scalise & Bisetto, 

2009). 

 

Again, the true meaning of the Sanskrit term has been twisted a bit. The original dvandva compounds 

are those that ‘associate two individual elements without reference to any of them as a separate entity’ 

(Scalise & Bisetto, 2009:36). Examples2 of these true dvandva compounds are ‘mātāpitarau’ (Sanskrit: 

mother and father), ‘yamakawa’ (Japanese: mountains and rivers) and ‘maxeropiruno’ (Modern Greek: 

fork and knife). Notice that these compounds all denote a sort of duo (a real ‘couple’), which is a type 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2 Examples from: http://en.wikipedia.org/wiki/Dvandva [06/04/2012] 
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of compound that – to my knowledge – does not occur in Western-European languages. The current 

meaning of dvandva has lost this ‘duo’ connotation, but still uses two heads to express the meaning of 

the compound. 

 

There are however two other subtypes of copulative compounds. These subtypes are frequently used 

in academic literature but are not generally accepted. The terms for the subtypes and the entire class of 

copulative compounds are used interchangeably (Coolen, 1994; Scalise & Bisetto, 2009). 

 

An appositional compound is a copulative compound that ‘refers to one entity that is characterized by 

both members of the compound’ (Plag, 2003:146). The compound is both an entity of constituent one 

and an entity of the second constituent. A ‘bastard brother’ or ‘bastaardbroer’ is both a brother and an 

illegitimate child. Other examples include ‘actor-director’ and the Dutch word ‘bombrief’ (‘bomb 

letter’). 

 

The coordinative compound, according to Plag (2003), is a copulative compound that is usually part of 

a larger compound where the dvandva denotes ‘two entities that stand in a particular relationship with 

regard to the following noun’ (Plag, 2003:146). The ‘mother-daughter bond’ is a bond between mother 

and daughter. The ‘north-south stream’ is a stream that runs from the north to the south. 

 

2.3.2.  Semantic Models 

 

Semantic models are designed to describe and classify the semantic relations between the compound 

constituents. 

 

When looking for a manner to investigate compound semantics, one has a choice of three viewpoints. 

All proposals of semantic models can be grouped into one of the three types. Ó Séaghdha (2008) made 

a clear overview that discusses these types of semantic models. We will provide a summary here. This 

section will be focusing on noun compounds only since only they have received research attention 

over the years. The semantics of other sorts of compounds has barely been investigated. 

 

2.3.2.1. Inventory-Based Theories 

 

The early approaches in semantic modelling of noun compounds focused on description. Linguists 

adopting this inventory-style approach documented ‘the variety of semantic relations observed in 

attested compounds’ (Ó Séaghdha, 2008:17). These semantic relations were generalised to a restricted 

set of relations. These relations were seen as the retrieval of the full semantic structure of the noun 

phrase at a deeper representational level.  
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Some criticism has come from different angles:  

- The variety of compound relations is so great that listing them is impossible. This criticism 

especially relates to metonymic and metaphoric compounds. 

- The proposed relations are too general and vague. This problem is called ‘analytic 

indeterminacy’. Some compounds can have multiple analyses.  

- The restricted inventories give too impoverished a representation of compound semantics. On 

this view, the meaning of a compound cannot be reduced to one of a small number of general 

relations. 

(Ó Séaghdha, 2008:18-19) 

 

2.3.2.2. Pro-Verb Theories 

 

The authors of the pro-verb theories are the ones that formulated the latter criticism on inventory-

based semantic models. They believe that dealing with the semantics of a compound by simple 

describing the relation between the constituents is a strong reduction of the actual meaning of the 

compound. Instead of generalising the compound meaning, pro-verb models will underspecify the 

representation of this meaning and shift the task of the further interpretation of the compound to 

pragmatics or world knowledge. ‘The semantics of a compound is then simply the assertion of an 

unspecified relation between the referents of its constituents’ (Ó Séaghdha, 2008:19). 

 

Despite its linguistic value, it is immediately obvious that a pro-verb approach will be useless in 

current computational linguistics. 

 

2.3.2.3. Integrational Theories 

 

The integrational theories originate in the tradition of cognitive linguistics. It is believed that there is 

no divide between compositional semantic structures and pragmatic kinds of conceptual and 

contextual knowledge. Integrated representations of compounds are generated by combining aspects of 

the constituent nouns. So-called event frames are a central kind of knowledge in this process. These 

are ‘schematic representations of the events or situations in which an entity typically plays a role’ (Ó 

Séaghdha, 2008:20). The integrational theory claims that, in order to arrive at the compound meaning, 

one has to place the constituents in an event frame where they belong together. For example, when 

interpreting the compound ‘boekenrek’ (‘bookshelf’) the language user will combine his knowledge of 

books and shelves to arrive at an event frame where the shelf can be used to hold the books. 
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Pro-verb and integrational theories do not recognize the restricted set of classes as they are proposed in 

the inventory-based models. They do, however, recognise that there are regularities and patterns in the 

way language users experience and conceptualise their environment. It is assumed that there are 

certain abstract templates in creating compounds. For example, locative relations (‘library table’) or 

part-whole relations (‘car wheel’) are often present in compounds because these relations provide 

more information about the entity.  

 

Strangely enough, the prevalent templates are very comparable to the inventory-style rules.  

 

2.3.2.4. Example of an Inventory-Based Model 

 

Despite the criticism, the inventory-based model is used most nowadays by computational linguists for 

the automated semantic analysis of compounds. An early example of such a model, that was however 

not yet developed for computational purposes, was constructed by Judith Levi in 1987 and included 

nine Recoverably Deletable Predicates (RDPs). The name of the RDPs refers to the problem that 

appears when the full semantic structure of the compound cannot be recreated from the surface 

structure, which is a case of irrecoverable deletion. It is assumed that the deleted predicate of the 

compound constituents can in fact be recovered (Ó Séaghdha, 2008). 

 

The semantic classes with examples, as proposed by Levi (Ó Séaghdha, 2008:17):  

CAUSE1 flu virus  CAUSE2 snow blindness 

HAVE1  college town  HAVE2  company assets 

MAKE1 honey bee  MAKE2 daisy chains 

USE  water wheel 

BE  chocolate bar 

IN  mountain lodge 

FOR  headache pills 

FROM  bacon grease 

ABOUT adventure story 

 

These classes can be used for analysis as follows. An adventure story is a story ABOUT adventure; a 

mountain lodge is a lodge ON a mountain (IN = location). ‘The three RDPs CAUSE, HAVE and 

MAKE each have two variants, as either the head or modifier of a compound can fill the first 

argument of these predicates, while the other arguments are either symmetric (BE) or restricted to 

taking the compound head as first argument’ (Ó Séaghdha, 2008:18). 
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Other inventory-based models use, for example, insertion of the constituents in thematic role slots of 

generalised verbs (Lees, 1970) or paraphrasing prepositions (Butnariu et al., 2010). 

Unfortunately, we were not able to find any semantic models specifically for Dutch compounds. Most 

of the current research seems to be focusing on English. 

 

In our computational consideration of compound meaning, the inventory-based theories will be our 

starting point. As will be discussed in Chapter 4, Ó Séaghdha (2008) based his annotation scheme for 

the semantic analysis for compounds on the above inventory-based scheme by Levi.  

 

Before the annotation scheme and process will be discussed, an overview will be presented of the past 

related research on computational compound semantics. 
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3. RELATED RESEARCH 

 
 

When overviewing the past research on compound semantics, some tendencies can easily be observed. 

First, as far as we are aware, all research so far has focused on noun compounds. Other sorts of 

compounds, such as verb-noun or adjective-verb compounds have been disregarded. Second, most 

research only considers two-word noun compounds. The exceptions on this tendency are the research 

of Girju et al. (2005) who also perform experiments with three-word noun compounds, and the 

research of Girju et al. (2007) and other scholars that participated in the SemEval-2007 Task 4, which 

dealt with classifying relations between nominals. This task thus exceeded the compound category.  

 

There are also two main points of divergence in past research. Many variations on the classification 

schemes have been proposed. Some of the newly proposed schemes are similar to existing schemes, 

others differ fundamentally.  

 

The second discrepancy in the related research has to do with the information that is used by the 

computational system to classify the compounds in the dataset. This chapter will discuss the different 

choices researchers have made on these two subjects. 

 

3.1.  Classification Schemes for Computational Research on Compound Semantics 

  

In Chapter 2, we have already mentioned the theoretical attempts to compound classification such as 

the inventory-based scheme developed by Levi (1979 in Ó Séaghdha, 2008). The classification 

schemes for computational research in compound semantics all seem to follow this inventory-based 

tradition. Early birds in the computational research are Warren (1978 in Rosario & Hearst, 2001), 

Finin (1980) and Lauer (1995). This research will come up again when discussing the different kinds 

of classification schemes. 

 

Two types of schemes can be distinguished. There are those that base their semantic classes on 

prepositions only, and those that base their semantic classes on a predicate. We will further divide the 

latter type in subtypes with predicate-based definitions as classes and with true paraphrasing 

predicates as classes. 

 

3.1.1.  Preposition-based Semantic Classes 

 

Preposition-based semantic classes are an abstract way of classifying constituent relations in 

compounds. A compound is classified as ‘FOR’ when one can paraphrase the compound as constituent 
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FOR constituent. A balletzaal (‘ballet hall’) can thus be a ‘zaal voor ballet’ (‘hall for ballet’), which 

implies some sort of purpose.  

 

Lauer (1995) was one of the first to propose a preposition-based classification scheme. Apart from his 

preposition categories (of, for, in, at, on, from, with about), he also had categories for copula 

compounds (both modifier and head classify the object) and verbal-nexus compounds (the modifier is 

subject or object of the nominalised verb head) (Lauer, 1995:161). 

 

Lauer’s classification scheme has been used and tested by Girju et al. (2005) and Lapata & Keller 

(2004).  

 

A problem with this approach arises when the same preposition can be used in different contexts, with 

different meanings. The Dutch rivierbrug (‘river bridge’) can be paraphrased as ‘brug OVER rivier’ 

(‘bridge over river’), but avonturenboek (‘adventure book’) can be paraphrased as ‘boek OVER 

avonturen’ (‘book about adventures’). The same principle holds for English, e.g. the preposition ‘of’ 

can denote possession, but it can also denote the topic of something. Actually, a preposition-based 

classification scheme should take this polysemy into account and disambiguate between the different 

meanings of the prepositions, for example by creating two classes for ‘of’ OF-possession and OF-

topic. This would reduce the abstractness of the preposition-based schemes. 

 

The preposition-based classification is nowadays considered too abstract for the analysis of compound 

semantics. Most researchers will use predicate-based classification schemes that are better suited for 

the coverage of deeper semantic relations. 

  

3.1.2.  Predicate-based Semantic Classes 

 

The predicate-based approach can be regarded as having two variants. The first one provides 

predicates for the compound by classifying the compounds according to semantic definitions. These 

definitions describe predicates for the compounds. The second variant will provide actual paraphrases 

for the compound by inserting some verbal element between the constituents. 

 

3.1.2.1. Relations Described by Definitions and Classes 

 

This approach is actually very similar to the one described by Levi in her classification scheme (1979 

in Ó Séaghdha, 2008). Many others have followed her example and have either borrowed her 

classification for their experiments (Nakov, 2008) or have created their own classification scheme in 

the same tradition.  
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Ó Séaghdha designed a classification scheme with 11 categories based on Levi’s scheme (Ó 

Séaghdha, 2007; Ó Séaghdha, 2008; Ó Séaghdha & Copestake, 2007). An inter-annotator agreement 

kappa score was reported of 0.62. This classification scheme has been adopted for our research as 

well. The complete (slightly adapted) guidelines for this scheme can be found in the Appendix. An 

overview of this scheme can be found in Chapter 4.  

 

Moldovan et al. (2004) proposed a more specific scheme with 35 semantic relations. This scheme has 

also been used by Girju et al. (2005; 2007). Girju et al. compared the preposition-based classification 

with the predicate-based semantic classification. They found the predicate-based method to 

consistently outperform the preposition-based method. However, the annotation seems to be easier 

using preposition-based classes, but this is probably due to the fewer classes of the preposition-based 

approach. Girju et al. (2005) report an inter-annotator agreement kappa score of 0.80 for Lauer’s 8 

prepositional classes (1995) versus a kappa score of 0.58 for 35 semantic relations proposed by 

Moldovan et al. (2004). 

 

Tratz & Hovy (2010) use a taxonomy of 43 relations of their own making that they describe as being 

similar to the scheme designed by Warren (1978 in Tratz & Hovy, 2010). They report a rather poor 

inter-annotator agreement of 52.3% but they possess the largest dataset of annotated compounds with 

over 17,500 instances. 

 

All above schemes are open-domain schemes. There are however researchers that have posited 

domain-specific classification schemes. Rosario & Hearst (2001) describe a classification scheme that 

is specifically designed for use in biomedical texts. 

 

3.1.2.2. Paraphrasing 

 

Instead of creating rules that describe the predicate of the constituents of a compound, researchers 

have recently paid rather a lot of attention to compound paraphrasing as a way to create a predicate for 

the compound constituents.  

 

In initial research, Kim & Baldwin (2005) used the scheme designed by Barker & Szpakowicz (1998). 

This 20-member classification scheme paraphrases the implicit relation with a verb and/or a 

preposition. They later expanded this scheme with the concept of ‘seed verbs’. These seed verbs are 

considered the hypernyms of actual verbs that are mapped onto them (Kim & Baldwin, 2006). The 

reported agreement between annotators on their annotation task was 52.3%. 
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Wijaya & Gianfortoni (2011) describe topics that are very similar to the seeds verbs described by Kim 

& Baldwin (2006). 

 

3.2. Methods of Compound Comparison: Feature Selection 

 

Throughout the years, several methods have been proposed to construct features for the semantic 

classification of compounds. Most of these methods are either based on a corpus, or on a semantic 

taxonomy. These methods will be thoroughly discussed and we will conclude this section with an 

introduction to some alternative methods that have recently been developed. 

 

3.2.2.  Corpus-based Methods 

 

Corpus-based methods are those methods for vector creation that rely on large corpora to extract the 

features from. It is assumed that the context in which the constituents of the compound occur provide 

information on the semantics of this constituent. Thus, words with similar contexts in a corpus will 

have similar meanings. Three methods will be discussed here. Lexical similarity and relational 

similarity are both methods that use proximity characteristics of the compounds. Using proximity 

features implies the use of words that are in the neighbourhood of the considered word in the corpus as 

features to include our vector. The third method uses grammatical information that is extracted from 

the corpus. 

 

3.2.2.1. Proximity Features 

 

Lexical similarity 

 

Lexical similarity, also called attributional similarity (Turney, 2006), is a measure for comparing the 

context of the compound. The hypothesis is that “compounds with semantically similar constituents 

will encode similar relations” (Ó Séaghdha & Copestake, 2007:57). The context-based semantics of 

the modifiers of the considered compounds will be compared with each other, and the head 

constituents will be compared with each other. The similarities between both constituents will be 

combined to calculate a measure of similarity for the entire compounds. 

 

Ó Séaghdha has used corpus methods in much of his research, alone or with Ann Copestake. They 

report the following results with lexical similarity: using kernel methods as machine learner yielded an 

accuracy of 54.95% (Ó Séaghdha, 2007; Ó Séaghdha & Copestake, 2007) and later an accuracy of 

61% has been reached (Ó Séaghdha, 2008; Ó Séaghdha & Copestake, 2008).  
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Relational similarity 

 

In the relational similarity approach, “two pairs [of constituents] are assumed to be similar if the 

contexts in which the members of one pair co-occur are similar to the contexts in which the members 

of the other pair co-occur” (Ó Séaghdha, 2008:118). For example, when looking for the relational 

similarity between ‘car door’ and ‘flower pot’, the relational similarity will be calculated on the words 

in contexts where the constituents ‘car’ and ‘door’ occur together and likewise for ‘flower’ and ‘pot’. 

 

This method has been used by Ó Séaghdha & Copestake (2007) with an accuracy of 42.34%. Ó 

Séaghdha (2008) reports an accuracy of 52.6%. In both studies kernel methods were used to achieve 

these results.  

 

Tratz & Hovy (2010) used the relational similarity approach together with WordNet and 

morphological features. Their results will be discussed in section 3.2.2. 

 

Lapata & Keller (2004) are the only ones reporting on an unsupervised method for the analysis of 

compound semantics while using the web as a corpus to compute their relational similarity. This 

similarity measure is based on web counts for phrases Noun P Noun, where P belongs to a predefined 

set of prepositions. They achieve an accuracy of 55.71% on their unsupervised web-based similarity. 

This contrasts with their unsupervised corpus-based accuracy of 27.85%. Despite these good results 

for unsupervised models, they report that web-based models still fail to outperform recent supervised 

models and are rather a good baseline than an alternative to these recent classifiers.   

 

Combination 

 

In some research, these proximity measures were also combined to achieve a higher accuracy. 

 

Turney (2006) reports an F-score of 56.5% using Latent Relational Analysis. Ó Séaghdha & 

Copestake’s (2007) lexical similarity results improve with about 2%, reaching 56.55% combined 

accuracy. Ó Séaghdha (2008) reaches 62.7% combined accuracy. This indicates that relational and 

lexical similarities at least partly encode different information on the compound semantics. They 

provide different ‘views’ on the same semantic relation (Ó Séaghdha & Copestake, 2007). This 

information is complementary to each other, thus significantly improving the model’s performance. 
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3.2.2.2. Grammatical Collocations 

 

Instead of simply taking the nearby words of the compound constituent of an information source, 

Nastase et al. (2006) use only grammatical collocations of this constituent. This collocation includes 

words that appear with the target word in a grammatical relation, e.g. subject, object, etc. 

 

The results of Nastase et al.’s experiment (2006) will be discussed in section 3.2.2 because they also 

used WordNet information to boost their classifier’s performance. 

 

3.2.3.  Taxonomy-based Methods 

 

These methods, also called semantic network similarity (Ó Séaghdha, 2009), base their features on a 

word’s location in a taxonomy or hierarchy of terms.  

 

3.2.3.1. WordNet Similarity  

 

WordNet (Miller, 1995) is probably the most well known semantic network (it is also one of the few) 

and is therefore used most. Some researchers have done experiments using only WordNet features. 

Others have combined WordNet features with corpus-based or other features. 

 

These WordNet features are usually a vector of hypernyms (words whose meaning include the source 

word, a generalisation) of the source word. These hypernyms can describe relations such as ‘is a’, ‘has 

part’ and ‘is made of’. 

 

Kim & Baldwin (2005) describe an experiment where they calculated the word similarity of the head 

nouns of the compounds to be compared and multiplied this with the word similarity of the modifier 

nouns. The new compound will be assumed to belong to the same semantic class as the compound 

with the highest comparison score. No real machine learning is in order here. Their experiment yielded 

an accuracy of 53.3%. 

 

The following researchers combine or compare corpus-based methods and WordNet-based methods. 

Nastase et al. (2006) report an F-score of 82.47% on a combination of their grammatical collocations 

and WordNet hyponym information.  

 

Ó Séaghdha (2007) uses binary feature vectors “whereby a vector entry is 1 if the item belongs to or is 

hyponym of the synset corresponding to that feature, and 0 otherwise” (Ó Séaghdha, 2007:77). An 

accuracy of 58.35% is reported.  
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Tratz & Hovy (2010) do not only use corpus methods and WordNet features, they also include 

morphological features (e.g. the last 3 letters of the constituent). These features are used as Boolean 

values. They report an accuracy of 79.3%. The influence of the WordNet sense gloss words on the 

model’s performance is stressed.  

 

3.2.3.2. Wikipedia-based  

 

An experiment using Wikipedia as a source for measuring word similarity has been described by 

Strube & Ponzetto (2006 in Ó Séaghdha & Copestake, 2007). Wikipedia as a semantic network can be 

an interesting tool because it is “more explicit in its description of relations between real-world entities 

than typical text corpora” (Ó Séaghdha & Copestake, 2007:64). 

 

3.2.3.3. Other Lexical Hierarchies 

 

Rosario & Hearst (2001) describe an experiment using a domain-specific (biomedical) lexical 

hierarchy as information source for their classifier. The features are thus the locations where the term 

is positioned in the MeSH (Medical Subject Headings) lexical hierarchy. An accuracy of about 60% 

was reported. 

 

3.2.4.  Other Methods 

 

Girju et al. (2005) used the WordNet approach to assemble their vectors, but they added word sense 

disambiguation (WSD) to one of their variants to be able to make a comparison. Their best results 

were obtained using the SVM machine learning algorithm. Without WSD an accuracy of 72.59% was 

achieved. The WSD made the accuracy rise to 83.93%. These results prove the usefulness of word 

sense disambiguation in the compound semantics problem. 

 

Finally, there are also some researchers who took the possible paraphrases of a compound into account 

to arrive at a well performing classifier. Nakov (2008), Kim & Baldwin (2006) and Wijaya & 

Gianfortoni (2011) gathered paraphrases of compounds using Amazon Mechanical Turk. Where 

Nakov (2008) uses only these paraphrases to train his classifier, both Kim & Baldwin (2006) and 

Wijaya & Gianfortoni (2011) first generalise these paraphrases to a hypernym. This is called the ‘seed 

verb’ (Kim & Baldwin, 2006) or the ‘topic’ (Wijaya & Gianfortoni, 2011). Nakov (2008) reports an 

accuracy of 78.4%, while Kim & Baldwin (2006) achieved only a 52.6% performance. 

 

Nakov (2008) goes one step further than the other two researches. He reports a significant correlation 

(37.3%) between the verbs found by web searches of the compound constituents and the annotated 
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paraphrases. This means we will also be able to classify unseen compounds by using web search to 

find paraphrases. 

 

3.3. Summary 

 

This chapter provided an overview of the past research in the semantic analysis of compounds. We 

have only found research on compounds in English, most of them dealt only with two-word noun 

compounds. 

 

We have first discussed different ways of using classification schemes while considering the reported 

inter-annotator agreements. Then, we compared different information sources that researchers use to 

train their classifiers on. Overall, it seems that models that use more than one information source 

perform better than others. Not only when using different variants of the same method – e.g. lexical 

vs. relational similarity (Ó Séaghdha, 2008) – but also when combining completely different 

approaches – e.g. using both corpus-methods and WordNet similarity (Tratz & Hovy, 2010). Different 

methods provide different information on the compounds, so combining them will enhance a model’s 

performance. 
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4. ANNOTATION: GUIDELINES, MOTIVATION AND PROCESS 
 
 

The current chapter will deal with the process of annotation that enabled us to gather the required data 

for our automatic compound classification experiment. Since we are performing a supervised learning 

experiment, we need information on the semantics of the Dutch compounds that our machine learners 

can use for training. This need for a description of the semantics of the compound is being fulfilled by 

a manual semantic annotation of the compounds.  

 

In the first section, we will discuss the guidelines, or protocol if you will, that we used for the 

annotation process. Apart from a summarisation of the guidelines used, we will also consider the 

source document and the adaptations we made to it. 

 

The following section will deal with the annotation process itself. We will present some details about 

the data we used, how the annotation was performed, as well as some statistics on the agreement 

between the annotators.  

 

4.1. Annotation Scheme and Guidelines 

 

4.1.1.  Source 

 

The annotation guidelines that fit very well into the goal of our annotation, namely the description of 

the semantics of Dutch compounds, were created by Ó Séaghdha (2008). We already discussed his 

work in the Related Research section, so we will not explain his entire research again. There are 

however some particular aspects that are worth taking a closer look at. 

 

In his research, Ó Séaghdha strives to achieve state-of-the-art performance on the task of 

automatically assigning semantic categories to English compounds. For this, he used the fresh 

perspective of only using annotated compounds with their extracted context from corpus data as input 

to his machine learning algorithms. Previous research had mainly focused on using lexical databases 

with semantic taxonomies such as WordNet for this purpose (Ó Séaghdha, 2008). 

 

Semantic annotation is a very hard task for human annotators. The ubiquitous ambiguity makes it 

almost impossible to achieve high inter-annotator agreement (an accuracy measure that is discussed in 

section 4.2.3). According to Ó Séaghdha (2008:28), there are 5 criteria to keep in mind to successfully 

create an annotation scheme: 
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- Coverage: The inventory of informative categories should account for as much data as 

possible. 

- Coherence: The category boundaries should be clear and categories should describe a coherent 

concept. 

- Generalisation: The concepts underlying the categories should generalise to other linguistic 

phenomena.  

- Annotation Guidelines: There should be detailed annotation guidelines, which make the 

annotation process as simple as possible. 

- Utility: The categories should provide useful semantic information. 

 

Every criterion should be maximally considered while creating an annotation scheme. Of course, 

sometimes there is interference between these criteria. If you want to enlarge the coverage of the 

scheme, your categories will probably be more specific and your guidelines will probably be more 

difficult. The scheme creator should try to find a balance between these criteria that fits their 

annotation task (Ó Séaghdha, 2008).  

 

When Ó Séaghdha started developing his annotation scheme, there weren’t many annotation schemes 

for compound semantics available. The larger part of the ones that did exist, however, were mere 

descriptive classifications and did not have explicit guidelines to clarify the scheme. Ó Séaghdha’s 

starting point for the scheme he developed was Judith Levi’s 1978 inventory-based model (see above, 

section 2.3.2.4.). Six months of annotation trials and scheme improvements led to his current 

annotation scheme with accompanying guidelines. The scheme allows for an annotator to describe the 

semantic relation between the two constituents of a noun-noun compound. The main idea is that each 

compound receives one tag consisting of the broad category in which the compound is semantically 

situated, the annotation rule that was chosen to arrive at the correct tag and the direction in which this 

annotation rule is applied. It is not allowed to assign different categories to the same compound. You 

will find the annotation scheme below. More explanation on the guidelines can be found in section 

4.1.3. We adopted Ó Séaghdha’s annotation scheme but did make some adaptations to the guidelines. 

Those changes are described in the following section 4.1.2.  
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Relation Rule Definition Example 
2.1.1.1. Identity guide dog 
2.1.1.2. Substance – Form  rubber wheel 

BE 

2.1.1.3. Similarity cat burglar 
2.1.2.1. Possession family firm 
2.1.2.2. Condition – Experiencer coma victim 
2.1.2.3. Property – Object  sentence structure 
2.1.2.4. Part – Whole computer clock 

HAVE 

2.1.2.5. Group – Member  star cluster 
2.1.3.1. Spatially Located Object pig pen 
2.1.3.2. Spatially Located Event air disaster 
2.1.3.3. Temporally Located Object evening edition 

IN 

2.1.3.4. Temporally Located Event dawn attack 
2.1.4.1. Sentient Participant – Event  army coup ACTOR 
2.1.4.2. Participant – Participant (more 

prominent is sentient 
project organiser 

2.1.5.1. Non-Sentient Participant – Event cereal cultivation INST 
2.1.5.2. Participant – Participant (more 

prominent is not sentient 
foot imprint 

2.1.6.1. Topic – Object  history book 
2.1.6.2. Topic – Collection  waterways museum 
2.1.6.3. Focus – Mental Activity embryo research 

ABOUT 

2.1.6.4. Commodity – Charge  house price 
REL 2.1.7.1 Other Non-Lexicalised Relation fashion essentials 
LEX 2.1.8.1. Lexicalised Compound life assurance 
UNKNOWN 2.1.9.1. The Meaning is Unclear similarity crystal 
MISTAG 2.2.1.1. Incorrectly Tagged legalise casino 
NONCOMPOUND 2.2.2.1. Not a 2-Noun Compound [ hot water ] bottle 
 

 

4.1.2. Adaptation 

 

Although our aim was to stay close to the original annotation guidelines as composed by Ó Séaghdha 

(2008), we did make some adaptations to his guidelines other than expanding them with Dutch 

examples. The main reason for these adaptations was the different setup of our experiment. We will 

now provide you with an overview of the changes in the guidelines. 

 

The major difference between our approaches lies in the selection of the compounds to be annotated. 

We have decided to only deal with regular noun-noun compounds that are not lexicalised (i.e. 

compounds that cannot be found in the dictionary). The ‘regular’ aspect of this decision allows us to 

leave out metaphorical and exocentric compounds from our research. Compounds that act as proper 

nouns, or that contain a proper noun, abbreviation, phrase or acronym will also be disregarded.  

 

(Ó Séaghdha, 2008:34) 
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The second part of our decision, ‘compounds that are not lexicalised’, does away with all compounds 

that can be found in the dictionary, e.g. voetbal (football, soccer). Since the goal of our research is to 

be able to find the meaning of compounds, we do not need to analyse these lexicalised compounds 

anymore because they already have a dictionary gloss that contains the meaning. Luckily, most of the 

metaphorical and exocentric compounds are already lexicalised, so disregarding them will not 

influence our coverage of the different compounds too much.  

 

A second reason to not accept lexicalised compounds in our annotation list is the fact that we are 

designing this experiment to be able to classify newly produced compounds in the categories. It will 

be better to use similar compounds (those of the productive kind and thus not lexicalised) to predict 

the semantic class of newly produced compounds. Using training and test data from the same 

frequency level is generally a good heuristic. 

 

Still keeping the research goal in mind (finding the meaning of compounds), knowing the relation 

between two constituents is not enough. You also have to know the meaning of the separate 

constituents before you can figure out the meaning of the entire compound. Our complete compound 

selection method is thus dependent on a dictionary. The compounds that qualify for annotation are 

those compounds that are not present in the dictionary but of which the constituents are listed in the 

dictionary, the exceptions being noted above.  

 

All these exceptions are dealt with in rule 1.4 of the guidelines in the appendix. Rule 1.4 thus 

comprises the adaptation of former rules 1.4 and 1.5 (Ó Séaghdha, 2008). Most of these exceptions 

will receive the REL-tag should they occur in the annotation list. 

  

The former rules 1.6 and 1.7 (Ó Séaghdha, 2008) of the guidelines discussed the treatment of 

characteristic situations or events. Since these rules deal with the same topic, they were combined into 

the current rule 1.5. 

 

A last adaptation was performed on the examples that accompany the categories. Dutch examples 

were added to the description of each category. All examples were also provided with the direction of 

the compound. This piece of information should allow the annotator to get a better understanding of 

the annotation rules and the direction in which they work. 
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4.1.3.  Description 

 

The current section will summarise the annotation scheme and guidelines. The full version of these 

guidelines can be found in the Appendix. The annotation scheme was adopted from Ó Séaghdha 

(2008). 

 

The annotation scheme requires the annotator to assign each compound one out of eleven categories, 

the rule that the annotator followed to decide on the category and the direction in which the rule is 

appropriate for the compound. 

 

The eleven categories can be divided in three groups. The first six categories, namely BE, HAVE, IN, 

ACTOR, INST and ABOUT, are categories that assign a specific semantic class to the compound. The 

categories REL, LEX and UNKNOWN are used to describe compounds that cannot be classified as 

one of the other categories. The respective explanations for this is either because the relation between 

the constituents is unclear; because the compound has a very specific, lexicalised meaning that cannot 

be brought back to its constituents; or because the meaning of the entire compound is unclear. The last 

group of categories, MISTAG and NONCOMPOUND, is used to classify words that are present as 

noun-noun compounds in this list, but are not supposed to be in this list. The MISTAG category is 

used for words/compounds of which one or both of the constituents is not a common noun. The 

NONCOMPOUND category refers to sequences that are correctly tagged as regular nouns, but that are 

not noun-noun compounds for some reason. 

 

Some more explanation is in order for the reader to get an idea of the meaning of these specific 

semantic categories. 

 

- BE - This category implies that the compound can be rewritten as ‘N2 which is (like) (a) N1’ 

with N1 and N2 being the two constituents of the compound in that order. This includes 

material-form compounds (e.g. rubberband ‘rubber tyre’) and also most coordinated 

compounds. 

 

- HAVE - All compounds denoting some sort of possession belong in this category. A typical 

property of this possession is that there should be a one-to-many relationship between the 

possessor and the possessed. Part-whole compounds (e.g. autodeur ‘car door’), compounds 

expressing conditions or properties (e.g. kankerlijder ‘cancer sufferer’, broodgeur ‘smell of 

bread’) and meronymic compounds (e.g. groepslid ‘group member’) all belong in this 

category. 
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- IN - Any compound denoting a location in place or time belongs in this category. Examples 

are: badkamer ‘bathroom’ and avondspel ‘evening game’. 

 

- ACTOR - When there is a characteristic event or situation denoted in the compound and one 

of the constituents is a salient entity, the category is ACTOR. For example, in huizenbouwer 

(‘house builder’) there is an action of building houses. The bouwer refers to a person, which is 

a salient entity. This compound therefore belongs in the ACTOR category. 

 

- INST - This category is the counterpart of the ACTOR category. When the compound denotes 

a characteristic event or situation and there is no salient entity present, for example because 

the compound consists of the action itself and the object of this action, the category is INST 

(referring to ‘instrument’). E.g. smaakbederf (‘flavour decay’) where smaak is the object of 

the action bederf. 

 

- ABOUT - This last semantically specific category deals with topical relations between the 

constituents of a compound. The typical instantiation of this category is a compound that 

describes ‘an item that is ABOUT something’ (Ó Séaghdha, 2008:38). Geschiedenisboek 

(‘history book’) would be a perfect example for this category. Other more special uses of this 

category can be found in the guidelines. 

 

4.2. Annotation Process 

 

4.2.1.  Data 

 

For this annotation task, we used a list of compounds that was extracted from the E-Lex Dutch 

lexicon3. The compounds were already split into constituents and the POS-tags of the constituents 

were available. Two thousand noun-noun compounds were randomly selected from this list. Those 

compounds were not allowed to appear in the WNT (Woordenlijst Nederlandse Taal) lexicon but their 

constituents did have to be present in this Dutch dictionary (Nederlandse Taalunie, 2011). Of these 

2000 compounds, 198 double items were removed. Our final compound list for annotation contained 

1802 noun-noun compounds.  

 

Our annotation does not yet follow rule 1.2 of the guidelines. This rule states that a compound should 

be semantically interpreted in context during annotation. Due to a combination of time constraints and 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
3 This compound list was created by Lieve Macken from the LT3 research group (Language and 
Translation Technology Team) at University College Ghent. 
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corpus unavailability, we were unable to provide example sentences of the considered compounds at 

the time of annotation. We do support the idea that considering a compound in context would be a 

more natural language usage. It also has a high chance of improving the accuracy of annotation 

because the context usually constrains the possible ambiguities of a word. Further research with new 

annotations will definitely be conducted in accordance with this rule. 

 

As a solution, we asked our annotators to annotate the most typical meaning of the compound. This 

was a necessary measure, but it produces some difficulties (and lower annotation accuracy than a 

compound in context) since different annotators may have a different idea about the most typical 

meaning of a compound. 

 

4.2.2. Process 

 

The annotation process is also largely inspired by Ó Séaghdha (2008). There were two annotators for 

this task. The first annotator was a third-year linguistics student at the University of Antwerp. This 

student was hired to work on this annotation task. The author of this thesis was the second annotator. 

Both annotators are native speakers of Dutch and have a linguistic background. The first annotator 

was not involved in the development or adaptation of the guidelines. She was first introduced to the 

guidelines by the present author. The guidelines were explained, as well as the goal of the research. 

Then they both annotated 50 different compounds that were not in the official compound list. These 

were compared and corrected together. During the annotation process, some more feedback was sent 

by e-mail but this was kept to a minimum so as not to compromise the agreement results. 

 

The first annotator annotated the entire set of compounds. The second annotator annotated 500 

compounds so an inter-annotator agreement could be calculated. Half of these 500 compounds were 

taken from the beginning of the entire compound list; the other half was taken from the end of the 

compound list. This measure was taken to capture a possible evolution in annotation habits of the first 

annotator. We will expand on the inter-annotator agreement in section 4.2.3. 

 

The first annotator completed the annotation of 1802 compounds. Figure 1 describes the distribution 

of the annotation between the classes. 
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Figure 1. Class Distribution of Annotated Dutch Compounds. 

 

4.2.3.  Agreement 

 

The inter-annotator agreement (IAA) of an annotation experiment is a measure of the validity of the 

manually annotated data. The agreement is a measure of how similar the annotations of different 

annotators are. The agreement is calculated by dividing the number of equally annotated instances by 

the total number of instances. This calculation will be corrected for chance. 

 

However, this IAA can be a misleading measure when dealing with skewed class distributions. The 

probability for an instance to be annotated as belonging to a certain class is surely not equal for each 

class in this case. The Kappa measure will take the class distributions of the different annotators into 

account and thus provide a more reliable measure of annotation agreement (Boleda & Evert, 2009). 

 

The inter-annotator agreement (IAA) on the categories of the 500 compounds was 60.2% (Kappa = 

0.60). Although this is somewhat lower than other reported IAA’s, e.g. Ó Séaghdha’s IAA was 66.2% 

with a kappa score of 0.62 (2008), this is not a bad result. We must not forget that semantic annotation 

is a very difficult task. We do notice that our IAA and Kappa score are very close to each other; this 

means the two annotators have a very similar category distribution. 

 

We also calculated the agreement scores for the categories together with the direction. The agreement 

here is 54%. The agreement on the complete annotated information (category, direction and rule) is 

46.8%. It is essential to remark that Ó Séaghdha’s guidelines “were not developed with the intention 

of maximising the distinctions between rules in the same category” (Ó Séaghdha, 2008:45). 
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Below, you will find the confusion matrix that compares the annotation of both annotators. 

 
 

 Annotator 1 
  BE HAVE IN ACTOR INST ABOUT REL LEX UNKN MISTAG NONC 

BE 20 3 2 0 3 2 1 3 1 1 1 
HAVE 2 40 16 1 5 9 1 5 6 0 0 

IN 2 9 87 2 1 11 0 1 3 0 0 
ACTOR 0 1 0 14 0 2 0 2 0 0 0 

INST 2 4 0 1 32 8 0 3 2 0 0 
ABOUT 4 7 9 6 9 60 0 3 2 0 0 

REL 1 1 1 0 1 2 2 3 2 1 0 
LEX 1 2 1 0 0 3 0 9 2 1 0 

UNKN 0 3 1 0 0 2 1 5 26 0 0 
MISTAG 0 1 0 0 0 3 0 1 2 11 1 

A
nn

ot
at

or
 2

 

NONC 0 0 0 0 0 0 0 0 0 0 0 
Table 1. Confusion Matrix of the Inter-Annotator Agreement 

 

There are several factors that are likely to have contributed to our lower IAA. The most important 

being that the compounds were not accompanied by their context in our annotation process. This will 

cause a higher disagreement between the annotators because the context would normally constrain the 

possible interpretations of a compound.  

 

Analysing this confusion matrix also shows us that there are certain categories that are rather often 

disagreed upon by the annotators. Remarkably, this interchangeable aspect works in both directions. 

The interchanged categories are colour coded and can be summed up as follows: 

- IN & HAVE 

- HAVE & ABOUT 

- IN & ABOUT 

- ABOUT & INST 

 

This may be an indication that the boundaries between these categories are not sufficiently described 

in our guidelines. Especially the ABOUT and HAVE category are often interchanged with other 

categories or each other. Optimising the guidelines by more clearly delineating the boundaries and 

emphasising the differences between these categories could also raise IAA. 

 

It is also probable that the first annotator was not ‘skilled’ enough in applying the guidelines. Because 

of the difficulty of this particular task, it may be necessary to put more time in the training of the 

annotators and do more test annotations together. 

 

It was noted that the low IAA can also partly be attributed to the non-specific categories. When 

calculating the IAA solely on the six specific, semantic categories (BE, HAVE, ABOUT, IN, ACTOR, 
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INST), agreement increases to 67.6%. (This area of the confusion matrix has been accentuated.) When 

doing further research, closer attention will have to be paid to the definition and correct use of these 

less specific categories (LEX, REL, UNKNOWN, MISTAG, NONCOMPOUND). 

 

As a little side experiment, an intra-annotator agreement was also calculated. The same annotator (our 

student) annotated the first 250 compounds of the list again a month after the first annotation. The 

agreement (based on the categories) between these two annotations was only 68.16% with a kappa 

score of 67.90%. An overall agreement of 53.46% was achieved. These numbers are of course better 

than the inter-annotator agreement, but are rather low for a second annotation of the same annotator. 

This shows again how difficult this task really is, especially when there is no context available.  
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5. EXPERIMENT 
 
 

Now that the compounds are annotated and ready, the next step is to start the actual semantic analysis 

experiment. The task of semantically analysing noun compounds has been reformulated as a 

classification task. Machine learning techniques will be used to train a classifier on our training 

instances. These instances are gathered in vectors that contain semantic information, based on context, 

of our compounds. The classifier will then assign categories to the compounds in the test set. 

 

In a first section of this chapter, some theoretical assumptions about our experimentation methods will 

be discussed. The second part of this chapter explains the creation of the vectors that will be used to 

train our classifiers on.  Section 5.3 then describes the machine learning techniques that are used to run 

our classification experiments. The results will be laid out in Chapter 6 and will be discussed in 

Chapter 7. 

 

5.1. Theoretical Assumptions 

 

In order to create the vectors for the compounds we must know what features we want to use. Section 

3.2 of the Related Research chapter shows us that there are several possibilities. We have, however, 

already explained that our research is based on Ó Séaghdha’s PhD thesis (2008). Ó Séaghdha uses two 

corpus-based proximity measures to assemble the compound vectors for the classifier. These are 

lexical similarity and relational similarity. 

 

Our research will be restricted to the lexical similarity approach. The lexical similarity measure will 

provide us with the information that we need to construct the vectors with. This measure fits in a wider 

scheme of hypotheses about statistical methods and corpus research. Sections 5.1.1 to 5.1.3 will 

provide some background information on our research method. 

 

5.1.1.  Analogical Reasoning 

 

The assumption underlying our entire research is that “the semantic relations in compounds […] can 

be identified through a process of analogical or similarity-based reasoning” (Ó Séaghdha, 2008:55). 

We thus assume that the semantic category of a compound (which represents the meaning between the 

compound constituents) can be predicted by comparison with compounds with similar meanings. “Or 

equivalently: the more similar two compounds are, the more likely they are to express similar 

semantic relations” (Ó Séaghdha, 2008:55). This assumption of analogy is also the basis of all 
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statistical methods of classification, which is why we can interpret the compound interpretation task as 

a classification task (Ó Séaghdha, 2008). 

 

This analogical hypothesis has already been wielded in numerous (computational) linguistic studies 

where it was proven a valuable research instrument (Ó Séaghdha, 2008).  

 

5.1.2.  Distributional Hypothesis 

 

The analogical assumption can only be useful when we have a source of semantic information on the 

basis of which the compounds can be compared. The distributional hypothesis provides us with this 

semantic information (Ó Séaghdha, 2008). 

 

The distributional hypothesis implies that “two words are semantically similar if they have similar 

patterns of co-occurrence with other words in some set of contexts” (Ó Séaghdha, 2008:59). The 

meaning of a word is thus implicitly present in the surrounding words (the context) of this word. 

Following this logic, we can assemble a vector of co-occurrence information of a word and consider it 

to represent an approximation of this word’s meaning. Zellig Harris (1968) was one of the first to posit 

this idea; another theoretical work on this topic was by Firth (1957). Hinrich Schütze’s (1992) 

research is well known for its early computational implementation of this idea. Other researchers 

computationally using the distributional hypothesis in its initial stages are Harper (1965) and Spärck-

Jones (1964). 

 

5.1.3. Lexical Similarity 

 

When translating the distributional hypothesis from words to compounds, there are different 

possibilities to be considered. Ó Séaghdha (2008) combines a lexical and relational similarity 

approach. For this first exploratory research into compound semantics in Dutch, we will adopt only the 

lexical similarity approach. 

  

The lexical similarity approach “derives a measure of similarity from pairwise similarities between 

constituents” (Ó Séaghdha, 2008:56). In other words, instead of comparing the semantics of the entire 

compounds, the measure of similarity will be based on the semantic similarities between the 

constituents of the compounds. The modifiers of the compounds will be compared with each other and 

the compound heads will be compared with each other. Two compounds that have similar modifying 

constituents and similar head constituents will be considered as similar on the whole.  
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5.2. Vector Creation 

 

The theoretical notions of our experimentation methods have been defined in the previous section. 

What follows is a practical description of the vector construction. 

 

5.2.1.  General Outline 

 

For every compound constituent in our annotated list, the context will have to be calculated. The 

Twente News Corpus (Ordelman, de Jong, van Hessen & Hondorp, 2007), a 340 million word Dutch 

corpus, was our source of co-occurrence contexts. A Python script was written to crawl this corpus 

and when coming across one of the constituents, the surrounding words were held in memory. When 

the entire corpus has been searched, the lists of context words per constituent are topped off. The 

10,000 most frequent context words with their relative frequencies (the number of times the word 

appeared in the context of the constituent, divided by the frequency of the constituent in the corpus) 

are stored.  

 

We are, however, not interested in constructing constituent vectors. For every compound, we create a 

vector that contains the compound itself, its category, direction and rule (as annotated before), and 

then the relative frequencies for the 1000 most frequent words for the respective constituents. 

Compounds of which one or both of the constituents did not appear in the corpus, were excluded from 

our vector set. 

 

Our final vector sets only include those compounds that are annotated with a semantically specific 

category. This means that only compounds with the category tags BE, HAVE, IN, ABOUT, INST or 

ACTOR will be used for our classification experiments. This leaves 1447 compounds in our dataset. 

 

5.2.2.  Different Variants of Training Data 

 

The purpose of our research is not merely to be able to classify compounds on the basis of their 

semantics. We want to investigate in what circumstances this classification works best. This section 

will explain the design and purpose of the different variants of the vectors. 

 

A first distinction was made in the compilation of the lists of context words. The assembling was 

performed in two distinct ways. The first and widely attested approach (Schütze, 1992; Evert, 2010) is 

to calculate a list of a number (e.g. 10,000) of frequent words in advance and only register the co-

occurrences that are present in this list.  
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In our second approach, the list of context words is calculated after the corpus crawling. For every 

compound, the 10,000 most frequent words are stored and the list of context words that will be used 

for the vector creation is calculated by taking those context words that appear in the contexts of the 

most constituents. This approach is thus not based on the absolute frequencies of the words in the 

corpus. The hypothesis is that this approach might provide us with better results by reducing the data 

sparsity in the vectors. Since the vectors are designed to contain words that occur in the most contexts, 

there will be fewer words that have a frequency of 0 in the context of the constituent. These 

approaches will respectively be abbreviated as ‘freq’ and ‘cont’ in the results chapter. 

 

A second variation in our data representation concerns the difference between the morphologically 

complex forms (or lexical items) and the root forms (or lemmas) of the words in our corpus. In one 

option, the list of context words contains the lexical items, or tokens, as they appear in the corpus. For 

example, be and is will be different items in our context list. The other option only allows for the 

context list to contain lemmas, or root forms, of the words. In this case, be and is will be counted as 

instances of the same lemma and will fall under be in the context list. 

 

Each approach has its advantages and disadvantages. When using lemmas, there is more room in the 

10,000 item list for semantically different items, but you lose the morphological and syntax markers of 

the words that also might provide clues on the semantics of a word. The abbreviations to refer to these 

approaches are ‘lemma’ and ‘lex’. 

 

The size of the co-occurrence context of the constituent is the third variation in our sets of training 

data. It will be interesting to see how much context of a word is needed to optimally describe its 

semantics. There will have to be a balance between having a large enough context to describe the 

constituent’s semantics and having a context that is too large and contains words that no longer have 

anything to do with the constituent (that are mere noise in the data). Three sizes were chosen for this 

purpose: a context size of 3, 5 and 10 words in both the left and right context was computed.  

 

All possible variations of the data were combined with each other, resulting in 12 different datasets. 

 

5.2.3.  Principal Components Analysis 

 

So far, we described a ‘bag of words’ approach where each token (lemma or lexical item) equals one 

attribute in the vector. Because the compound vector contains 2000 attributes, this approach is 

computationally rather expensive and there is reason to try and reduce our vector size for performance 

sake. One way of achieving this is using principal components analysis (PCA).  
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PCA is a mathematical transformation of data stored in a matrix. The representation of this data is 

adapted so that the variance in the data is optimized. The vectors will be reduced in size because 

correlated variables will be fused. The new attributes of these vectors are called principal components 

(PCs). The PCs are ordered so that the PC with the greatest variance is the first attribute. The PC with 

the lowest variance is the last attribute (Smith, 2002). 

 

To perform these mathematical transformations on our data, we used the ‘PCA Module for Python’ as 

implemented by Henning Risvik (2008). This module provides two algorithms to perform PCA on  

data: SVD and NIPALS. The SVD (singular value decomposition) algorithm is one of the basic 

algorithms to perform PCA. The NIPALS (non-linear iterative partial least squares) algorithm is used 

for very high-dimensional datasets because it allows the computation of only the first few PCs.  

 

New datasets were then created using the SVD algorithm. The PCA was performed on the constituent 

context data. When creating the compound vectors, the first 50 PCs per constituent were selected. 

Apart from the ‘bag of words’ vectors, we now also have SVD vectors for every variant. They have 

100 attributes per compound (50 per constituent).  

 

5.3. Machine Learning 

 

The next step in our experimentation process is the actual machine learning experiments. A 

computational model is created and trained on the vectors (and their classes) that we constructed. This 

model will, by training on actual data and generalising this ‘knowledge’, learn the structure and 

regularities that are present in this data. It will connect certain aspects of the vectors to the classes 

these vectors belong to. It will eventually become able, up to a certain point, to predict the class of 

unseen instances. 

 

There are several machine learning methods available. Our research will focus on support vector 

machines (SVMs) because they have been proven to work very well in many different natural 

language processing tasks, especially in text categorisation (e.g. Sebastiani, 2002). We will use 

instance-based learning for comparison. These two types of machine learning will be discussed below. 

After the discussion of the machine learning algorithms, the metrics and method that will be used to 

evaluate the experiments will be explained. 

 

5.3.1.  Support Vector Machines 

 

The basic principle behind SVM algorithms is linearly separable binary classification. Let us assume a 

two-dimensional space where instances of two classes are situated according to their attributes in a 
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vector. The SVM algorithm will try to linearly separate the instances of the two classes by finding a 

hyperplane that maximises the margin between these two classes. The instances that lie closest to this 

hyperplane are the support vectors. They support the location of the hyperplane. If the support vectors 

would be removed, the dividing hyperplane would change its position (Berwick, 2003; Fletcher, 

2009). 

 

When, as in many cases, the instances cannot be separated in their original space, the instances will be 

mapped onto a higher dimensional space by applying kernel functions. It is possible that the instances 

then become separable (Cortes & Vapnik, 1995).  

 

When applying the SVM method to a multiclass problem, the algorithm will divide the problem in 

several binary problems and eventually combine the outcome of these split SVM tasks. 

  

Our research will use the SMO implementation of the SVM algorithm that is provided in the WEKA 

Data Mining software (Witten, Frank & Hall, 2011). Automatic optimisation of the parameters will be 

performed by the CVParameterSelection function. 

 

5.3.2.  Instance-based Learning  

 

Instance-based learning, or memory-based learning, is a type of machine learning where the algorithm 

does not create a model that represents the variance in the training data. Instead, the entire set of 

training data, all instances come across so far, is stored in memory. The performance of the 

classification algorithm is based on the comparison of new instances with the instances from the 

training data. The new instance will be assumed to belong to the same class as the training instance 

that is most similar (Daelemans & Van den Bosch, 2005).  

 

The k-nearest neighbours algorithm (k-nn) is the most well known implementation of this type of 

machine learning. This algorithm does not use one most similar instance, but k similar instances (or 

neighbours) for comparison. The prevalent class of these k instances will be assigned to the test 

instance. 

 

For our research, we will use the TiMBL IB1 algorithm, which is a k-nearest distance algorithm. This 

means that not the k nearest neighbours will be taken into account, but all the neighbours at the closest 

k distances to the considered instance. TiMBL is an open source memory-based machine learning 

software package that was developed by Daelemans & Van den Bosch (2005). Based on exploratory 

research, we used the IB1 algorithm with a k-value of 3 and no weighting of the attributes takes place. 
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5.3.3.  Evaluation 

 

This section will provide some details on the evaluation of our experiment. The main aspects of this 

topic are the method used for evaluation and the metrics that are used to present the model’s accuracy. 

 

5.3.3.1. Evaluation Method: Cross-Validation 

 

In order to maximise the potential of the training data of the experiment to generalise to the test data, it 

is desirable to train and test our classifier on as much data as possible. Cross-validation is a technique 

that serves exactly this purpose (Jurafsky & Martin, 2009). 

 

In k-fold cross-validation, k different ‘folds’ of the same data are created. Every fold contains a 

different randomly chosen training and test set. The classifier is then trained and tested on each fold 

separately and the average results of these k runs are the measure of performance for this classifier on 

this data set (Jurafsky & Martin, 2009). 

 

The most frequently used version of this technique is tenfold cross-validation in which 10 folds of the 

data set are created that each contain 90% train data and 10% test data. This method was also used in 

our compound classification experiments. 

 

5.3.3.2. Evaluation Metrics 

 

Evaluation metrics are a means of representing the performance of a system. We will use accuracy, 

precision, recall and F-measure (or F-score) for this purpose. These are the standard evaluation metrics 

for research in computational linguistics. They are described in Jurafsky & Martin (2009), 

Compumine (2012) and Van Asch (2012). 

 

Although our experiment holds a multiclass problem, the measures will first be presented as applied to 

a two-dimensional classification problem. A generalisation of these metrics, as well as the application 

to multi-class problems, will be presented at the end of this section.  

 

Table 2 shows an example confusion matrix of a two-dimensional classification problem. Table 3 is 

the symbolic representation of the data for the evaluation of class A. TP stands for true positives; TN 

stands for true negatives, and FP and FN for false positives and negatives. In this representation 

‘positives’ are those instances that are classified as the considered class (vs. negatives: instances 

classified as the other class). ‘True’ means that the positive/negative indication is true (vs. false: the 

positive/negative tag is incorrect); 
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 Predicted Class 
 A B 

A 20 4 

 K
no

w
n 

C
la

ss
 

B 3 15 
Table 2. Example Confusion Matrix for a   
Two-Dimensional Classification Problem 

 

 Predicted Class 
 A B 

A TP FN 

K
no

w
n 

C
la

ss
 

B FP TN 
Table 3. Symbolic Confusion Matrix for 
Evaluation of Class A 

 
 

The accuracy of a classifier is the sum of all the correctly classified instances divided by the total sum 

of instances.  

Accuracy = (TP + TN) / (TP + TN + FP + FN).  

 

To be able to get more information on the performance of the classifier, other more specific measures 

can be computed. These measures are computed per class and can be averaged to tell something about 

the entire system’s performance. 

 

The precision for a class is actually the accuracy measure calculated for this class only. This is 

calculated by taking the number of correctly classified instances for this class and dividing it by the 

number of instances that are classified as the considered class.  

Precision for A = TP / (TP + FP) 

 

The recall for a class is a measure that represents the ability of a model to select instances of a class 

from a data set. This measure can be computed by dividing the number of correctly classified 

instances of the considered class by all the instances of this class.  

Recall for A = TP / (TP + FN) 

 

The F-score is a combination of the former two measures into a single metric. The importance of 

precision and recall can be weighted in this combination, depending on the goal of your system. In 

most cases however, precision and recall are equally weighted. This yields the following formula for 

F-score calculation. 

F-score = ( 2 x Precision x Recall ) / ( Precision + Recall ) 

 

The above three metrics are applicable to one class in a problem. To obtain a global result for the 

experiment, a weighted average of the individual precisions, recalls and F-scores will be calculated. 

There are two ways of averaging these evaluation measures: macro-average and micro-average (Van 

Asch, 2012). These can be distinguished as follows: 
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Macroaveraging gives equal weight to each class, whereas microaveraging gives equal 

weight to each per-document classification decision. […] [L]arge classes dominate 

small classes in microaveraging. […] Microaveraged results are therefore really a 

measure of effectiveness on the large classes in a test collection. To get a sense of 

effectiveness on small classes, you should compute macroaveraged results (Manning 

et al., 2008:280-281). 

 

When dealing with a multiclass problem, as in the compound semantics analysis, a ‘positive’ instance 

is then an instance that is classified as belonging to the considered class; a ‘negative’ instance can 

belong to any other class in the experiment. 

 

For certain results, the statistical significance will be calculated. The calculation of a statistical 

significance shows whether two results are more different than what could have been caused by 

chance. A significance value p that is below 0.05 is considered significant. 

 

The Approximate Randomization Testing script (art.py4) was used in our research to compute 

statistical significance. This script was written by Vincent Van Asch from the CLiPS Computational 

Linguistics research group at the University of Antwerp. 

 

The results of our experiments using the support vector machines and instance-based learning on the 

Dutch compound data will be presented in Chapter 6. 
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  This script is publicly available at: http://www.clips.ua.ac.be/scripts/art  
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6. RESULTS 

 
 

Having discussed some background topics about compounding and explained the entire experimental 

setup, you will now be provided with the results. 

 

This chapter will first present the results of the SVM machine learning experiment, which will be 

compared with the TiMBL results. Tendencies that may be present in the results will then be identified 

and discussed in the next section. An error analysis can be found in the fourth section of this chapter. 

Finally, some additional experiments are discussed in section 6.4. 

 

6.1. Main results 

 

To obtain the following results on our classification task for the semantics of Dutch compounds, the 

WEKA (Witten, Frank & Hall, 2011) and TiMBL (Daelemans & Van den Bosch, 2005) software 

packages were provided with the twelve variants of our vectors (as described in section 5.2.2). The 

SMO algorithm (WEKA’s SVM implementation) was used on these twelve variants in their ‘bag of 

words’ (BOW) form and in their PCA form. The IB1 algorithm (TiMBL’s k-nearest distance 

algorithm) was used only on the PCA vectors. 

 

Since this is the first research on Dutch compound semantics, a baseline of 29.5% will be assumed. 

This baseline was calculated by dividing the count of the most frequent class (428 instances of class 

IN) by the total number of compounds in the dataset (1447). This number represents the accuracy that 

can be obtained by always guessing IN as the output class.  

 

Table 4 presents the micro-average results achieved with the SMO classifier.  
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BOW PCA - SVD Variants 
Precision Recall F-Score Precision Recall F-Score 

Freq Lemma 3 47.7 47.5 47.6 44.5 48.1 44.6 
Freq Lex 3 47.6 48.0 47.8 41.7 46.2 41.7 
Cont Lemma 3 49.5 48.8 49.0 45.2 47.8 45.1 
Cont Lex 3 46.7 47.0 46.8 43.7 46.8 42.9 
Freq  Lemma 5 46.6 46.6 46.5 45.4 48.2 44.2 
Freq Lex 5 47.7 48.0 47.8 43 47.6 43.6 
Cont Lemma 5 45.7 45.5 45.5 45.8 48.4 45.2 
Cont Lex 5 47.8 48.4 48.0 44.4 48.4 43.9 
Freq  Lemma 10 47.0 47.0 46.9 45.5 47.9 42.9 
Freq Lex 10 47.2 47.7 47.4 44.2 48.4 42.5 
Cont Lemma 10 46.4 46.3 46.3 44.2 47.9 42.8 
Cont Lex 10 47.4 48.0 47.6 42.3 47.8 41.8 
Table 4. Micro-Average SMO Results on BOW and PCA Vectors using 10-fold Cross-Validation. 

 

The results in Table 4 clearly show a significant improvement over the most frequent class baseline. 

The BOW approach reaches better results, with a maximum of 49% F-score, than the PCA approach, 

with a highest F-score of 45.2%. The F-scores for the BOW approach vary from 45.5% to 49.0%, 

which gives an average F-score of 47.2%. This average shows that the BOW approach seems to do 

better than the PCA approach, where an average F-score of 43.4% was achieved with results ranging 

from 41.7% to 45.2%. Although the PCA approach with the SVD algorithm reaches significant 

results, it still seems to be outperformed by the BOW approach. When taking a closer look at the 

results of the best performing PCA and BOW experiments, this statement appears to be true. It is 

however the difference in macro-average F-score (PCA 36.4% vs. BOW 43.9%), and not micro-

average F-score, that is statistically significant (p = 0.012 < 0.05). This is mainly because there is a 

high difference in macro-average recall (p = 0.0019 < 0.05) between the two approaches. This implies 

that a BOW approach has a positive effect on the recall of the smaller categories. When calculating 

statistical significance on the micro-average F-scores, the BOW approach does not show a statistically 

significant improvement (p = 0.373 > 0.05) over the PCA approach, although the micro-average 

precision of the BOW approach is quite a bit higher than the precision of the PCA approach.  

 

The PCA vectors were also used for experiments with TiMBL’s IB1 algorithm. The results of these 

experiments can be found in Table 5. 
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PCA – SVD Variants 
Accuracy F-Score 

Freq Lemma 3 46.7 44.8 
Freq Lex 3 48.3 46.0 
Cont Lemma 3 45.8 44.0 
Cont Lex 3 49.1 47.2 
Freq Lemma 5 49.7 47.7 
Freq Lex 5 49.6 47.2 
Cont Lemma 5 47.5 45.8 
Cont Lex 5 49.7 47.7 
Freq Lemma 10 48.3 46.4 
Freq Lex 10 47.0 44.9 
Cont Lemma 10 48.6 46.6 
Cont Lex 10 49.6 47.4 
Table 5. IB1 Results on the PCA Vectors. 

 

The F-scores achieved by the IB1 algorithm on the PCA vectors range from 44% to 47.7%. The 

average F-score of all the variants is 46.3%. This is a remarkably higher result than the SMO 

algorithm.  

 

The best results were achieved by the BOW approach. It seems that some of the information in the 

vectors is lost during the PCA calculation. Nevertheless, the results from the PCA vectors are also 

significantly better than the random baseline. 

 

After performing these experiments, we noticed a methodological problem in our ‘Cont’ method. Due 

to the calculation of the 10,000 most frequent words on the entire set of constituents, our instances are 

not independent which is a necessary condition to test generalization. This may lead to overfitting. The 

‘Freq’ method calculates its most frequent words list on the entire corpus. This method is data 

independent and thus does not cause any overfitting. In order to assess the effect on our results of this 

possible overfitting, we performed another experiment in which we use a fixed training and test set. 

The most frequent words list for the ‘Cont’ method is then calculated on the training set only and 

applied on the test set. For a better comparison, we also performed the train/test experiment using the 

‘Freq’ method. The results of this experiment using the BOW approach can be found in Table 6. 
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CONT FREQ Variants 
Precision Recall F-Score Precision Recall F-Score 

3 50.5 50.4 49.3 52.9 50.4 50.1 
5 48.9 48.9 48.2 49.8 50.4 49.5 Lemma 

10 52.7 52.6 51.6 57.6 56.2 55.5 
3 56.4 54.7 54.1 58.3 56.2 55.8 
5 52.8 51.8 51.2 57.1 56.9 56.8 Lex 

10 56.3 56.2 55.4 53 52.6 52.5 
Table 6. Micro-Average SMO Results on BOW Vectors using Fixed Training and Test Set. 

 

We will further look into all our results in the next section. 

 

6.2. Tendencies 

 

Tables 7 and 8 are included in this section to illustrate some of the tendencies that can be noticed in 

the main experimental results.  

 

 Avg. F-Score BOW Avg. F-Score PCA 
3 47.8 43.5 
5 47.0 44.2 

Number of Context 
Words (Left and 

Right) 10 47.1 42.5 
Freq 47.5 43.2 Manner of Context 

Calculation Cont 47.2 43.6 
Lemma 46.9 44.1 Type of Corpus 

Elements Lex 47.5 42.7 
Table 7. Average SMO F-scores for Different Experimental Aspects. 

 
 

 Avg. F-Score PCA 
3 45.5 
5 47.1 

Number of Context 
Words (Left and 

Right) 10 46.3 
Freq 46.5 Manner of Context 

Calculation Cont 46.4 
Lemma 45.8 Type of Corpus 

Elements Lex 47.1 
Table 8. Average IB1 F-scores for Different Experimental Aspects. 

 

A first observation of these tables teaches us that there is hardly any difference in results due to the 

manner of context calculation. Our secondary experiment (see Table 6) with improved methodology 

on a fixed training and test set gives average F-scores of 51.63% for the ‘Cont’ method and 53.36% 

using the ‘Freq’ method. Although evaluation with training and test sets is less accurate than 10-fold 
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cross-validation, the hypothesis that the ‘more context’ method would perhaps raise the results has 

hereby been proven faulty.  

 

Since the results of our secondary experiment confirm the results of our main experiment that the 

‘Cont’ method does not live up to our expectations, we will further only discuss the results of our main 

experiment; the reason being that we consider 10-fold cross-validation a more reliable evaluation 

method than training and test sets. 

 

The number of context words that are being taken into account does have an influence on the results, 

though the different approaches do not all show the same outcome. The average SMO BOW results 

show a better performance of the classifier when using three context words. The average SMO PCA 

results and the IB1 PCA results show an improvement of the F-scores when using five context words.  

Finally, the results also show an influence of the type of corpus elements used. The SMO BOW results 

and the IB1 PCA results both show better results when using lexical items instead of lemmas. The 

SMO PCA results point in the other direction. This SMO PCA approach was, however, the one with 

the lowest F-scores. The other results thus have higher credibility. 

 

6.3. Result Analysis 

 

In this section, a result analysis of the classification of the best performing experiment will be 

presented. The idea is not to identify tendencies across different approaches but to have a more 

detailed look at the results of the SMO classifier on the data set that yielded the best results: BOW 

Cont Lemma 3.  

 

  Classifier 

  INST HAVE ABOUT IN ACTOR BE 
INST 106 35 39 37 3 15 

HAVE 24 90 46 49 6 18 
ABOUT 65 53 210 36 10 10 

IN 41 58 43 248 15 23 
ACTOR 9 5 10 6 28 4 A

nn
ot

at
io

n 

BE 14 25 18 23 1 24 
Table 9. Confusion Matrix of the Classification with the Best Results: SMO BOW Cont Lemma 3. 
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Figure 2. Comparison of Class Distributions between Annotation and Best Classifier. 

 

 Precision Recall F-Score 
INST 40.9 45.1 42.9 

HAVE 33.8 38.6 36.1 
ABOUT 57.4 54.7 56 

IN 62.2 57.9 60 
ACTOR 44.4 45.2 44.8 

BE 25.5 22.9 24.1 
Weighted Avg. 49.5 48.8 49 
Table 10. Accuracies by Class of the Confusion Matrix in Table 6. 

 

Table 9 presents the confusion matrix of the best classifier; this is the SMO algorithm on the BOW 

Cont Lemma 3 data set. There are many misclassifications, which is normal with an F-score of 49%, 

but there seem to be no strong tendencies in this confusion matrix. 

 

Figure 2 shows us that the class distributions of the classifier are very similar to the class distributions 

of the annotation. This aspect was apparently learned well by the SMO algorithm. 

 

Table 10 provides us with the results by class that this classifier achieves. It is noticeable that classes 

with higher frequencies reach a higher accuracy, which makes sense since there is more training 

information on this class available because of its higher frequency. The BE class has a rather low 

frequency and has the lowest accuracy with an F-score of 24.1%. However, the ACTOR category, 
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which has the lowest frequency, does have the third highest accuracy (44.8%). This indicates that the 

ACTOR category is easier to learn by the classifier than the classes with higher frequencies.  

 

6.4. Error Analysis 

 

In this section, we take a detailed look at the classification of the instances of the best performing class 

(IN) of the best variant of our experiment: SMO BOW Cont Lemma 3.  

 

According to the annotation, 25 out of 45 compounds in this class were correctly classified. This 

makes 20 compounds that were misclassified. Of these 25, there are however 5 compounds that may 

be dubiously annotated. For example, the compounds ovendeur ‘oven door’ and pistoolheft ‘pistol 

grip’ are annotated as IN, where they would be better annotated as HAVE (part-whole). 

 

Of the 20 misclassified compounds, only 3 are truly incorrect. In 4 cases, both the annotation and the 

classification seem appropriate. These are context-dependent matters such as badkuur ‘spa treatment’ 

(lit. bath treatment), which may be classified as IN (treatment in a bath) or as INST (bath serves as 

participant in the treatment). 

 

There are also 5 cases where both annotation and classification appear to be wrong and even 8 cases 

where the annotation seems incorrect and the classification indicates the right relation.  

 

Examples of both annotation and classification going wrong include katoog ‘cat eye’, which was 

classified as BE but is supposed to be HAVE and galakoets ‘gala carriage’ which was classified BE 

but is actually ABOUT. 

 

Some examples of the classification being correct and the annotation being wrong, are koorlessenaar 

‘choir desk’ (correctly classified as HAVE) and ovulatiestoornis ‘ovulation disturbance’ (correctly 

classified as INST). 

 

These occurrences are of some concern. They mostly show our annotation is still far from perfect and 

the annotators will need more guidance. There are also indications, namely the 8 misannotated but 

correctly classified compounds, that the classifier actually works rather well. 

 
6.5. Additional Experiments 

 

Some minor side experiments were also performed on the data. These can be considered as precursors 

of further research on these matters. 
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6.5.1.  NIPALS Algorithm 

 

Principal Components Analysis, as implemented in the PCA Module for Python (Risvik, 2008), can be 

calculated by two algorithms. For the purposes of our research, we used the SVD algorithm, which is 

the basic PCA algorithm. The NIPALS algorithm is developed for large multidimensional data sets. It 

may thus be interesting to try and use this algorithm on our best SVD result and compare these two 

algorithms. 

 

Table 11 provides the results of the SVD and NIPALS algorithm on the Cont Lemma 5 dataset.  

 

 Precision Recall F-score 

SVD 45.8 48.4 45.2 
NIPALS 46.3 48.8 45.9 

Table 11. Comparison of Results with SVD or NIPALS Algorithm. 

 

It appears that the NIPALS algorithm can present somewhat higher results than the SVD algorithm. 

These differences are, nevertheless, not statistically significant. The significance value p for the micro-

average F-score is 0.419, which is higher than 0.05 and thus not statistically significant. It may still be 

worth looking more into the differences between these algorithms to make a choice between them for 

further research. 

 

6.5.2.  Eight Categories 

 

The entire research is based on the classification of our data for six semantically specific classes. It 

may be interesting to investigate the accuracy of a system that also takes the less specific REL and 

LEX categories into account. A classification was performed on the data set with 8 categories with the 

same specifications as our best performing PCA data set: Cont Lemma 5.  
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 6 cat 8 cat 
BE 10.9 13.7 

HAVE 29.9 29.1 
IN 62.3 57.4 

ACTOR 27.6 30.3 
INST 32.0 31.6 

ABOUT 55.8 55.7 
REL  19.5 
LEX  13.6 

Micro-average 45.2 41 
Table 12. Comparison of F-Scores per Class with 6 or 8 Categories. 

 

Table 12 shows a drop of 4.2% in overall F-score. The REL and LEX categories achieve a low 

accuracy of 13.6 and 19.5% F-score. This is an indication that the REL and LEX categories are indeed 

much less specific than the other six categories and are therefore less learnable by our context-based 

classifier. Including these two categories also seems to bring down the accuracy of the other 

categories, which is especially noticeable in the IN category. 

 

6.5.3.  Rule Induction Classifier 

 

A final additional experiment was to investigate the performance of a rule induction classifier on the 

best performing BOW data: Cont Lemma 3. More importantly, it will be interesting to see if the 

algorithm creates some interpretable rules based on the unigrams in the bag of words. WEKA’s JRip 

algorithm (Witten, Frank & Hall, 2011) was used with its default parameters for this purpose.  

 

An F-score of 36.5% was reported. This is not a large improvement from the 29.5% baseline, but let 

us have a look at the rules anyway.  

 

JRip constructs 16 rules that are to be followed in order. The most noticeable aspect of these rules is 

that they completely ignore the BE category. The first four rules will classify instances as ACTOR. 

Then there are three rules for HAVE and three rules for INST. The ABOUT category has five rules 

governing its instances. The rest of the instances is automatically categorised as IN. There is no rule 

that allows for instances to be classified as BE. Although this may be a small class, this is already 

detrimental for the system’s usefulness. However, this problem may be partially solved by optimising 

the algorithm’s parameters. It does seem appropriate for the default category to be IN, since this is the 

largest category in the training data.  
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When looking at the unigrams used in the rules, some minor tendencies may be identified. It appears 

that the ACTOR category is often associated with verbs, e.g. zeggen (to say), beginnen (to begin), 

betalen (to pay) and spreken (to speak/talk). The HAVE category has pronouns such as we, elkaar 

(each other) and beide (both) that may point towards possession. The INST category has nouns like 

oog (eye) and hand that can be seen as instruments of actions in some way. The verb zien (to see, 

which fits with the eye) and the preposition als (as) may also be indicators of instrumental actions. 

 

On the other hand, there is quite some evidence for overfitting in these rules. Proper names (Peter, 

Utrecht) and numerals (zestig ‘sixty’) cannot really add any semantic value to these rules. 
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7. DISCUSSION 

 
 

7.1. Summary 

 

This research focused on the semantic analysis of Dutch noun compounds by using computational 

classification methods. The noun compounds were semantically annotated in advance. These 

annotations were performed using the provided guidelines that describe different categories of 

compounds. The semantic analysis by the classifier is based on distributional information about the 

constituents of the compound, i.e. information about the words that appear in the context of these 

constituents in a corpus.  

 

The introduction in Chapter 1 describes the context and the research goals of our experiment and the 

applications that could possibly benefit from an automatic semantic analyser of compounds. The 

research goals are identified as follows:  

- The creation of a semantically annotated list of compounds. 

- Exploratory research on the feature creation for the classification of Dutch compounds and 

presenting initial performance results. 

- The investigation of the performance of the experiments using measures of dimensionality 

reduction, like Principal Components Analysis (PCA). 

 

Chapter 2 provides a background overview of the theoretical linguistic research on compounds. A first 

section focused on the problematic definition of compounding. The second part of this chapter deals 

with the semantic aspects of compounding.  

 

The related research is presented in Chapter 3. We noted that most annotation schemes used in similar 

research are based on a paraphrasing predicate of the relation between the compound constituents. 

Different methods of feature selection were then discussed. The most prominent of which are the 

corpus-based methods that use proximity features and the taxonomy-based methods that often use 

WordNet. 

 

In order to provide our compounds with a semantic annotation, we needed an annotation scheme fit for 

this task. We adopted the scheme and guidelines posited by Ó Séaghdha in 2008. This scheme was 

slightly adapted to be appropriate for the Dutch compounds. In the annotation process, an inter-

annotator agreement of 60.2% was achieved. Chapter 4 deals with all aspects of the annotation 

guidelines and process.  
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Chapter 5 contains the description of our experimental setup. The principles of analogical reasoning 

and the distributional hypothesis are first laid out, after which the measure of lexical similarity is 

explained. This measure uses the semantics of the separate constituents of compounds to make a 

decision on the overall semantics of the compounds. 

 

The next section describes the creation of our vectors. These vectors contain information on the 

context in which the constituents of the compound occur. Different variants of these vectors are 

created to be able to compare between different experimental aspects. Also, Principal Components 

Analysis was performed on variants of the vectors. This method reduces the number of vectors while 

maintaining the variance in this data. 

 

The last section of Chapter 5 provides background information about the machine learning algorithms 

used in our classification experiments and about the cross-validation method and evaluation metrics 

used. 

 

In Chapter 6, our experimental results are presented. We achieved a best result of 49% F-score on the 

BOW data which significantly outperforms the 29.5% most frequent class baseline. The PCA 

approach also reaches significant results with a best F-score of 45.2%. The BOW still outperforms the 

PCA approach on the recall of the smaller classes. We also present analyses of the results by looking 

for tendencies and by looking at the results in more detail.  

 

7.2. Conclusions 

 

The research goals that were posited in the introduction will now be revisited and discussed. A state of 

affairs on the research goals will be presented and some conclusions can be drawn. 

 

- The creation of a semantically annotated list of compounds. 

 

A semantically annotated list of compounds was indeed created. The annotated list contains 1802 

Dutch noun compounds that are each annotated with one of eleven categories. Of this list, 1447 

compounds belong to one of the six semantically specific classes that can be used for machine 

learning. 

 

The inter-annotator agreement was 60.2%, which is a good initial result. This score does not reach the 

same heights as the best agreements reported for English systems, but this may be because our 

compounds were not annotated in context. 
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- Exploratory research on the feature creation for the classification of Dutch compounds and 

presenting initial performance results. 

 

This initial research on the automatic semantic analysis of Dutch noun compounds reached significant 

results. Our best performing experiment had a micro-average F-score of 49%, which is significantly 

higher than the most frequent class baseline. As a first result, this already compares favourably with 

the 58.8% F-score (accuracy of 61%) reached on English compounds using the same method (Ó 

Séaghdha, 2008). The BOW approach appears to consistently outperform the PCA approach, but the 

IB1 experiment also yields better results on the PCA data than the SMO algorithm.  

 

The variants of the experiment with 3 and 5 context words on both sides of the constituent, performed 

better than those with 10 context words. This is probably because the context loses its specificity when 

it is that large. It would no longer only describe the constituent, but also include too much information 

on irrelevant words. There is no real difference in performance between the ‘cont’ and ‘freq’ measure. 

There is a difference between the performance of the ‘lex’ and ‘lemma’ variants, but the difference 

can be disputed. The SMO BOW experiments and the IB1 PCA experiments showed better 

performance using the lexical items, the SMO PCA experiments preferred using the lemmas. 

However, these are tendencies that can be seen in the experiment averages. These are not visible in 

individual experiments. 

 

The error analysis gives an indication that the annotator will need more training, but it also hints at a 

rather good performance of our classifier given the number of compounds that were misannotated but 

correctly classified. 

 

- The investigation of the performance of the experiments using measures of dimensionality 

reduction, like Principal Components Analysis (PCA). 

 

The results of our experiments using the PCA approach turned out not only to be significant but also 

rather close to the results of the BOW approach. Only on the recall of the smaller categories is the 

BOW approach significantly better. However, this difference makes the entire F-score of the PCA 

approach significantly lower than that of the BOW approach. 

 

These results are promising because they might allow us to create smaller data sets in our vectors, 

which would speed up our experimentation process. Smaller data sets are easier to handle by machine 

learning algorithms. The lower results indicate a possible loss of information in the calculation of the 

PCs.  
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7.3. Further Research 

 

Future research will have to focus on the optimisation of the experiment in order to achieve better 

results that would compare more favourably to the state-of-the-art in experiments for English noun 

compounds. 

 

During the annotation process, it will be necessary to better educate the annotator about the guidelines 

before the annotation starts. Probably some more adaptation to the guidelines is also appropriate so as 

to be able to better distinguish between the categories that showed a lower agreement. The annotation 

of the compounds in context (with example sentences) is also a must in future research. These 

measures should raise the agreement, and hopefully the performance of the classifier. 

 

As for the experimental setup, the 10 context words variant will probably not perform any better than 

using 3 or 5 context words. Crawling a corpus and storing 10 context words left and right for every 

constituent is also computationally very expensive, which makes us even more inclined to discard this 

approach. It may be useful to introduce more variance in the lower range of context words, e.g. also do 

experiments with 1, 2 or 4 context words left and right to the constituent in the corpus.  

It will no longer be necessary to distinguish between the ‘freq’ and ‘cont’ approach. They perform 

practically equally good, but the ‘freq’ approach is a lot easier and faster. A choice is readily made. 

The distinction between ‘lex’ and ‘lemma’ in performance may need some more attention, but it does 

not seem as if one of the two will outperform the other. 

 

The PCA approach might need some further exploration, but it appears to be working fine on this data. 

The NIPALS algorithm can be more looked into, and possibly some other implementations too.  

 

There are still other factors to our research that may be interesting to investigate. Changes in the 

number of most frequent words might have an influence on our system’s performance. Also the kind 

of tokens we use in this most frequent ‘words’ list can be of importance. Apart from the lexical items 

and lemmas, special attention could be given to the effect of taking into account only function words 

or only content words.  

 

Analogous to previous research on English compound semantics, combining our current vectors with 

(hyponym) information from a WordNet-like semantic network (for Dutch: CORNETTO) should also 

have a positive impact on our results.  
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APPENDIX: ANNOTATION GUIDELINES FOR COMPOUND NOUNS IN ENGLISH AND 

DUTCH 

 

These guidelines were taken and adapted from Ó Séaghdha’s PhD thesis ‘On Compound Semantics’ 

(2008). They are developed to be able to describe the semantic relation between the constituents of 

two-noun compounds. We have only annotated those compounds that are not in the dictionary, but of 

which the constituent nouns can in fact be found in the dictionary. If a compound already has a gloss, 

we do not have to analyse it to find its meaning, but we do need to know the meaning of each 

constituent to be able to find the compound meaning. This means that a lot of common, lexicalised and 

exocentric compounds are excluded from the annotation. These compounds will be removed from the 

annotation data by crosschecking the data with a dictionary before the annotation commences. Should 

we still encounter such compounds in our data, rule 1.4 explains what to do with them. 

More details on the adaptation of these guidelines can be found in chapter 4 of my master thesis. 

 

 1. General Guidelines 

 

The task is to annotate each compound noun N1 N2 with regard to the semantic relation that holds 

between the constituent nouns N1 and N2. It is assumed that compounds are either copulative or 

semantically right-headed.  

 

Rule 1.1 The general annotation format is <RELATION,DIRECTION,RULE>. 

 

RELATION is one of the 10 relation labels defined in section 2 of these guidelines. DIRECTION specifies 

the order of the constituent nouns in the chosen relation’s argument structure – in particular, direction 

will have the value 1 if the first noun in the compound (N1) fits in the first noun slot mentioned in the 

rule licensing the chosen relation, and will have value 2 if the second noun in the compound (N2) fits 

in the rule’s first noun slot. RULE is the number of the rule licensing the relation. For example: 

 

water fern  

IN,2,2.1.3.1  

 This aquatic water fern is a rosette plant which has dense, fibrous roots 

 

 enemy provocation  

ACTOR,1,2.1.4.1  

The army said at the weekend that troops had reacted to enemy provocations and intervened to 

protect local citizens 



	
  

	
   	
   	
   67	
  

 

In the case of water fern the IN relation is licensed by Rule 2.1.3.1 N1/N2 is an object spatially 

located in or near N2/N1. Mapping the compound’s constituent nouns onto the rule definition, we see 

that the first slot (N1/N2 is. . . ) is filled by N2 fern and hence the direction is 2. For the categories BE, 

REL, LEX, UNKNOWN, MISTAG and NONCOMPOUND there is no salient sense of directionality, 

so it need not be annotated: 

 

 cedar tree  

 BE,2.1.1.1  

On rising ground at the western end of the churchyard of St Mary’s at Morpeth in 

Northumberland stands, sheltered by cedar trees, a funerary monument 

 

In practice, we will assign every compound a direction to have uniformity in the encoding. Every 

compound from a category that has no sense of directionality (see above) will be encoded with 

direction 1.  

In the examples of section 2 you will find the direction of the example in brackets behind the 

compound. 

 

Rule 1.2 Each compound is presented with its sentential context and should be interpreted within that 

context. Knowledge of other instances of the compound type are irrelevant. 

 

A given compound type can have different meanings in different contexts. A school book is frequently 

a book read IN school, but it could also be a book ABOUT school. A wood table might be a table that 

IS wood (BE), but it might also be a table for chopping wood on (IN). The intended meaning of a 

compound is often clarified by the sentence it appears in. 

 

Rule 1.3 Where a compound is ambiguous and is not clarified by the sentential context, the most 

typical meaning of the compound is favoured. 

 

Compound interpretation must sometimes rely on world knowledge. In these cases, the annotator will 

have to rely on his or her intuition. Querying Google for the most typical meaning would be a viable 

option, but would take too much time in the annotation process. 

 

The compound school book is not clarified by a sentence such as This is a school book. In this case, 

book read IN school is the most typical interpretation. If the compound’s ambiguity arises from the 

polysemy of a constituent, the same consideration applies. University can refer to an institution or its 

physical location, but in the case of university degree the institutional meaning must be correct as 
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locations cannot award degrees, and the compound is labelled ACTOR. 

If the meaning of the compound is unclear, the appropriate tag is UNKNOWN. 

 

Rule 1.4 There are number of special cases that would normally not appear in our training data. If 

they should be present, they are to be treated differently than other compounds, they will all be 

annotated REL.  

 

- When a compound is used metaphorically, it will not be considered a regular compound and it 

should be labelled REL.  

 

For example: the compound bird brain is often used to refer to someone stupid, not to an actual bird’s 

brain. Luckily, a lot of metaphorical compounds have such a typical meaning that they can be found in 

a dictionary and will therefore not be present in the annotation data. 

 

- Where a compound consisting of two common nouns is used as a proper noun, it will be discarded 

from our annotation. Also compounds that exist of one or more proper nouns, abbreviations or 

acronyms will be left out. All these special cases receive the REL tag. 

 

Many names, while constructed from two common nouns, do not seem to encode the same kind of 

semantics as non-name compounds, e.g. Penguin Books, Sky Television, Dolphin Close, Coronation 

Street. These names encode only a sense of non-specific association between the constituents. All 

compounds that are used as a proper noun will therefore be classified as REL, even those that could be 

classified otherwise. For example: the Telecommunications Act, The Old Tea Shop, Castle Hill. The 

task of identifying these proper noun compounds should be passed on to a named entity recognition 

(NER) module. 

 

Rule 1.5 Where there is a characteristic situation or event that characterizes the semantic relation 

between the constituents, it is necessary to identify which constituents of the compound are 

participants and which roles they play. Whether such a situation exists for a given compound, and the 

roles played by its constituents in the situation, will determine which relation labels are available.  

 

Participants take on roles that can be described as Agent, Instrument, Object or Result: 

• Agent The instigator of the event, the primary source of energy 

• Instrument An intermediate entity that is used/acted on by the Agent and in turn exerts force on 

or changes the Object; more generally, an item which is used to facilitate the event but which 

is not the Object 

• Object The entity on which a force is applied or which is changed by the event and which does 
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not exert force on any participant other than the Result. Recipients (e.g. of money or gifts, but 

not outcomes) also count as Objects. 

• Result An entity which was not present before and comes into being through the event 

 

For example, the meaning of cheese knife seems to involve an event of cutting, in which cheese and 

knife take object and instrument roles respectively. Similarly, taxi driver evokes an event of driving 

and gevangenisbewaker (prison guard) evokes an event of guarding. The INST and ACTOR relations 

apply only where such a situation or event is present and where the compound identifies its 

participant(s). The application of HAVE assumes that the most salient aspect of the underlying 

situation is possession. It is not strictly necessary to identify the precise nature of the situation or 

event, only to identify the general roles played by the participants. 

 

Some role-tagged examples: cheeseO knifeI, taxiO driverA, sneezingR powderI, gevangenisObewakerA. It 

follows from the role descriptions that locations and topics do not count as participants – compounds 

encoding such roles receive IN and ABOUT labels instead of the ACTOR and INST labels reserved 

for participants. 

The participant role types are listed in order of descending agentivity. We thus have an agentivity 

hierarchy Agent>Instrument>Object>Result5. This ordering plays an important role in distinguishing 

ACTOR compounds from INST compounds (see Rules 2.1.4 and 2.1.5). It is not necessary to annotate 

this information, and it is not always necessary to identify the exact participant role of a constituent, so 

long as the hierarchical order of the constituents can be identified. Identifying participants is only 

needed to distinguish between relations (ACTOR vs INST) and directionalities (see the discussion 

under Rule 2.1.5.2). 

 

2. Semantic Relations 

 

  2.1 Main Relations  

 

2.1.1 BE 

 

Rule 2.1.1.1 X is N1 and X is N2. 

 

For example:  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5 This agentivity hierarchy was informed by the semantic roles hierarchy in Talmy, 2000. 
Talmy, L. (2000). ‘The semantics of causation’. In: Toward a Cognitive Semantics, Volume 1: 
Concept Structuring Systems. Cambridge, MA: MIT Press. 
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English: woman driver, elm tree, distillation process, human being. 

Dutch: geluidhinder, rundsvlees, bombrief, puntkomma, gastarbeider, getuige-deskundige. 

 

This rule does not admit sequences such as deputy chairman, fellow man, chief executive or 

hoofdverantwoordelijke, where it is not correct to state that an [N1 N2] is an N1 (a chief executive is 

not a chief). Such sequences are not to be considered compounds, and their modifiers are to be 

considered (mistagged) adjectives – see Rule 2.2.1.1. 

 

Rule 2.1.1.2 N2 is a form/shape taken by the substance N1.  

 

For example: 

English: stone obelisk, chalk circle, plastic box, steel knife. 

Dutch: gummiband, betonsteen, staalkabel. 

 

This rule is not very productive in Dutch since substances are most often written as adjectives, e.g. 

plastieken doos, stalen mes. 

 

Rule 2.1.1.3 N2 is ascribed significant properties of N1 without the ascription of identity. The 

compound roughly denotes “an N2 like N1”. 

 

For example: 

English: father figure, angler fish, chain reaction, pie chart. 

Dutch: hagelpatroon, rondegang, manwijf, mensaap. 

 

2.1.2 HAVE 

 

Rule 2.1.2.1 N1/N2 owns N2/N1 or has exclusive rights or the exclusive ability to access or to use 

N2/N1 or has a one-to-one possessive association with N2/N1. 

 

For example: 

(The numbers after the examples refer to the direction of the semantic relation.) 

English: army base(1), customer account(1), government power(1).  

Dutch: straatnaam(1), koningsdochter(1). 

 

The term one-to-one possessive association is intended to cover cases where it seems strange to speak 

of ownership, for example in the case of inanimate objects (street name, planet atmosphere). 
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Rule 2.1.2.2 N1/N2 is a physical condition, a mental state or a mentally salient entity experienced by 

N2/N1. 

 

For example:  

English: polio sufferer(1), cat instinct(2), student problem(2), union concern(2). 

Dutch: lepralijder(1), studentenprobleem(2). 

 

Rule 2.1.2.3 N1/N2 has the property denoted by N2/N1. 

 

For example: 

English: water volume(1), human kindness(1).  

Dutch: productietijd(1).  

 

A “property” is something that is not an entity or a substance but which an entity/substance can be 

described as having. Redness, temperature, dignity, legibility are all examples of properties.  

 

Rule 2.1.2.4 N1/N2 has N2/N1 as a part or constituent. 

 

For example: 

English: car door(1), motor boat(2), cat fur(1), chicken curry(2), pie ingredient(1), tree sap(1).  

Dutch: houtweefsel(1), bladzijde(1), moutjenever(2), hamersteel(1), grafzerk(1), tafelblad(1). 

 

The test for the presence of a part-whole relation is whether it seems natural and accurate in the 

context to say The N1/N2 has/have N2/N1 and The N1/N2 is/are part of N2/N1. Furthermore, 

substances which play a functional role in a biological organism are classed as parts: human blood, 

tree sap, whale blubber. This is the case even when the substance has been extracted, as in olive oil. 

A part is often located in its whole, but in these cases the part-whole relation is to be considered as 

prior to the co-location, and HAVE is preferred to IN. Complications arise with cases such as sea 

chemical, where both HAVE and IN seem acceptable. One principle that can be used tests whether the 

candidate part is readily separated (perceptually or physically) from the candidate whole. Chemicals in 

sea water (HAVE) are not typically separable in this way and can be viewed as parts of a whole. On 

the other hand, a sea stone or a sea (oil) slick are perceptually distinct and physically separable from 

the sea and are therefore IN. 

 

Rule 2.1.2.5 N1/N2 is a group/society/set/collection of entities N2/N1  

 

For example: 
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English: stamp collection(2), character set(2), lecture series(2), series lecture(1), committee 

member(1), infantry soldier(1).  

Dutch: postzegelverzameling(2), schoenenhoop(2), groepslid(1).  

 

2.1.3 IN 

 

In the following rules, an opposition is drawn between events/activities and objects. The class of 

events includes temporal entities such as times and durations. Objects are perceived as non-temporal 

and may be participants in an event (the term participant is used as defined under Rule 1.5). To assign 

the correct rule, the annotator must decide whether the located thing is an event or an object, and 

whether the location is temporal or spatial. Events may also sometimes be participants – in the sense 

of Rule 1.5 and in these cases the rules dealing with objects and participants will apply – a nursing 

college is a college where nursing is taught as a subject, but not necessarily one where the activity of 

nursing takes place, so Rule 2.1.3.1 applies. In contrast a nursing home, being a home where the event 

of nursing takes place, would come under Rule 2.1.3.2, analogous to dining room. Some nouns are 

polysemous and can refer to both objects (play as a written work, harvest as harvested crops) and 

events (play as performance, harvest as activity). The annotator must decide whether the temporal or 

physical aspect is primary in a given context. 

 

Rule 2.1.3.1 N1/N2 is an object spatially located in or near N2/N1. 

 

For example:  

English: forest hut(2), shoe box(1), side street(2), top player(2), crossword page(1), hospital 

doctor(2), sweet shop(1).  

Dutch: waterplant(2), rivierleem(2), ziekenhuisbed(2), havenkantoor(2), kerkdief(2). 

 

Where the location is due to part-whole constituency or possession, HAVE is preferred (as in car 

door, sea salt). Source-denoting compounds such as country boy and spring water are classed as IN as 

the underlying relation is one of location at a (past) point in time. 

 

Rule 2.1.3.2 N1/N2 is an event or activity spatially located in N2/N1.  

 

For example: 

English: dining room(1), hospital visit(2), sea farming(2), football stadium(1). 

Dutch: biljartzaal(1), distributiecentrum(1), tuinfeest(2), zeeslag(2). 
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Rule 2.1.3.3 N1/N2 is an object temporally located in or near N2/N1, or is a participant in an 

event/activity located there. 

 

For example:  

English: night watchman(2), coffee morning(1).  

Dutch: nachtuil(2), sterrennacht(1), lenteweertje(2), weekblad(2). 

 

Rule 2.1.3.4 N1/N2 is an event/activity temporally located in or near N2/N1.  

 

For example:  

English: future event(2), midnight mass(2). 

Dutch: avondfeest(2), nachtvoorstelling(2), jaarvergadering(2). 

 

2.1.4 ACTOR 

 

The distinction between ACTOR and INST is based on sentience. Only certain classes of entities may 

be actors: 

1. Sentient animate lifeforms: membership of the animal kingdom (regnum animalia) is a sufficient 

condition. Bacteria and viruses are not sentient enough (flu virus is annotated INST). 

2. Organisations or groups of people: for example finance committee, consultancy firm, 

manufacturing company, council employee. Some words referring to institutions are polysemous 

in that they can denote its physical aspect or its social/organisational aspect – university often 

denotes a physical location, but in the compounds university degree and university decision it is 

functioning as an organisation and count as agents (granting a degree and making a decision are 

actions only humans or organisations can carry out). On the other hand, in research university it is 

not clear whether we have a university that does research (agentive) or a university in which 

research is done (non-agentive). In such cases, the physical denotation should be considered the 

primary meaning of the word, and the organisational denotation is derived through metonymy – 

the non-agentive interpretation of these compounds is favoured unless the underlying event 

requires the institution to act as an agent. Such events often involve the institution acting as a legal 

entity. Hence university degree (degree awarded by a university), school decision (decision made 

by a school), shop employee (employee employed by a shop) are ACTOR; research university, 

community school, school homework and sweet shop are IN. 

 

A compound can be labelled ACTOR only if the underlying semantic relation involves a characteristic 

situation or event. In the following definitions, the term participant is used in the sense of Rule 1.5. 
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Rule 2.1.4.1 N1/N2 is a sentient participant in the event N2/N1. 

 

For example: 

English: student demonstration(1), government interference(1), infantry assault(1).  

Dutch: burgeroorlog(1), arbeidsvrouw(2), aanslagpleger(2). 

 

That N2/N1 denote an event is not sufficient for this rule – it must be the characteristic event 

associated with the compound. Hence this rule would not apply to a singing teacher, as the 

characteristic event is teaching, not singing. Instead, Rule 2.1.4.2 would apply. As only one participant 

is mentioned in the current rule 2.1.4.1, there is no need to establish its degree of agentivity. 

 

Rule 2.1.4.2 N1/N2 is a sentient participant in an event in which N2/N1 is also a participant, and 

N1/N2 is more agentive than N2/N1. 

 

For example: 

English: honey bee(2), bee honey(1), company president(2), history professor(2), taxi driver(2), 

student nominee(1).  

Dutch: aasdier(2), hartendief(2).   

 

Relative agentivity is determined by the hierarchy given under Rule 1.5. The underlying event cannot 

be one of possession (car owner = HAVE) or location (city inhabitant = IN). Profession-denoting 

compounds often have a modifier which is a location – street cleaner, school principal, restaurant 

waitress, school teacher. A distinction can be drawn between those where the profession involves 

managing or changing the state of the location, i.e. the location is an object (school principal, street 

cleaner = ACTOR), and those where the profession simply involves work located there (school 

teacher, restaurant waitress = IN by Rule 2.1.3.1). Note that modifiers in -ist such as expressionist, 

modernist, socialist, atheist are treated as nouns, so that an expressionist poem is analysed as a poem 

such as an expressionist would characteristically write. 

 

2.1.5 INST 

 

The name INST(rument) is used to distinguish this category from ACTOR, though the scope of the 

category is far broader than traditional definitions of instrumentality. Again, the term participant is 

used in the sense of Rule 1.5. 
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Rule 2.1.5.1 N1/N2 is a participant in an activity or event N2/N1, and N1/N2 is not an ACTOR. 

 

For example: 

English: skimming stone(2), gun attack(1), gas explosion(1), combustion engine(2), drug 

trafficking(1), rugby tactics(2), machine translation(1).  

Dutch: smaakbederf(1), zaadhandel(1), leengoed(2). 

 

Compounds identifying the location of an event (such as street demonstration) should be labelled IN 

by Rule 2.1.3.2 or 2.1.3.4, and compounds identifying the focus of or general motivation for a human 

activity or mental process (such as crime investigation), but not its direct cause, should be labelled 

ABOUT by Rule 2.1.6.3. 

As only one participant is mentioned, there is no need to establish its degree of agentivity. 

 

Rule 2.1.5.2 The compound is associated with a characteristic event in which N1/N2 and N2/N1 are 

participants, N1/N2 is more agentive than N2/N1, and N1/N2 is not an ACTOR. 

 

For example: 

English: rice cooker(2), tear gas(2), blaze victim(1).  

Dutch: cadeaubon(2), worstmachine(2). 

 

The directionality of the relation is determined by the more agentive participant in the hierarchy given 

in Rule 1.5: cheeseO knifeI (INST2), wineO vinegarR (INST1), windA damageR (INST1), humanO virusA 

(INST1). Sometimes it may be difficult to distinguish Agents from Instruments (gun wound) or 

Objects from Results (blaze victim) – this is not important so long as it is possible to identify which 

participant is more agentive. 

In some cases, it may not be clear what the exact underlying event is, but the more agentive participant 

may still be identified – a transport system is a system that in some way provides or manages 

transport, but it is nonetheless clear that the appropriate label is INST2. In other cases, where both 

participants affect each other, it may be less clear which is more agentive – motor oil can be construed 

as oil that lubricates/enables the function of the engine or as oil the engine uses. Likewise petrol 

motor, computer software, electron microscope. At least where the relation is between a system or 

machine and some entity it uses to perform its function, the former should be chosen as more agentive. 

Hence motor oil is INST1, petrol motor is INST2, and so on. 

As in Rule 2.1.5.1, where one of the constituents is the location of the associated event, then IN is the 

appropriate label by Rule 2.1.3.1 or 2.1.3.3. If the more agentive participant meets the criteria for 

ACTOR status (2.1.4), then that label should be applied instead. If the interaction between the 

constituents is due to one being a part of the other (as in car engine), HAVE is the appropriate label by 
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Rule 2.1.2.4. A border with ABOUT must be drawn in the case of psychological states and human 

activities whose cause or focus is N1. As described further under Rules 2.1.6.3, the criterion adopted is 

based on whether there is a direct causal link between N1 and N2 in the underlying event – a bomb 

can by itself cause bomb terror (INST1), but a spider phobia is not a reaction to any particular spider 

and is classed as ABOUT. 

 

2.1.6 ABOUT  

 

Rule 2.1.6.1 N1/N2’s descriptive, significative or propositional content relates to N2/N1. 

 

For example: 

English: fairy tale(2), flower picture(2), tax law(2), exclamation mark(2), film character(2), life 

principles(2), sitcom family(1).  

Dutch: vakjargon(2), contactstoornis(2), praktijktheorie(2), vakdeskundigheid(2). 

 

In English, a lot of speech acts belong to this category. Direction 2 is a lot more prominent with this 

rule. Properties and attributes that seem to have a descriptive or subjective nature are still to be 

labelled HAVE by Rule 2.1.2.3 – street name and music loudness are HAVE1. 

 

Rule 2.1.6.2 N1/N2 is a collection of items whose descriptive, significative or propositional content 

relates to N2/N1 or an event that describes or conveys information about N2/N1. 

 

For example: 

English: history exhibition(2), war archive(2), science lesson(2).  

Dutch: tijdreeks(2), muziekbibliotheek(2). 

 

Rule 2.1.6.3 N1/N2 is a mental process or mental activity focused on N2/N1, or an 

activity resulting from such. 

 

For example: 

English: crime investigation(2), science research(2), research topic(1), exercise obsession(2), election 

campaign(2), football violence(2), holiday plan(2).  

Dutch: darmonderzoek(2),  

 

In the case of activities, N1/N2 cannot belong to any of the participant categories given under Rule 

1.5; rather it is the topic of or motivation for N2/N1. The sense of causation in, for example, oil 

dispute is not direct enough to admit an INST classification – the state of the oil supply will not lead to 
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an oil dispute without the involved parties taking salient enabling action. In the case of emotions, there 

is also a risk of overlapping with INST; bomb terror is INST and bomb dislike is classed as ABOUT, 

but examples such as bomb fear are less clearcut. A line can be drawn whereby immediate emotional 

reactions to a stimulus are annotated INST, but more permanent dispositions are ABOUT. In the case 

of bomb fear, the relation must be identified from context. Problems (debt problem) and crises (oil 

crisis) also belong to this category, as they are created by mental processes. 

 

Rule 2.1.6.4 N1/N2 is an amount of money or some other commodity given in exchange for N2/N1 or 

to satisfy a debt arising from N2/N1. 

 

For example: 

English: share price(2), printing charge(2), income tax(2).  

Dutch: olieprijs(2), loonarbeid(1), gokbedrag(2). 

 

N2/N1 is not the giver or recipient of N1/N2 – an agency fee would be INST under the interpretation 

feeI paid to an agencyO − but the thing exchanged or the reason for the transaction. 

 

2.1.7 REL  

 

Rule 2.1.7.1 The relation between N1 and N2 is not described by any of the above relations 

but seems to be produced by a productive pattern. 

 

For example: 

English: Baker Street, sodium chloride,  

Dutch: Vaarttheater, Plataanlei, waterstofcarbonaat, adjudant-onderofficier. 

 

A compound can be associated with a productive pattern if it displays substitutability. If both of the 

constituents can be replaced by an open or large set of other words to produce a compound encoding 

the same semantic relation, then a REL annotation is admissible. For example, the compound reading 

skill (in the sense of degree of skill at reading) is not covered by any of the foregoing categories, but 

the semantic relation of the compound (something like ABILITY) is the same as that in football skill, 

reading ability and learning capacity. This contrasts with an idiosyncratic lexicalised compound such 

as home secretary (= LEX), where the only opportunities for substitution come from a restricted class 

and most substitutions with similar words will not yield the same semantic relation. Another class of 

compounds that should be labelled REL are names of chemical compounds such as carbon dioxide 

and sodium carbonate, as they are formed according to productive patterns. There are also several 

special cases that receive the REL tag. Take a look at Rule 1.4 for the descriptions. 
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2.1.8 LEX  

 

Rule 2.1.8.1 The meaning of the compound is not described by any of the above relations 

and it does not seem to be produced by a productive pattern. 

 

For example: 

English: turf accountant, monkey business.  

Dutch: loftrompet, prins-gemaal,  

 

These are noncompositional in the sense that their meanings must be learned on a case-by-case basis 

and cannot be identified through knowledge of other compounds. This is because they do not have the 

property of substitutability - the hypothetical compounds horse business or monkey activity are 

unlikely to have a similar meaning to monkey business. LEX also applies where a single constituent 

has been idiosyncratically lexicalised as a modifier or head such as X secretary meaning ‘minister 

responsible for X’. 

 

2.1.9 UNKNOWN  

 

Rule 2.1.9.1 The meaning of the compound is too unclear to classify. 

 

Some compounds are simply uninterpretable, even in context. This label should be avoided as much as 

possible but is sometimes unavoidable. 

 

  2.2 Noncompounds  

 

2.2.1 MISTAG 

 

Rule 2.2.1.1 One or both of N1 and N2 have been mistagged and should not be counted as (a) 

common noun(s). 

 

For example: 

English: fruity bouquet (N1 is an adjective), London town (N1 is a proper noun).  

Dutch: Juratijdperk (N1 is a proper noun), voortuin (N1 is a preposition), hoofdbewaker (N1 is 

adjective-like). 

 

In the case of blazing fire, N1 is a verb, so this is also a case of mistagging; in superficially similar 
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cases such as dancing teacher or swimming pool, however, the -ing form can and should be treated as 

a noun. The annotator must decide which analysis is correct in each case – a dancing teacher might be 

a teacher who is dancing (MISTAG) in one context, but a teacher who teaches dancing (ACTOR) in 

another context. Certain modifiers might be argued to be nouns but for the purposes of annotation are 

stipulated to be adjectives. Where one of assistant, key, favourite, deputy, head, chief or fellow appears 

as the modifier of a compound in the data, it is to be considered mistagged. This only applies when 

these modifiers are used in adjective-like senses – key chain or head louse are clearly valid compounds 

and should be annotated as such. 

 

2.2.2 NONCOMPOUND 

 

Rule 2.2.2.1 The extracted sequence, while correctly tagged, is not a 2-noun compound.  

 

There are various reasons why two adjacent nouns may not constitute a compound: 

1. An adjacent word should have been tagged as a noun, but was not. 

2. The modifier is itself modified by an adjacent word, corresponding to a bracketing [[X N1] N2]. 

For example: [[real tennis] club], [[Liberal Democrat] candidate], [[five dollar] bill]. However 

compounds with conjoined modifiers such as land and sea warfare and fruit and vegetable seller 

can be treated as valid compounds so long as the conjunction is elliptical (land and sea warfare 

has the same meaning as land warfare and sea warfare). Not all conjoined modifiers satisfy this 

condition – a salt and pepper beard does not mean a beard which is a salt beard and a pepper 

beard, and the sequence pepper beard is a NONCOMPOUND. 

3. The two words are adjacent for other reasons. For example: ‘the question politicians need to 

answer’, structureless lists of words. 

4. The modifier is not found as a noun on its own, because it would not appear in the dictionary. For 

example: multiparty election, smalltown atmosphere. 

 

 


