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Abstract

This paper introduces research within the
ALADIN project, which aims to develop an as-
sistive vocal interface for people with a phys-
ical impairment. In contrast to existing ap-
proaches, the vocal interface is self-learning,
which means it can be used with any language,
dialect, vocabulary and grammar. This pa-
per describes the overall learning framework,
and the two components that will provide vo-
cabulary learning and grammar induction. In
addition, the paper describes encouraging re-
sults of early implementations of these voca-
bulary and grammar learning components, ap-
plied to recorded sessions of a vocally guided
card game, Patience.

1 Introduction

Voice control of devices we use in our daily lives is
still perceived as a luxury, since often cheaper and
more straightforward alternatives are available, such
as pushing a button or using remote controls. But
what if pushing buttons is not trivial? Physically
impaired people with restricted (upper) limb mo-
tor control are permanently in the situation where
voice control could significantly simplify some of
the tasks they want to perform (Noyes and Frankish,
1992). By regaining the ability to control more de-
vices in the living environment, voice control could
contribute to their independence of living and their
quality of life.

Unfortunately, the speech recognition technology
employed for voice control still lacks robustness to
speaking style, regional accents and noise, so that
users are typically forced to adhere to a restrictive

grammar and vocabulary in order to successfully
command and control a device.

In this paper we describe research in the ALADIN
project1, which aims to develop an assistive vocal
interface for people with a physical impairment. In
contrast to existing vocal interfaces, the vocal inter-
face is self-learning: The interface should automa-
tically learn what the user means with commands,
which words are used and what the user’s vocal char-
acteristics are. Users should formulate commands
as they like, using the words and grammatical con-
structs they like and only addressing the functional-
ity they are interested in.

We distinguish two separate modules that estab-
lish self-learning: The word finding module works
on the acoustic level and attempts to automatically
induce the vocabulary of the user during training, by
associating recurring acoustic patterns (commands)
with observed changes in the user’s environment
(control). The grammar induction module works
alongside the word finding module to automatically
detect the compositionality of the user’s utterances,
further enabling the user to freely express com-
mands in their own words.

This paper presents a functional description of the
ALADIN learning framework and describes feasibi-
lity experiments with the word finding and grammar
induction modules. In Section 2 we outline the over-
all learning framework, the knowledge representa-
tion that is used and the rationale behind the word
finding and grammar induction modules. In Sec-
tion 3 we briefly describe the Patience corpus used

1Adaptation and Learning for Assistive Domestic Vocal
INterfaces. Project page: http://www.esat.kuleuven
.be/psi/spraak/projects/ALADIN
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Figure 1: Schematic overview of the ALADIN framework.

in the feasibility experiments, as well as the experi-
mental setup. In Section 4 we show and discuss our
experimental results and we present our conclusions
and thoughts on future work in Section 5.

2 The ALADIN framework

The ALADIN learning framework consists of sev-
eral modules, which are shown schematically in
Fig. 1. On the left-hand side, the provided input is
shown, which consists of a spoken utterance (com-
mand) coupled with a control input, such as the but-
ton press on a remote control or a mouse click, pos-
sibly augmented with the internal state of a device
(for example the current volume of a television).

In order to provide a common framework for all
possible actions we wish to distinguish, we adopt
the use of frames, a data structure that encapsulates
the control inputs and/or device states relevant to the
execution of each action. Frames consist of one or
multiple slots, which each can take a single value
from a set of predefined values. In Section 2.1 we
discuss the frame representation in detail.

During training, the word finding module builds
acoustic representations of recurring acoustic pat-
terns, given a (small) set of training commands, each
described by a frame description and features ex-
tracted from the audio signal. Using the frame de-
scription, the module maps such acoustic representa-
tions to each slot-value pair in each frame. When us-
ing the framework for decoding spoken commands,
the output of the module is a score for each slot-
value pair in each frame, representing the probabil-
ity that this slot-value pair was present in the spoken
command.

During training, the grammar induction module
builds a model of the grammatical constructs em-
ployed by the user, using the frame description and

the output of the word finding module. The output of
the word finding module consists of estimates of the
slot-value pair scores described above, based on the
presence of automatically derived recurring acoustic
patterns.

The semantics module, operational during decod-
ing, processes the output of the word finding mod-
ule to create a single frame description most likely
to match the spoken command. This can then be
converted to a control representation the target de-
vice can work with. The module can make use of
a grammar module that describes which slot-value
pair combinations (and sequences) are likely to oc-
cur for each frame. Such a grammar description
should ideally be provided by the grammar induc-
tion module, but could optionally be hand-crafted.

2.1 Frame description
Each action that can be performed with a device is
represented in the form of a frame. A frame is a
data structure that represents the semantic concepts
that are relevant to the execution of the action and
which users of the command and control (hence-
forth C&C) application are likely to refer to in their
commands. It usually contains one or multiple slots,
each associated with a single value. The slots in
an action frame represent relevant properties of the
action. Such frame-based semantic representations
have previously been successfully deployed in C&C
applications and spoken dialog systems (Wang et al.,
2005).

For our research, we distinguish three types of
frames. The first, the action frame, is automatically
generated during training by the device that is con-
trolled with a conventional control method, such as
button presses. Depending on the frame, more slots
may be defined than are likely to be referred to in any
single command. The second frame type, the oracle
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Frame Slot Value
<from suit> c
<from value> 11
<from column> 3
<from hand> -
<to suit> h
<to value> 12
<to foundation> -
<to column> 4

Figure 2: An example of a Patience move and the
automatically generated movecard action frame. A
card is defined as the combination of a suit - (h)earts,
(d)iamonds, (c)lubs or (s)pades - and a value, from ace
(1) to king (13). We also distinguish slots for the ‘hand’ at
the bottom, the seven columns in the center of the playing
field and the four foundation stacks at the top right.

action frame, is a manually constructed subset of the
action frame based on a transcription of the spoken
command. In this subset, only those slots that are
referred to in the spoken command, are filled in. Fi-
nally, we define the oracle command frame, which is
a version of the oracle action frame that can assign
multiple values to each slot in order to deal with pos-
sible ambiguities in the spoken command.

We will illustrate these frame types with an exam-
ple from one the target applications in the ALADIN
project: a voice-controlled version of the card game
Patience. In this game, one of the possible actions
is moving a card in the playing field. This action
is described by an action frame dubbed movecard,

which contains slots specifying which card is moved
and to which position it is moved. Fig. 2 shows an
example of such a move, and the automatically gen-
erated action frame description of that move.

For instance, if the move in Fig. 2 was asso-
ciated with the spoken command “put the jack of
clubs on the red queen”, the oracle action frame
of that particular move would only have the fol-
lowing slot values filled in: <from suit>=c,
<from value>=11, <to suit>=h and
<to value>=12, since the columns are not
referred to in the spoken command. Also, since no
slot was defined that is associated with the color of
the card, the spoken command is ambiguous and
during decoding, such a command might also be as-
sociated with a frame containing the slot-value pair
<to suit>=d. As a result, the oracle command
frame will be constructed with <to suit>=h,d
rather than <to suit>=h.

2.2 Word finding
The word finding module is tasked with creating
acoustic representations of recurring acoustic pat-
terns, guided by action frames. As such, the learning
task is only weakly supervised: rather than having
knowledge of the sequence of words that were spo-
ken, as common in Automatic Speech Recognition
(ASR), we only have knowledge of the slot-value
pairs in the action frame, each of which may have
been referred to in the utterance with one or multi-
ple words, and in any order. To meet these require-
ments, we turn to a technique called non-negative
matrix factorization (NMF).

2.2.1 Supervised NMF
NMF is an algorithm that factorizes a non-

negative M×N matrix V into a non-negative M×R
matrix W and a non-negative R × N matrix H:
V ≈ W · H. In our approach, we construct the
NMF problem as follows:

V =

[
V0

V1

]
≈

[
W0

W1

]
H = WH (1)

with the matrix V1 composed of N spoken com-
mands, each represented by a vectorial representa-
tion of dimension M1. The columns of V0 asso-
ciate each spoken command with a label vector of
dimension M0 that represents the frequency with
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which a particular label occurred in that spoken
command. After factorization, the matrix W1 con-
tains R acoustic patterns of dimension M1, and the
matrix H indicates the weights with which these R
acoustic patterns are linearly combined for each spo-
ken command n, 1 ≤ n ≤ N , to form the observed
spoken commands in V1. The columns of the ma-
trix W0 describe the mapping between the R acous-
tic patterns in W1 and the M0 labels that can be
associated with each spoken command. In addition
to columns of W1 associated with labels, we use
a number of so-called ‘garbage columns’ to capture
acoustic representations not associated with labels,
for example to capture less meaningful words such
as ‘please’.

To decode a spoken command (the ‘testing’
phase), we find a vector h for which holds: v1

tst =
W1h

tst, with W1 the matrix found during train-
ing. vtst

1 is the M1 dimensional acoustic represen-
tation of the spoken command we wish to decode,
and htst is the R-dimensional vector that indicates
which acoustic patterns in W1 need to be linearly
combined to explain vtst

1 . Finally, we calculate the
label association with the spoken command vtst

1 us-
ing: a = W0h

tst, where a is a M0 dimensional
vector giving a score for each label.

For more details on how to carry out these fac-
torizations, we refer the reader to Lee and Seung
(1999). For a discussion on representing spoken
commands of varying length as a M1-dimensional
vector, and the constraints under which it holds that
the spoken command is the linear combination of
R such vectors from W1, we refer the reader to
(Van hamme, 2008; Driesen and Van hamme, 2012;
Driesen et al., 2012) and the references therein.

2.2.2 Frame decoding

In our framework, we consider each unique
slot-value pair of each frame (for example
<to suit>=h of the frame movecard) as
a single label, making the total number of labels
M0 equal to the cumulative number of different
values in all slots in all frames. This way, each
frame description is uniquely mapped to a binary
vector v1, and likewise, the decoded label vector a
is uniquely mapped back to a frame description.

Put the jack of clubs on the queen of hearts
O O I FV O I FS O O I TV O I TS

Figure 3: Example of a command transcription, annotated
with concept tags.

2.3 Grammar induction
The task of the grammar module is to automatically
induce a grammar during the training phase, that de-
tects the compositionality of the utterances and re-
lates it to the associated meaning. In this case, the
grammatical properties of the utterances are associ-
ated with action frames, containing slots and values.
This grammar induction is performed on the basis
of the output of the word finding module (hypothe-
sized ‘word’ units, represented as acoustic patterns
and possibly associated frame slot values) and the
generated frame descriptions of the actions. Further-
more, the grammar may also serve as an additional
aid during the decoding process, by providing infor-
mation regarding the probability of specific frame
slot sequences in the data.

There are different options with respect to the type
of grammar that can be induced. It could for instance
be a traditional context-free grammar, meaning that
the contents of the frame description of the action
are derived on the basis of a parse tree of the ut-
terance. Unfortunately, context-free grammars have
been proven to be very hard to automatically induce
(de Marcken, 1999; Klein, 2005), particularly on the
basis of limited training data.

Encouraging results have been reported in the un-
supervised induction of sequence tags (Collobert et
al., 2011). In the context of the ALADIN project,
we therefore decided to adopt a concept tagging ap-
proach as a shallow grammar interface between ut-
terance and meaning. In this vein, each command is
segmented into chunks of words, which are tagged
with the semantic concepts (i.e. frame slots) to
which they refer.

We use a tagging framework which is based on
so-called IOB tagging, commonly used in the con-
text of phrase chunking tasks (Ramshaw and Mar-
cus, 1995). Words inside a chunk are labeled with a
tag starting with I and words outside the chunks are
labeled with an O tag, which means that they do not
refer to any concept in the action frame. Fig. 3 illus-
trates the concept tagging approach for an example
command.
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3 Experimental setup

The experiments described in this paper pertain to
a vocal interface for the card game Patience. This
presents an appropriate case study, since a C&C in-
terface for this game needs to learn a non-trivial,
but fairly restrictive vocabulary and grammar. Com-
mands such as “put the four of clubs on the five of
hearts” or “put the three of hearts in column four”
are not replaceable by holistic commands, and iden-
tifying the individual components of the utterance
and their interrelation is essential for the derivation
of its meaning. This makes the Patience game a
more interesting test case than domotica applica-
tions such as controlling lights, doors or a television,
where the collection of unordered sets of keywords
is usually sufficient to understand the commands.

In this section, we will describe the corpus col-
lected to enable this case study, as well as the setup
for exploratory experiments with the techniques out-
lined in Section 2.

3.1 Patience corpus
The Patience corpus consists of more than two thou-
sand spoken commands in (Belgian) Dutch2, tran-
scribed and manually annotated with concept tags.
Eight participants were asked to play Patience on a
computer using spoken commands, which were sub-
sequently executed by the experimenter. The partic-
ipants were told to advance the game by using their
own commands freely, in terms of vocabulary and
grammatical constructs. The audio signals of the
commands were recorded and the associated actions
were stored in the form of action frames. There are
two types of frames: a movecard frame, describ-
ing the movement of a card on the playing field (e.g.
Fig. 2), and a dealcard frame that contains no
frame slots, but simply triggers a new hand. Oracle
action and command frames were derived on the ba-
sis of the automatically generated action frames and
the manually annotated concept tags.

Each participant played in two separate sessions,
with at least three weeks in between, so as to capture
potential variation in command use over time. The
participants’ ages range between 22 and 73 and we
balanced for gender and education level. We col-
lected between 223 and 278 commands (in four to

2Note however that the ALADIN system is inherently lan-
guage independent, which is why we present the examples in
English.

six games) per participant. The total number of col-
lected commands is 2020, which means an average
of 253 commands per participant and the average
number of moves per game is 55. The total num-
ber of frame slot-value pairs is 63.

The experimental setup tries to mimic the
ALADIN learning situation as much as possible.
For each participant, a separate learning curve was
made, since the learning process in the targeted
ALADIN application will be personalized as well.
For each learning curve, the last fifty utterances of
a participant were used as a constant test set. The
remaining utterances of the same participant were
used as training material. The chronological order
of the commands, as they were uttered by the partic-
ipant, was preserved, in order to account for the de-
velopment of the users’ command structure and vo-
cabulary use during the games. In each experiment,
the first k utterances were used as training data, k be-
ing an increasing number of slices of ten utterances
for the grammar induction experiments and 25 utter-
ances for the word finding experiments.

3.2 Word finding

Spoken commands are represented by a His-
togram of Acoustic Co-occurrence (HAC) features
(Van hamme, 2008), constructed as follows: First,
we extract mel-cepstral coefficients (MFCC) from
audio signals sampled at 16kHz, framed using time
windows of 25ms and shifted in increments of 10ms.
From each of these frames, 13 cepstral coefficients,
along with their first and second order differences
are determined, yielding a 39 dimensional feature
vector. Mean and variance normalization are applied
on a per-utterance basis. Second, k-means clus-
tering of 50000 randomly selected frames is used
to create a Vector Quantization codebook with 200
codewords for each speaker, using k-means cluster-
ing. Finally, three sets of HAC features are con-
structed by counting the co-occurrences of the au-
dio expressed as VQ codewords, with time lags of 2,
5 and 9 frames. The final feature dimension M1 is
thus M1=3× 2002 = 120000.

In these initial experiments, we use the oracle ac-
tion frames to provide supervision. In the NMF
learning framework, two acoustic representations
were assigned to each label, with an additional 15
representations used as garbage columns. The to-
tal number of acoustic representations R is thus
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R = 2 × 63 + 15 = 141. For training, W1 is ini-
tialized randomly and W0 is initialized so that two
columns are mainly associated with each label (i.e.,
a one in the corresponding label position and a small
([0, 1e− 5]) random value for the other labels). The
remaining 15 garbage columns are randomly initial-
ized. Finally, the entries of V1 and V0 are scaled
so their cumulative weight is equal. During training,
the rows of H pertaining to non-garbage columns
in W0 are initialized to be the same as V0, with
a small ([0, 1e − 5]) random value replacing values
that are zero. The rows of H pertaining to garbage
columns are initialized randomly. For the NMF fac-
torization, we minimized the Kullback-Leibler di-
vergence using 100 iterations of the procedure de-
scribed in Lee and Seung (1999).

In these experiments, frame decoding is guided
by a hand-crafted grammar, rather than an auto-
matically induced grammar. We defined 38 gram-
mar rules corresponding to various possible slot se-
quences, under the assumption that from slots pre-
cede to slots, and that suit slots precede value
slots. These 38 rules also include various slot se-
quences in which the command was underspecified.
A pilot experiment showed that this grammar cov-
ers 98% to 100% of the spoken commands, depend-
ing on the speaker. The hand-crafted grammar was
implemented as a labelvector-to-labelvector bigram
transition matrix, and Viterbi decoding was used to
generate a possible frame description for each gram-
mar rule. For scoring, the most likely frame descrip-
tion was selected based on the most likely Viterbi
path across grammar rules. Finally, we express re-
sults in terms of slot-value accuracy, which is the
ratio of the number of slot-value pairs correctly se-
lected, according to the oracle command frame, and
the total number of slot-value pairs in the oracle
command frame (expressed as a percentage).

3.3 Grammar induction

The exploratory experiments for the grammar in-
duction module serve as a proof-of-the-principle ex-
periment that showcases the learnability of the task
in optimal conditions and focuses on the minimally
required amount of training data needed to boot-
strap successful concept tagging. In these super-
vised learning experiments, the annotated corpus is
used as training material for a data-driven tagger,
which is subsequently used to tag previously unseen

data. As our tagger of choice, we opted for MBT,
the memory-based tagger (Daelemans et al., 2010),
although any type of data-driven tagger can be used.

In the targeted ALADIN application, the number
of utterances used to train the system should be as
small as possible, i.e. the training phase should be
as brief as possible in order to limit the amount of
extraneous physical work or assistance needed for
training by the physically impaired person. In or-
der to get an idea of the minimal number of train-
ing utterances needed to enable successful concept
tagging, we evaluated the supervised tagging perfor-
mance with increasing amounts of training data, re-
sulting in learning curves.

The metric used for the evaluation of the con-
cept tagger is the micro-averaged F-score of the pre-
dicted I chunks: the harmonic mean of the pre-
cision and recall of the chunks with I labels (i.e.
referring to slots in de frame description). This
means that the concept tags as well as the boundaries
of the predicted chunks are included in the evalu-
ation. Feature selection was performed on the ba-
sis of a development set (last 25% of the training
data) and establishes the best combination of disam-
biguation features, such as the number of (disam-
biguated) concept tags to the left, the tokens them-
selves (left/right/focus) and ambiguous tags (focus
token and right context). We compare our results
against a baseline condition, in which only the focus
word is used as a feature, in order to see the rela-
tive effect of the use of context information by the
tagger.

4 Results and discussion

4.1 Word finding

In Fig. 4a we can observe the results obtained with
a learning framework that combines word finding
with hand-crafted grammars. From these results, we
can observe that the slot-value accuracy obtained af-
ter using all available training material, varies be-
tween 40.4% for speaker 4 and 76.0% for speaker 1.
We can also observe that overall, the results for all
speakers show a fairly linear increase in accuracy as
more training material becomes available. The fact
that we do not yet observe that the accuracy levels
off with increasing training data, indicates that the
results are likely to further improve with more train-
ing data.
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Figure 4: Learning curves viz. word finding accuracy (left) and grammar induction I chunk F-score (right).

This is also likely given the complexity of the
learning task: In Patience, about half of the spoken
commands pertains to dealcard frames, which
means it is very likely that some slot-value pairs
have never even occurred in the training data, even
after 200 spoken commands. We expect, however,
that we need at least a few repetitions of each slot-
value pair to build a robust acoustic representation:
the accuracy of correctly detecting the dealcard
frame, which has many repetitions in the training
data, is close to 100% for all speakers. Given such
data scarcity, the fact that we obtain accuracies up to
76% is encouraging.

Another observation that can be made is that for
some speakers, such as speaker 1, there is a larger
variation between consecutive training sizes - for ex-
ample for speaker 1 the best accuracy is obtained for
a training size of 175 spoken commands. There are
several possible reasons. For one, even though the
NMF learning problem is initialized using the con-
straints imposed by the frame labeling, the factor-
ization process may not achieve the global optimal
solution during training. This could be addressed by
performing multiple experiments with different ran-
dom initializations (Driesen et al., 2012).

Another issue is that the number of dealcard

frames varies between speakers, due to the rela-
tively small test set size of fifty spoken utterances.
With the dealcard typically recognized correctly,
this may account both for some of the differences
between speakers, as well as for the variation be-
tween training sizes observed for some speakers: If
the number of movecard frames in the test set is
small, this makes the average accuracy more sen-
sitive to errors on these frames. This issue could
be addressed by an alternative evaluation scheme in
which multiple occurrences of the same utterance
are only counted once.

4.2 Grammar induction

Fig. 4b displays the learning curves for the super-
vised concept tagging experiments. There is a large
amount of variation between the participants in ac-
curacy using the first 100 training utterances. Six out
of eight curves reach 95% or more with 130 train-
ing utterances, and level off after that. For two par-
ticipants, the accuracies reach 100%, with training
set sizes of 40 and 100 utterances respectively. The
baseline accuracies, averaged across all participants,
are also shown in Fig. 4b. These are significantly su-
perseded by the individual learning curves with op-
timized features, showing that the use of context in-
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formation is important to enable successful concept
tagging on this dataset.

The fact that the tag accuracy for participant 6
remains relatively low (around 88%) is mainly due
to a rather high level of inconsistency and ambigu-
ity in the command structures that were used. One
remarkable source of errors in this case is a struc-
ture repeatedly occurring in the test set and occur-
ring only twice in the largest training set. It is a par-
ticularly difficult one: a structure in which multiple
cards are specified to be moved (in one pile), such
as in “the black three, the red four and the black five
to the red six”. In such cases, only the highest card
of the moved pile (black five in the example) should
be labeled with I FS and I FV tags (since only that
card is represented in the action frame) and the lower
cards should be tagged with O tags.

The commands given by participants 2 and 5 were
structurally very consistent throughout the games,
resulting in very fast learning. Participant 5’s learn-
ing curve reaches a tag accuracy of 100% using
as little as forty training utterances, underlining the
learnability of this task in optimal conditions. Par-
ticipant 3’s curve reaches 100% accuracy, but has
a dip at the beginning of the curve. This is due to
the fact that in the utterance numbers 20-50, the suit
specification was often dropped (e.g. “the three on
the four”), whereas in the utterances before and after
that, the suit specification was often included.

5 Conclusions and future work

In this paper, we introduced a self-learning frame-
work for a vocal interface that can be used with any
language, dialect, vocabulary and grammar. In ad-
dition to a description of the overall learning frame-
work and its internal knowledge representation, we
described the two building blocks that will provide
vocabulary learning and grammar induction. Our
experiments show encouraging results, both for vo-
cabulary learning and grammar induction, when ap-
plied to the very challenging task of a vocally guided
card game, Patience, with only limited training data.

Although the word finding experiments use the or-
acle action frames rather than the automatically gen-
erated frames as supervision information, the pre-
liminary experiments shown in this work are promis-
ing enough to have confidence that even with this
additional source of uncertainty, the goal of a self-
learning vocal interface is feasible. The concept tag-

ging experiments show that this type of representa-
tion is learnable in a supervised way with a high de-
gree of accuracy on the basis of a relatively limited
amount of data.

Future experiments will investigate how unsuper-
vised learning techniques can be used to bootstrap
concept tagging without using annotated and manu-
ally transcribed data. This will enable the output of
the grammar module to replace the manually crafted
grammar currently used by the word finding mod-
ule. Since the learning curves for the word finding
module still show significant room for improvement,
more data will need to be collected to adequately in-
vestigate the interaction between the two modules.

We expect the word finding results to improve
once speaker-specific grammars, provided by the
grammar induction module, can be incorporated.
The hand-crafted grammar employed in the word
finding experiments include almost all variations,
while a speaker-specific grammar will typically be
more restrictive. Another practical approach to im-
prove the user experience is to have the ALADIN sys-
tem produce an ordered set of several possible frame
descriptions, based on the knowledge of the playing
field and the rules of the game. Preliminary experi-
ments revealed that even with a small ordered set of
only five frame candidates, the slot-value accuracy
of the Patience word finding experiments increased
by 10% to 20% absolute. Furthermore, we expect
the number of repetitions needed for each slot-value
pair to reduce substantially if we allow sharing of
the acoustic representations between slots. For ex-
ample, it is very likely that the user will refer to the
suit of ‘hearts’ the same way, regardless of whether
it occurs in a from slot or in a to slot.

While the self-learning modules have not yet been
integrated and while there is still ample room for im-
provement within each module individually, the re-
sults of the feasibility experiments described in this
paper are encouraging. The insights gained from
these experiments form a solid basis for further ex-
perimentation and will serve to further streamline
the development of a language independent, self-
learning command & control vocal interface for peo-
ple with a physical impairment.
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