Semantic Classification of Dutch and Afrikaans Noun-Noun Compounds

Ben Verhoeven¹, Walter Daelemans¹ & Gerhard van Huyssteen²

¹ CLiPS – CLG, University of Antwerp, Belgium
² CText, NWU, Potchefstroom, South Africa

{Ben.Verhoeven;Walter.Daelemans}@uantwerpen.be
 Gerhard.VanHuyssteen@nwu.ac.za

Presented at AfLaT 2013
Ghent, Belgium
Introduction

- Productivity of a language to create new words
 - Obstacle for computational language understanding
- Meaning of compound is often not clear on its own (ambiguity)
- Implicit semantic relation between constituents
 - e.g. *donut seat*
 - ‘donut-shaped seat’
 - ‘seat with a donut nearby’
 - ‘seat made of donuts’?
Related Research (1)

- Focus on
 - English
 - Noun-noun compounds

- Supervised machine learning problem
- Predefined inventory of classes of semantic relations between constituents of compound
Related Research (2) Classification

- Two kinds of classification schemes
 - Paraphrasing preposition
 - E.g. *autodeur* = deur VAN auto
 - Predicate-based classes
 - Class AGENT: ‘X is performed by Y’
 - E.g. *studentenprotest* = protest performed by students
Related Research (4)

Features

• Taxonomy-based methods
 - Semantic network similarity
 - Word’s location in hierarchy of terms
 • E.g. Hyponomy in WordNet
 - E.g. cola < frisdrank < drank < vloeistof

• Corpus-based methods
Related Research (5)

Features

• Taxonomy-based methods
• Corpus-based methods
 - Co-occurrence information of constituents in corpus
 - Distributional hypothesis (Harris)
 • Set of contexts in which a word occurs is an implicit representation of its semantics
Annotation (1)

- Semantic information on compounds needed for machine learning
- Explicit description by manual annotation
- Constraints on compound selection
 - Not in dictionary
 - Otherwise, gloss already present
 - Train classifier on systematics of newly produced compounds
 - Constituents in dictionary
 - Semantically relating of unknown words seems pointless
Annotation (2)
Scheme and Guidelines

- Adopted from Ó Séaghdha (2008), adapted for Afrikaans and Dutch
- 11 classes of compounds that describe relation between constituents
- Of which 6 semantically specific
 - BE e.g. zanger-muzikant skrywer-boer
 - HAVE autodeur blomsteel
 - IN tuinfeest nagaktiwiteite
 - ACTOR studentenprotest beerjagter
 - INST hamerslag tapytborsel
 - ABOUT postzegelverzameling kategismusvrae
Annotation (3)

Process

Dutch
- Compound list from e-Lex
- 1802 noun-noun compounds

- Second annotator: 500
- IAA = 60.2%
 (Kappa = 0.60)

Afrikaans
- 1500 noun-noun compounds manually selected from Ckarma

- 3 annotators
- IAA = 53.4%
 (Kappa = 0.53)
Experiment (1)

• Ó Séaghdha (2008) as inspiration

• Lexical similarity
 - Compounds are semantically similar when their respective constituents are semantically similar
 - E.g. *mieliesak* ‘corn bag’ and *graanblik* ‘can of grain’
Experiment (2)
Vector Creation

• Co-occurrence context for every compound constituent
 - For each instance of constituent, n surrounding words were held in memory
 - Size of context: 3 & 5 left and right
 - Relative frequencies of context words stored in vector

• Twente News Corpus (Dutch): 340 million words
• Taalkommisiekorpus (Afrikaans): 60 million words

Universiteit Antwerpen
Experiment (3) Vector Creation

- Instance vectors are concatenation of constituent data
- Relative frequencies for the 1000 most frequent words per constituent (2000 per compound)
- Experiment only on compounds in semantically specific classes
 - BE, HAVE, ABOUT, IN, ACTOR, INST
Principal Component Analysis (PCA)

- Size of vectors: 2000 attributes
- Computationally expensive
- PCA mathematically reduces dimensionality while optimising variance in data
- Correlated attributes are fused into principal components (PCs)
- For now: restriction to 50 PCs
Baseline

- First research for these languages
- Majority baseline, thus:
 - For Dutch: 29.5% (428/1447 class IN)
 - For Afrikaans: 28.2% (407/1439 class ABOUT)
Initial Results

<table>
<thead>
<tr>
<th>DUTCH</th>
<th>P</th>
<th>R</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOW 3</td>
<td>47.1</td>
<td>47.9</td>
<td>47.3</td>
</tr>
<tr>
<td>BOW 5</td>
<td>46.7</td>
<td>47.8</td>
<td>47.1</td>
</tr>
<tr>
<td>PCA 3</td>
<td>43.7</td>
<td>47.3</td>
<td>43.7</td>
</tr>
<tr>
<td>PCA 5</td>
<td>42.9</td>
<td>48.0</td>
<td>43.2</td>
</tr>
<tr>
<td>Baseline</td>
<td>29.5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AFR</th>
<th>P</th>
<th>R</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOW 3</td>
<td>50.8</td>
<td>51.6</td>
<td>51.1</td>
</tr>
<tr>
<td>BOW 5</td>
<td>50.3</td>
<td>50.8</td>
<td>50.5</td>
</tr>
<tr>
<td>PCA 5</td>
<td>49.3</td>
<td>51.3</td>
<td>48.5</td>
</tr>
<tr>
<td>PCA 3</td>
<td>47.7</td>
<td>50.5</td>
<td>47.5</td>
</tr>
<tr>
<td>Baseline</td>
<td>28.2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results of SVM on Dutch and Afrikaans compound semantics, using 10-fold cross-validation
- BOW and PCA[50]
- Size of context: 3 & 5
Initial Discussion

- Both languages show significant improvement over majority baseline
- BOW seems to do better than PCA

- Better results for Afrikaans
 - Possibly due to annotated list being a combination of semantic annotations of 3 persons
 - Most agreed upon class for each compound

- Dutch: just one annotator
Per-class performance

Dutch BOW 3

<table>
<thead>
<tr>
<th>Category</th>
<th>F-Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>60.1</td>
</tr>
<tr>
<td>ABOUT</td>
<td>52.9</td>
</tr>
<tr>
<td>HAVE</td>
<td>36.3</td>
</tr>
<tr>
<td>INST</td>
<td>40.6</td>
</tr>
<tr>
<td>BE</td>
<td>17.0</td>
</tr>
<tr>
<td>ACTOR</td>
<td>42.9</td>
</tr>
<tr>
<td>Average</td>
<td>47.3</td>
</tr>
</tbody>
</table>

IN is best performing category
BE does significantly worse than others
Per-class performance

Dutch BOW 3

<table>
<thead>
<tr>
<th>Category</th>
<th>F-Score</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>60.1</td>
<td>29.5 %</td>
</tr>
<tr>
<td>ABOUT</td>
<td>52.9</td>
<td>26.6 %</td>
</tr>
<tr>
<td>HAVE</td>
<td>36.3</td>
<td>16.1 %</td>
</tr>
<tr>
<td>INST</td>
<td>40.6</td>
<td>16.2 %</td>
</tr>
<tr>
<td>BE</td>
<td>17.0</td>
<td>7.3 %</td>
</tr>
<tr>
<td>ACTOR</td>
<td>42.9</td>
<td>4.3 %</td>
</tr>
<tr>
<td>Average</td>
<td>47.3</td>
<td></td>
</tr>
</tbody>
</table>

Afrikaans BOW 3

<table>
<thead>
<tr>
<th>Category</th>
<th>F-Score</th>
<th>Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>51.8</td>
<td>20.8 %</td>
</tr>
<tr>
<td>ABOUT</td>
<td>61.3</td>
<td>28.2 %</td>
</tr>
<tr>
<td>HAVE</td>
<td>23.9</td>
<td>9.7 %</td>
</tr>
<tr>
<td>INST</td>
<td>13.6</td>
<td>7.5 %</td>
</tr>
<tr>
<td>BE</td>
<td>56.9</td>
<td>25.0 %</td>
</tr>
<tr>
<td>ACTOR</td>
<td>62.2</td>
<td>8.8 %</td>
</tr>
<tr>
<td>Average</td>
<td>51.1</td>
<td></td>
</tr>
</tbody>
</table>

Classes with fewer instances seem harder to learn

Easily learnable class: ACTOR

Universiteit Antwerpen
Influence of constituent

<table>
<thead>
<tr>
<th></th>
<th>Precision</th>
<th>Recall</th>
<th>F-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Const 1</td>
<td>40.9</td>
<td>46.3</td>
<td>41.6</td>
</tr>
<tr>
<td>Const 2</td>
<td>39.3</td>
<td>42.7</td>
<td>38.7</td>
</tr>
<tr>
<td>Compound</td>
<td>45.2</td>
<td>48.4</td>
<td>45.6</td>
</tr>
<tr>
<td>Baseline</td>
<td></td>
<td>29.5</td>
<td></td>
</tr>
</tbody>
</table>

- Larger influence of first constituent on the semantics of the compound (modifier)
- Similar to findings in psycholinguistics where first constituent has more influence on the selection of the linking element (Krott, Schreuder & Baayen, 2002)
Learning curves (1)
Dutch BOW 3

- Seems to quickly reach a ceiling
- Better than baseline

F-score

Percentage of data used
Learning curves (2)
Afrikaans BOW 3

- Seems somewhat more promising
- Yet, curve already starts high
- Either more systematicity in annotation
- Or slightly better corpus for this purpose
Discussion

• Is accuracy of 50% relevant?
 - Compare with human judgement: IAA of 50-60%.
 - Not all mistakes are stupid
 • Sometimes incorrect annotation and correct classification
 - E.g. *parochiestelsel* ‘parish system’
 » Annotation: IN
 » Classification: ABOUT
 • Sometimes both annotation and classification are correct
 - E.g. *badkuur* ‘bath treatment’
 » Annotation: IN
 » Classification: INST
Conclusion

- Promising initial results for both languages
- Highest F-scores
 - Afrikaans 51.1% (vs. 28.2%)
 - Dutch 47.3% (vs. 29.5%)
- Indication: Compares favourably with English research with similar methods
 - Ó Séaghdha 58.8%
Acknowledgement

Research sponsored by:

• Nederlandse Taalunie (Dutch Language Union)
• Departement of Arts and Culture (DAC) of South Africa
• National Research Foundation (NRF) of South Africa
Thank you!

For suggestions and/or questions:

Ben Verhoeven
CLiPS – Computational Linguistics Group
University of Antwerp
ben.verhoeven@uantwerpen.be