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The blooming buzzing confusion...

Many possible referents can be mapped to utterance parts: still,
children resolve this problem brilliantly. How?



...and how to make sense of it

Keep track of co-occurrences of utterance parts and real-world
referents over many different utterances and situations. If pairings
are meaningful, they should occur more often than random pairings.



The goal

Many computational models try to account for the possible
mechanisms behind cross-situational learning: I tested four against
a single, simple set of behavioral data [2].

The successful models also learn from missing co-occurrences, i.e.
the fact that a word and an object don’t co-occur.



Behavioral data



The dataset from Ramscar et al (2013) [5]

Trial A Pid 

Wug 

Trial B 

Test 

Dax 

Figure 1: During training, subjects saw two objects and then heard a word. At
test, they heard a word and were asked to retrieve the associated object.



Training trials summary

Table 1: Co-occurrence statistics and input to the computational models

Objects (Cues) Words (Outcomes) Frequency

ObjA_ObjB_Context1_ExptContext DAX 9
ObjB_ObjC_Context2_ExptContext PID 9



Behavioral results

Informativity Versus Logic 5

p < .01, respectively. However, they chose B as the wug 
(M = 64%) at above-chance levels, t(13) = 2.332, p < .05 
(Fig. 3a). Further, although the group of developmental 
psychologists surveyed thought that the children would 
select A as the dax (M = 85%) and C as the pid (M = 
95%), t(19) = 6.311, p < .001, and t(19) = 12.34, p < .001, 
respectively, they thought that the children would select 
B as the wug (M = 80%), t(19) = 5.089, p < .001 (Fig. 3b). 
Thus, the psychologists predicted the undergraduates’ 
behavior but not the children’s behavior.

Discussion

The pattern of the children’s responses indicates that 
children can and do use informativity when learning 
words. It appears that, as Quine suggested, the words 
children learn “face the tribunal of sense experience not 
individually but . . . as a corporate body” (p. 77). Children’s 
word learning appears to be a systematic, rather than 
isolated, process, in which what is learned about any 
given word is dependent on its informativity in relation 
to other words and to context.

This pattern is consistent with recent findings in cross-
situational studies of word learning, which have shown 
that children and adults can learn the meaning of words 
by “accruing statistical evidence across multiple and indi-
vidually ambiguous word-scene pairings” (Smith & Yu, 
2008, p. 1559). However, these findings, and many other 
similar findings in the lexical-acquisition literature, may 

provide only limited insight into the actual mechanisms 
underlying word learning because of the significant over-
lap in the predictions made by a number of qualitatively 
different theories (Yu & Smith, 2012). For example, in the 
classic mutual-exclusivity paradigm, 2-year-old children 
robustly match novel labels to novel objects rather than 
known objects (Merriman & Bowman, 1989; Merriman & 
Schuster, 1991; see also Mervis & Bertrand, 1994). 
Although these results are often taken as evidence that 
children are innately biased to assume that objects can 
have only one label, such results are equally consistent 
with learning from background rates.

In the present study, the well-specified nature of learn-
ing theory allowed us to derive predictions that discrimi-
nated between these alternatives. When we manipulated 
the background rates of several novel objects, we found 
no evidence of a bias toward mutual exclusivity—or 
other logical forms of inference—in 2- to 3-year-old chil-
dren, who instead matched objects to labels depending 
on the objects’ informativity in context: The same object 
that might be a dax in the context of a dax question was 
often matched to wug in the context of a wug question.

It is important to note that although associative learn-
ing is often mischaracterized in the wider psychological 
literature as co-occurrence counting, even animal learn-
ing is sensitive to prediction error and background rates 
(Rescorla, 1988). Allowing for similar learning mecha-
nisms in children can make word learning appear far less 
baffling. For example, why do children map novel labels 
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Fig. 3. Results from 14 Stanford undergraduates and 20 developmental psychologists. The graph in (a) shows the average percentage of 
trials on which the undergraduates selected each of the three objects as matching each label. The graph in (b) shows the psychologists’ 
predictions for the percentage of trials on which they expected a healthy 2- or 3-year-old would select each of the three objects as matching 
each label. Error bars represent standard errors of the mean.

 at Stanford University Libraries on May 8, 2013pss.sagepub.comDownloaded from 

4 Ramscar et al.

child to respond. If the child did not immediately respond, 
the researcher asked once more, and then resumed the 
video.

At the end of the training session for each set, the 
researcher removed the laptop computer used to play the 
video, and the child was asked if he or she would like to 
play another game. The researcher then retrieved a box 
containing all three objects the child had seen in the 
video. These interactions served as the distractor period. 
The researcher then asked the child to “show me the 
[target label],” repeating the question if the child was hes-
itant. The child was asked to respond to only one label—
and hence, select one object—in each session. This was 
done for all three sets of objects, such that in training the 
child saw nine objects and heard six labels.

There were three test conditions: asking for Label 1; 
asking for Label 2; and asking for a novel label not heard 
in training, Label 3. Each child participated in all three 
conditions, with one condition per object set. The order 
of the conditions was counterbalanced across partici-
pants, and all participants were tested on each type of 
label only once. To conclude the experiment, the 
researcher repeated the three tests again, providing a 
measure of response consistency.

Undergraduate version. Undergraduate participants 
underwent the same training and testing as our 2- to 
3-year-old participants did. They were tested individually 
and told that they were assisting in a pilot test of a task 
that was subsequently to be conducted with children. 
They were told that although the task might seem trivial, 
their answers were important and they should give the 
answers that seemed most natural to them.

Developmental-psychologist version. The design of 
the study was described in detail to each developmental-
psychologist participant, who was then asked to predict 
how a healthy 2- or 3-year-old would respond. This sur-
vey was administered to assess expert opinion about 
how children would respond to this ambiguous word-
learning task.

Results

Throughout the Results section, for ease of presentation, 
we use one set of labels—dax, pid, and wug—to refer to 
Labels 1, 2, and 3, respectively. From a purely informa-
tional perspective, A was a dax, C was a pid, and the 
same objects—A and C—were equally likely to be a wug. 
The 21 children we tested agreed: Their pattern of match-
ing objects to labels matched well with the informativity 
of each object (Fig. 2). An analysis of variance (including 
data from the repeated tests) revealed a significant inter-
action of question (Label 1, 2, or 3) and object (A, B, or 
C), F(1, 12) = 2.136, p < .025. Object A was selected as the 
dax (M = 67%) with above-chance probability, t(41) = 
4.532, p < .001; object C was selected as the pid (M = 
62%) with above-chance probability, t(41) = 3.421, p < 
.001; and object B, which had the highest background 
rate, was selected as the wug (M = 17%) with below-
chance probability, t(41) = 2.858, p < .01.

Although the children we tested matched objects to 
labels on the basis of informativity, the 14 Stanford under-
graduates tested in exactly the same way did not. They 
agreed with the children about A and C, selecting A as 
the dax (M = 86%) and C as the pid (M = 79%) at above-
chance levels, t(13) = 5.401, p < .001, and t(13) = 3.421,  

0

10

20

30

40

50

60

70

80

Dax Pid Wug

Ob
je

ct
 M

at
ch

ed
 to

 L
ab

el
 (%

 tr
ia

ls)

Chance

a

0

10

20

30

40

50

60

Dax Pid WugCo
ns

ist
en

t C
ho

ic
e 

in
 D

up
lic

at
e 

Te
st

s 
(%

 tr
ia

ls)
 bObject A

Object B
Object C

Object A
Object B
Object C

Fig. 2. Average percentage of trials on which the children (n = 21) selected each of the three objects as matching each label over repeated 
test trials (a) and the rate of consistent responses across the duplicate tests (b). Error bars represent standard errors of the mean.
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Figure 2: Undergraduates responses (left) and children responses (right).
The two groups are consistent when asked about words they heard during
training, but differ in the responses to the presentation of the withheld word.



Computational models



Hebbian learner [4]

Vt+1ij = vt +∆Vij

∆Vij =
{
k if ci ∈ t and oj ∈ t
0 else

The association between an input node (cue) i and and output node
(outcome) j is incremented by a constant k every time the two
co-occur in the same learning trial .

Code for all computational models can be found at
https://github.com/GiovanniCassani/cross_situational_learning

https://github.com/GiovanniCassani/cross_situational_learning


Naïve Discriminative Learning [1]

Vt+1ij = vt +∆Vij

∆Vij =


αiβ1(λ−

∑
c∈t Vi) if ci ∈ t and oj ∈ t

αiβ2(0−
∑

c∈t Vi) if ci ∈ t and oj /∈ t
0 if ci /∈ t

Cue-outcome associations are updated according to the
Rescorla-Wagner equations: on a learning trial t, the model predicts
whether an outcome is or isn’t present and then check if it was right.
The change in association is bigger if the prediction error is large.



Probabilistic Learner [3]

a(c|o,Ot, Ct) =
pt−1(o|c)∑

c′∈Ct pt−1(o|c′)

assoct(c,o) = assoct−1(c,o) + a(c|o,Ot, Ct)

pt(o|c) =
assoct(c,o) + λ∑

o′∈O assoct(c,o′) + β · λ

First computes and updates cue-outcome associations, which are
then used to compute a full probability distribution over outcomes
for each cue. The highest the probability mass allocated to an
outcome, the highest the confidence that’s the matching outcome.



Hypothesis Testing Model [6]

1. On the first trial, it picks a single cue-outcome hypothesis at
random.

2. On each subsequent trials, it retrieves a cue-outcome
hypothesis (with probability p and checks if it is supported by
the trial.

3. If it does not, the hypothesis is dumped and a new one is
formed at random. If it does, the hypothesis gets strengthened.



Simulations



Task definition

200 simulated learners were run on the trials faced by the human
subjects in [5], randomizing the order of presentation.

We focused on the cases in which adults and children were
consistent, i.e. for words presented during training.



Recap

Informativity Versus Logic 5

p < .01, respectively. However, they chose B as the wug 
(M = 64%) at above-chance levels, t(13) = 2.332, p < .05 
(Fig. 3a). Further, although the group of developmental 
psychologists surveyed thought that the children would 
select A as the dax (M = 85%) and C as the pid (M = 
95%), t(19) = 6.311, p < .001, and t(19) = 12.34, p < .001, 
respectively, they thought that the children would select 
B as the wug (M = 80%), t(19) = 5.089, p < .001 (Fig. 3b). 
Thus, the psychologists predicted the undergraduates’ 
behavior but not the children’s behavior.

Discussion

The pattern of the children’s responses indicates that 
children can and do use informativity when learning 
words. It appears that, as Quine suggested, the words 
children learn “face the tribunal of sense experience not 
individually but . . . as a corporate body” (p. 77). Children’s 
word learning appears to be a systematic, rather than 
isolated, process, in which what is learned about any 
given word is dependent on its informativity in relation 
to other words and to context.

This pattern is consistent with recent findings in cross-
situational studies of word learning, which have shown 
that children and adults can learn the meaning of words 
by “accruing statistical evidence across multiple and indi-
vidually ambiguous word-scene pairings” (Smith & Yu, 
2008, p. 1559). However, these findings, and many other 
similar findings in the lexical-acquisition literature, may 

provide only limited insight into the actual mechanisms 
underlying word learning because of the significant over-
lap in the predictions made by a number of qualitatively 
different theories (Yu & Smith, 2012). For example, in the 
classic mutual-exclusivity paradigm, 2-year-old children 
robustly match novel labels to novel objects rather than 
known objects (Merriman & Bowman, 1989; Merriman & 
Schuster, 1991; see also Mervis & Bertrand, 1994). 
Although these results are often taken as evidence that 
children are innately biased to assume that objects can 
have only one label, such results are equally consistent 
with learning from background rates.

In the present study, the well-specified nature of learn-
ing theory allowed us to derive predictions that discrimi-
nated between these alternatives. When we manipulated 
the background rates of several novel objects, we found 
no evidence of a bias toward mutual exclusivity—or 
other logical forms of inference—in 2- to 3-year-old chil-
dren, who instead matched objects to labels depending 
on the objects’ informativity in context: The same object 
that might be a dax in the context of a dax question was 
often matched to wug in the context of a wug question.

It is important to note that although associative learn-
ing is often mischaracterized in the wider psychological 
literature as co-occurrence counting, even animal learn-
ing is sensitive to prediction error and background rates 
(Rescorla, 1988). Allowing for similar learning mecha-
nisms in children can make word learning appear far less 
baffling. For example, why do children map novel labels 
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Fig. 3. Results from 14 Stanford undergraduates and 20 developmental psychologists. The graph in (a) shows the average percentage of 
trials on which the undergraduates selected each of the three objects as matching each label. The graph in (b) shows the psychologists’ 
predictions for the percentage of trials on which they expected a healthy 2- or 3-year-old would select each of the three objects as matching 
each label. Error bars represent standard errors of the mean.

 at Stanford University Libraries on May 8, 2013pss.sagepub.comDownloaded from 

4 Ramscar et al.

child to respond. If the child did not immediately respond, 
the researcher asked once more, and then resumed the 
video.

At the end of the training session for each set, the 
researcher removed the laptop computer used to play the 
video, and the child was asked if he or she would like to 
play another game. The researcher then retrieved a box 
containing all three objects the child had seen in the 
video. These interactions served as the distractor period. 
The researcher then asked the child to “show me the 
[target label],” repeating the question if the child was hes-
itant. The child was asked to respond to only one label—
and hence, select one object—in each session. This was 
done for all three sets of objects, such that in training the 
child saw nine objects and heard six labels.

There were three test conditions: asking for Label 1; 
asking for Label 2; and asking for a novel label not heard 
in training, Label 3. Each child participated in all three 
conditions, with one condition per object set. The order 
of the conditions was counterbalanced across partici-
pants, and all participants were tested on each type of 
label only once. To conclude the experiment, the 
researcher repeated the three tests again, providing a 
measure of response consistency.

Undergraduate version. Undergraduate participants 
underwent the same training and testing as our 2- to 
3-year-old participants did. They were tested individually 
and told that they were assisting in a pilot test of a task 
that was subsequently to be conducted with children. 
They were told that although the task might seem trivial, 
their answers were important and they should give the 
answers that seemed most natural to them.

Developmental-psychologist version. The design of 
the study was described in detail to each developmental-
psychologist participant, who was then asked to predict 
how a healthy 2- or 3-year-old would respond. This sur-
vey was administered to assess expert opinion about 
how children would respond to this ambiguous word-
learning task.

Results

Throughout the Results section, for ease of presentation, 
we use one set of labels—dax, pid, and wug—to refer to 
Labels 1, 2, and 3, respectively. From a purely informa-
tional perspective, A was a dax, C was a pid, and the 
same objects—A and C—were equally likely to be a wug. 
The 21 children we tested agreed: Their pattern of match-
ing objects to labels matched well with the informativity 
of each object (Fig. 2). An analysis of variance (including 
data from the repeated tests) revealed a significant inter-
action of question (Label 1, 2, or 3) and object (A, B, or 
C), F(1, 12) = 2.136, p < .025. Object A was selected as the 
dax (M = 67%) with above-chance probability, t(41) = 
4.532, p < .001; object C was selected as the pid (M = 
62%) with above-chance probability, t(41) = 3.421, p < 
.001; and object B, which had the highest background 
rate, was selected as the wug (M = 17%) with below-
chance probability, t(41) = 2.858, p < .01.

Although the children we tested matched objects to 
labels on the basis of informativity, the 14 Stanford under-
graduates tested in exactly the same way did not. They 
agreed with the children about A and C, selecting A as 
the dax (M = 86%) and C as the pid (M = 79%) at above-
chance levels, t(13) = 5.401, p < .001, and t(13) = 3.421,  
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Fig. 2. Average percentage of trials on which the children (n = 21) selected each of the three objects as matching each label over repeated 
test trials (a) and the rate of consistent responses across the duplicate tests (b). Error bars represent standard errors of the mean.

 at Stanford University Libraries on May 8, 2013pss.sagepub.comDownloaded from 

A good model can unambiguously pick one object given a word
presented during training. If no object-word association is higher
than the others, the model would have to choose at random, unlike

human subjects.



Results

Model Cue DAX PID

Hebbian
Learner

ObjA 9 .
ObjB 9 9
ObjC . 9

NDL
ObjA .134 ±.001 -.021 ±.005
ObjB .113 ±.005 .113 ±.005
ObjC -.021 ±.005 .134 ±.001

Probabilistic
Learner

ObjA .967 ±.003 .
ObjB .483 ±.082 .486 ±.082
ObjC . .967 ±.003

HTM
ObjA .455 .
ObjB .545 .485
ObjC . .515



Conclusion



Upshot

Not all cross-situational learners are created equal: two fitted the
data, two didn’t.

Human learners don’t care if spurious associations occur as
frequently as true associations. Actually, in our dataset there are no

spurious or true associations: however, the co-occurrences of
ObjectB with both labels are perceived as spurious.



Conclusions

Human cross-situational learning doesn’t depend only on words and
referents co-occurences, but much more on the their systematicity:
a model needs to be able to also learn from situations where things
fail to co-occur, not simply from situations were two things co-occur.
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Thank you!



Questions?
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