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Abstract

This paper introduces research within the ALADIN project,
which aims to develop an assistive vocal interface for peo-
ple with a physical impairment. In contrast to existing ap-
proaches, the vocal interface is self-learning which means it
can be used with any language, dialect, vocabulary and gram-
mar. The paper describes the overall learning framework, and
the two components that will provide vocabulary learning and
grammar induction. In addition, the paper describes encour-
aging results of early implementations of these vocabulary and
grammar learning components, applied to recorded sessions of
a vocally guided card game, patience.
Index Terms: language acquisition, word finding, grammar in-
duction, non-negative matrix factorization, concept tagging

1. Introduction
Physically impaired people with restricted (upper) limb mo-
tor control are permanently in the situation where voice con-
trol could significantly simplify some of the tasks they want
to perform. By regaining the ability to control devices in the
living environment, voice control could contribute to their in-
dependence of living and their quality of life. Unfortunately,
the speech recognition technology employed for voice control
typically forces users to adhere to a restrictive grammar and vo-
cabulary in order to successfully command and control a device.

In this paper, we introduce research in the ALADIN project1,
which aims to develop an assistive vocal interface for people
with a physical impairment. In contrast to existing vocal inter-
faces, the ALADIN system is self-learning: The interface should
automatically learn what the user means with commands, which
words are used and what the user’s vocal characteristics are. In
other words: the interface should adapt to the user instead of the
other way around.

This paper presents a functional description of the ALADIN
learning framework and describes feasibility experiments with
self-learning word finding and grammar induction modules. In
Section 2 we outline the overall learning framework, the knowl-
edge representation that is used and the rationale behind the
word finding and grammar induction modules. In Section 3 we
describe the experimental setup, followed by a discussion of
the experimental results in Section 4. We conclude with some
thoughts on future work in Section 5.

1Adaptation and Learning for Assistive Domestic Vocal INterfaces.
Project page:
www.esat.kuleuven.be/psi/spraak/projects/ALADIN

2. The ALADIN framework
The ALADIN learning framework consists of several modules,
which are shown schematically in Fig. 1. On the left-hand side,
the provided input is shown, which consists of a spoken utter-
ance (command) coupled with a control input, such as the but-
ton press on a remote control or a mouse click, possibly aug-
mented with the internal state of a device (for example the cur-
rent volume of a television).

During training, the word finding module (Section 2.2)
builds acoustic representations of recurring acoustic patterns on
the basis of a (small) set of training commands. This process
uses features extracted from the audio signal and is constrained
by a semantic frame description of the action (Section 2.1). The
grammar induction module (Section 2.3) uses the output of the
word finding module and the constraints of the frame descrip-
tion of the action to build a user-specific grammar. During de-
coding, the semantics module combines the output of the newly
trained word finding and grammar modules to map new com-
mands to their associated controls.

The ultimate goal is to integrate the training and decoding
phase. The user uses ALADIN to control a device, but if the ac-
tion that was performed is incorrect, the user will instead use
(non-speech) device controls to execute the desired action. The
use of the device controls will have two additional effects: first,
if possible the incorrect action performed by ALADIN will be
undone, and second, the action indicated by the device controls
will serve as supervision information to train or update the AL-
ADIN system.

2.1. Frame Description

In order to provide a common framework for all possible actions
we wish to distinguish, we adopt the use of frames, previously
also successfully deployed in command and control (henceforth
C&C) applications and spoken dialog systems [1]. Each action
that can be performed with a device is represented in the form of
a frame, a data structure that represents the semantic concepts
that are relevant to the execution of the action and which users
of the C&C application are likely to refer to in their commands.
It usually contains one or multiple slots, each associated with a
single value.

We illustrate our frame-based representation with an ex-
ample from one the target applications in the ALADIN project:
a voice-controlled version of the card game patience. In this
game, one of the possible actions is moving a card in the play-
ing field. This action is described by an action frame dubbed
movecard, which contains slots specifying which card is
moved and to which position it is moved. Fig. 2 shows an ex-
ample of such a move, and the automatically generated action
frame description of that move.
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Figure 1: Schematic overview of the ALADIN framework.

Frame Slot Value
<FS> c
<FV> 11
<FC> 3
<FH> -
<TS> h
<TV> 12
<TF> -
<TC> 4

Figure 2: An example of a patience move and the automatically
generated movecard action frame. A move is defined as a
combination of a from slot (<F?>) and a to slot (<T?>). A
card is defined as the combination of a suit (<?S>) - (h)earts,
(d)iamonds, (c)lubs or (s)pades - and a value (<?V>), from ace
(1) to king (13). We also distinguish slots for the ‘hand’ at the
bottom (<FH>), the seven columns (<?C>) in the playing field
and the four foundation stacks at the top right (<TF>).

2.2. Word finding

The word finding module is tasked with creating acoustic repre-
sentations of recurring acoustic patterns, guided by frame de-
scriptions of utterances. As such, the learning task is only
weakly supervised: rather than having knowledge of the se-
quence of words that were spoken, as common in Automatic
Speech Recognition, we only have knowledge of the frame slot-
value pairs that were referred to.

The word finding module employs supervised non-negative
matrix factorization (NMF). For a detailed description we refer
the reader to [2] and the references therein. In a nutshell, during
training we find matrices W and H such that:

V =

[
V0

V1

]
≈

[
W0

W1

]
H = WH (1)

with the columns of the matrix V1 containing acoustic repre-
sentations of the spoken commands. As in [2], the acoustic fea-
tures are formed by first applying vector quantization (VQ) to
MFCC features, and then constructing a histogram of the co-
occurrences of these VQ labels. The columns of V0 associate
each spoken command with a label vector that represents the
frequency with which a particular label occurred in that spoken
command. After training, the matrix W1 contains R acoustic
patterns as its columns, and the matrix H indicates the weights
with which these R acoustic patterns are linearly combined to
form each spoken command. The columns of the matrix W0

describe the mapping between the R acoustic patterns in W1

and the labels associated with each spoken command.
To decode a spoken command, we find a vector h for which

holds: v1
tst = W1h

tst, with W1 the matrix found during

Put the jack of clubs on the queen of hearts
O O I FV O I FS O O I TV O I TS

Figure 3: Example of a command transcription, annotated with
concept tags.

training. vtst
1 is an acoustic representation of the spoken com-

mand, and htst is the R-dimensional vector that indicates which
acoustic patterns in W1 need to be linearly combined to explain
vtst
1 . We calculate a score representing the label association

with the spoken command using: a = W0h
tst.

In our framework, we consider each unique slot-value pair
of each frame as a single label. This way, each frame descrip-
tion is uniquely mapped to a binary vector v1, and likewise,
the decoded label vector a is uniquely mapped back to a frame
description.

2.3. Grammar induction

The task of the grammar induction module is to automatically
induce a user-specific grammar during the training phase, that
detects the compositionality of the utterances and relates it to
the associated meaning. In this case, the grammatical properties
of the utterances are associated with action frames, containing
slots and values. This grammar induction is performed on the
basis of the output of the word finding module (hypothesized
‘word’ units, represented as acoustic patterns and possibly as-
sociated frame slot values) and the frame descriptions of the
actions. The grammar aids the decoding process by providing
information regarding the probability of specific frame slot se-
quences in the data.

There are different options with respect to the type of gram-
mar that can be induced. Encouraging results have been re-
ported in the unsupervised induction of sequence tags [3]. In the
context of the ALADIN project, we therefore decided to adopt a
concept tagging approach as a shallow grammar interface be-
tween utterance and meaning. In this vein, each command is
segmented into chunks of words, which are tagged with the se-
mantic concepts (i.e. frame slots) to which they refer.

We use a tagging framework which is based on so-called
IOB tagging, commonly used in the context of phrase chunking
tasks [4]. Words inside a chunk are labeled with a tag starting
with I and words outside the chunks are labeled with an O tag,
which means that they do not refer to any concept in the action
frame. Fig. 3 illustrates the concept tagging approach for an
example command for the action displayed in Fig. 2.

3. Experimental setup
The experiments described in this paper pertain to a vocal inter-
face for the card game of patience. This presents an appropriate
case study, since a C&C interface for this game needs to learn
a non-trivial, but fairly restrictive vocabulary and grammar. In
practice, most applications targeted in the ALADIN project will



have a lower complexity, for example in the case of domotica.
We collected a corpus of more than two thousand spoken pa-
tience commands in (Belgian) Dutch2, produced by eight par-
ticipants during demonstration games. These command were
manually transcribed and annotated with the aforementioned
concept tags and associated with the automatically generated
action frames. There are two types of frames: movecard
frames (cf. Fig. 2) and a slotless dealcard frame that simply
triggers a new hand. For more information on the constitution
of this corpus and the frame representations, we kindly refer the
reader to [5].

The experimental setup mimics the ALADIN learning situ-
ation as much as possible. The number of utterances used to
train the system, should be as small as possible, i.e. the training
phase should be as brief as possible in order to limit the amount
of extraneous physical work or assistance needed for training
by the physically impaired person. In order to get an idea of the
minimal number of training utterances needed to enable suc-
cessful processing, we evaluated the techniques with increasing
amounts of training data, resulting in learning curves.

A separate learning curve is made for each participant indi-
vidually, since the learning process in the targeted ALADIN ap-
plication will be personalized as well. For each learning curve,
the last fifty utterances of a participant are used as a constant
test set, while the first k utterances are used as training data, k
being an increasing number of slices of ten utterances for the
grammar induction experiments and 25 utterances for the word
finding experiments. The chronological order of the commands,
as uttered by the participant, was preserved, in order to account
for the development of the users’ command structure and vo-
cabulary use during the games.

3.1. Word finding

We use the automatically generated action frames to provide
supervision. In the NMF learning framework, two acoustic rep-
resentations were assigned to each label, with an additional 15
representations used to model filler words: R = 2× 63+15 =
141. Other experimental parameters were adopted from the
setup described in [2].

For this experiment, frame decoding is guided by a hand-
crafted grammar, rather than an automatically induced gram-
mar. We defined 38 grammar rules corresponding to various
possible slot sequences, under the assumption that <F?> slots
come before <T?> slots, and that <?S> slots come before
<?V> slots. These 38 rules also include various slot sequences
in which the command was underspecified. A pilot experiment
showed that this grammar covers 98% to 100% of the spoken
commands, depending on the speaker.

The hand-crafted grammar was implemented as a
slot/value-to-slot/value bigram transition matrix, and Viterbi de-
coding was used to generate a possible frame description for
each grammar. For scoring, we generated an N-best list (N=5)
of most likely frame descriptions. The use of an N-best list
mimics a scenario in which the patience game software can se-
lect the most likely action, based on its knowledge of the play-
ing field and the rules of the game.

3.2. Grammar induction

The exploratory experiments for the grammar induction module
serve as a proof-of-the-principle experiment that showcases the
learnability of the task in optimal conditions and focuses on the
minimally required amount of training data needed to bootstrap
successful concept tagging for this task. In these supervised

2The ALADIN system is expected to be language independent. For
languages in which prosody is important, it is conceivable the acoustic
features will need to be augmented with for example pitch information.

learning experiments, the annotated corpus is used as training
material for a data-driven tagger, which is subsequently used to
tag previously unseen data. As our tagger of choice, we opted
for MBT, the memory-based tagger [6], although any type of
data-driven tagger can be used.

Feature selection was performed on the basis of a devel-
opment set (last 25% of the training data) and establishes the
best combination of disambiguation features, such as the num-
ber of (disambiguated) concept tags to the left, the tokens them-
selves (left/right/focus) and ambiguous tags (focus token and
right context). We also compare our results against a baseline
condition, a unigram tagger, in order to see the relative effect of
the use of contextual information by the tagger.

4. Results and discussion
In Fig. 4 we can observe learning curves for the word finding
and the grammar induction experiments. Experimental results
for the former are expressed in terms of slot-value recall, which
we calculate for each entry in the N-best list by dividing the
number of slot-value pairs correctly selected, according to the
reference frame description, by the total number of slot-value
pairs in the reference frame description (expressed as a percent-
age). The reported slot-value recall is the highest recall of the
entries in the N-best list.

The metric used for the evaluation of the concept tagger is
the I-chunk recall, which is calculated by counting the number
of correctly predicted I-chunks (i.e. chunks with I tags, refer-
ring to concepts) and dividing it by the total number of I-chunks
given by the annotated transcription. This means that the con-
cept tags themselves, as well as the borders of the predicted
I-chunks are included in the evaluation.

4.1. Word finding

The graph on the left hand side of Fig. 4 displays the slot-value
recall scores, obtained after using all available training material.
These vary between 37.5% for speaker 4 and 85.3% for speaker
1. We can also observe that overall, the results for all speakers
show a fairly linear increase in accuracy as more training mate-
rial becomes available. The fact that the accuracy does not level
off with increasing training data, indicates that the results are
likely to improve with more training data.

This is also likely given the complexity of the learning
task: In patience, about half of the spoken commands pertain
to dealcard frames, which means it is very likely some slot-
value pairs have never occurred in the training data, even after
200 spoken commands. We expect, however, that we need at
least a few repetitions of each slot-value pair to build a robust
acoustic representation: the accuracy of correctly detecting the
dealcard frame, which has many repetitions in the training
data, is close to 100% for all speakers.

Another issue that increases the complexity of the learning
task is the fact that the automatically generated frame descrip-
tion used for supervision are often over-specified; for example,
even if the spoken command only referred to FS and FV slots,
the frame descriptions will also contain the FC slot. As a result,
the supervision information contains noisy labels, which leads
to an ambiguity that can only be resolved given enough training
data. Given the complexity of the learning task, the fact that we
obtain accuracies up to 85.3% is very encouraging.

4.2. Grammar induction

The right part of Fig. 4 displays the learning curves for the su-
pervised concept tagging experiments. There is a lot of vari-
ation between the participants in accuracy using the first 100
training utterances. Six out of eight curves reach 95% or more
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Figure 4: Learning curves viz. word finding (slot-value recall) and grammar induction (I-chunk recall).

I-chunk recall with 130 training utterances, and level off after
that. For two participants, recall goes up to 100%, with train-
ing set sizes of respectively 40 and 100 utterances. The base-
line accuracies, averaged over all participants, are also shown
in Fig. 4. These are significantly superseded by the individual
learning curves with optimized features, showing that the use of
contextual information is essential for accurate tagging.

Error analysis shows that the observed differences in learn-
ing curves are related to the individual language usage. Par-
ticipant 6’s recall remains relatively low (around 92%) due
to overly complex command structures throughout the experi-
ments. The commands of participants 2 and 5 on other hand
were structurally very consistent throughout the games, result-
ing in very fast learning. The learning curve of participant 5
reaches a recall of 100% using as few as forty training utter-
ances, underlining the learnability of this task in optimal condi-
tions.

5. Conclusions and future work
In this paper, we introduced a self-learning framework for a vo-
cal interface that can be used with any language, dialect, vocab-
ulary and grammar. In addition to a description of the overall
learning framework and its internal knowledge representation,
we described the two building blocks that will provide vocab-
ulary learning and grammar induction. Our feasibility experi-
ments show encouraging results, both for vocabulary learning
and grammar induction, when applied to the very challenging
task of a vocally guided card game, patience, with only limited
training data.

We expect the word finding results to improve once
speaker-specific grammars, provided by the grammar induc-
tion module, can be incorporated. The hand-crafted grammar
employed in the word finding experiments, includes almost all
variations, while a speaker-specific grammar will typically be
more restrictive. Furthermore, we expect the number of repeti-
tions needed for each slot-value pair to reduce substantially if
we allow sharing of the acoustic representations between slots:
For example, it is very likely that the user will refer to the suit
of ‘hearts’ the same way, regardless of whether it occurs in a

<FS> slot or in a <TS> slot.
Future experiments will also investigate how unsupervised

learning techniques can be used to bootstrap concept tagging
without using annotated and manually transcribed data. This
will enable the output of the grammar module to replace the
manually crafted grammar currently used by the word finding
module. Since the learning curves for the word finding mod-
ule still show significant room for improvement, more data will
need to be collected to adequately investigate the interaction be-
tween the two modules and establish their integration.
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