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ABSTRACT

In this paper we approach the following prublem: Given an arbitrafy'
language describing device (e.g. a grammar], construct an ealgorithm which
computes structural information for an arbitrary string of the language
described by this device. Algorithms performing this task are called parsers

and the problem itself is known as the 'recognition' or ‘parsing' ﬁroblem.

In the first part three devices accepting the set of regular or type 3
languages are presented: transition networks, finite state machines and

regular grammars. Then parsers &re constructed with these systems as data.

Basically a parser works on n-tuples (catled tasks) containing all sorts
of information, e.g. what symbol should be read in the inputstring, which
rule can be applied, etc... .
Starting from a given initial task, new tasks are constructed from previous
tasks by means of a recursive function. The exscution of the function involves
scanning the dinputstring and ceonsulting the grammar. After a finite rumber
of steps, no more tasks can be created and from the set of tasks produced

during the computation structural information can be filtered out.

In the second part of the paper three devices accepting the set of caontext-
free or type 2 langueges ere prasented: recursive transition networks, pushdown
automata and context-free grammars. Then parsers are constructed for these

systems with the same basic strategy.

Emphasis 1s laid on the construction Df.a fundamental theoretical framework

rather than the description of sophisticated parsers and their implementations.



This paper is an attempt to create a theoretical framework for parsers. Parsers
are systems taking as data grammars or other language describing devices and com-

puting structural information for arbitrary strings of the described language.

It is clear that structural descriptions ere of great importance . It is strenge
therefore that there is no interest within theoretical linguistics in finding exact
methods to recognize structural information for a given inputstring according tc a

given grammar.

Although we approach this subject from a formal point of view, the main ideas
and the final aim of the study arose from research in natural languege processing.
We personally think thet only a careful: (and therefore formall) study of the models

underlying the implementations will lead to sound results.

Due to time and space limits we cannot but sketch a framework. It is possible
to brild more efficient (and therefore more complicated) parsers, but we must

start somewhere.

The paper has two parts:
(i} type 3 parsers: l.e. parsingsystems for type 3 grammars, finite automaté or
transition networks.,
[(ii) type 2 parsers: i.e. parsing systems for context-free grammars, pushdown

automata and recursive transtion networks.

In natural language processing type 3 grammars can be used for the construction
and consultation of the lexicon amd for orthographemic rewriting. Type 2 grammars
can be used for morphological and syntactic analysis. Together both typees of
systems lead to & complete automatic analysis of the surface structure of a

natural language. References about zpplications are given in 2.7..

We included some problems which are solved at the end [in appendix A.) to help
the reader in understanding the texi. The introduction and emphasis on transition
networks must be seen in the light of the growing popularity of this form of

representation especially in computational linguistics.

Many ideas expressed in this paper are influenced by the seminars at the I.S.
for Mathematical and Computational Linguistice in Pisa by M. Kay and W. Woods. The
background for this study was provided by the exciting semipars in formal systems
by prof. dr. G, Rozenberg. 1 thank the reedlng committee of the Antwerp papers in
lirguistics who accepted this paper for publication and especieally prof. dr. R.CG.
Van de Velde who took the pain to examing with great care the manuscripts and by
whose remarks the reedibility of the text could be highly improved.

Of course the author is fully respemsible for all remaining errors. 1
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1. Simple transition networks and related systems.
1. TRANSITION NETWORKS

Definition 1.1. A simple transition network (for short t.n.} is a set of states repre-

sented by circles and 2 set of fransitions from one state to another represented by
directed labeled lines between the circles. The labels are the conditions for a transition
to take place. _

The initial or start state is marked by a little arrow. Fimal states are indicated by

a deouble circle.

Example 1.1, The following diagram 0 1s a particular instance of a t.n.:

A transition network 1s a sort of contrel structure, that is a pattern for a series
of actions. By means of a transition network we can 'scan’' a word and tell at the
end whether it is accepted or not. To do this we proceed as follows.

Take for exempla the word '110100°. The first state is the start state in this

case DD. Then we look at the first sympel of the word (here 1) and follow the line
in the diegram with that particular symbol as a label. Doing so we arrive in Q1 :
QD 4 Q1 . We repeat this actior and obtain the following sequence of transitions:
o, 2o, %0,%0,%0, %0,

and alsoc we are in the state 02. {Note that 02 is the final statel. If this is the

At this moment there are no symbols left in the word

case then we say that the word is accepted by that particular t.n..

As a second example ccnzider the word '1010'. The sequence of states is: QD LS Q1 g

0
*
The set accepted by the t.n. is the set of all sequences in{D,l} , i.e. combinations

QZ L-QS =8 QD. The word is not accepted because §, is not a final state.

with the alphabet 0,1 , containing at least one C ard ore 1 but an odd number of

0's and an odd number of 1's.

Problems 1l.1.
_ (i) Are the words '10100', '0O10' and '111000' accepted by D 7

(ii} Turn D into a t.n. accepting all seqguences in[O.l}iﬁontaining both an sven number
of 0's and an even numbar of 1's

(1i1) Construct a t.n. accepting all strings in {D,l‘ﬁsuch that there is a 1 immediately
following a O, '

(iv]) Comstruct & t.n. accepting ell seguences of e and n.m= 0,



(v) Construct a t.n. accepting all strings in{G,l}*‘ccntaining any number of 1's and

one and only one 0.

Definition 1.2. A simple trangition network is called deterministic iff there are no

states from which more than one lime 1s leaving with the same label.

A simple transition network is called nondeterministic if it is not deterministic.

All the examples (included the problems) so far discussed are determininistic t.n.'s.
Example 1.2. The following t.n. accepting strings o0"™  for m,n = 1 is a nondeterministic

t.n.:

Representation The tabular representation of a t.n. is a list of triples where the

first element denotes the label or condition, the second the first stets and the third
the state after the transition is made.

The order of the list is irrelevant and we number the triples for cenvenience.

The tabular repressntation of the t.n. in example 1.1l. is:

1. (1, 00,91)

2. {1, G1 P QD }
3. (0, 01 . Qz)
4, (0O, Q2 . Qq)
5. (1, QZ s 03>
6. (1, QS ’ Q2 )
7. (0, Qs ; QU)
g. {0, QD . QS)

We will often leave out brackets end comma's.

The tabular representation of the t.m. in example 1.2, is:

1. {0, QD s QD)

2. (0, QD . Ql)

3. {1, Ql , Ql)

4, {1, 01 s 02)
A triple in the sat will be called a rule r. The i-th triple is dencted as Ty and the
J-th element ri,' . E.g. in the last tebular representation rq'z = QD ’ PB,E = 01 and
r = 1.

4,1



2. FINITE AUTOMATA

An eguivalent way of stating the same information as was expressed in & t.n. is
the following. '

Definition 1.3. Let M be a system called a finite automaton or finite state

machine (for short f.a.), specified by a quintuple (K,E,S.QD,E Y. Where K is a finite
nonempty set of states. £ is a finite alphabet, & is a mepping from K X T into K, QD

in K 1s the initial state and E C'K is the set of final states.

& dis celled a transition function. It has the form 8 (g.,a) = p and g is fhe first state,

p the second and a € £ ig the 'condition' or input symbol. The expression & (g,al = p

-Note that & is a recursive functilon, namely §(g,”*) = g (A is the empty string) and
6({g,xa) = 8(86(q,x),a) where x € Z¥ gn 2 € Z . '

corresponds to the t.n.:

If for a word ths final state faached after execution of 5 (q,x) is in £, X is accepted.

More formal. Let a configuration be & pair (a.f) and a is a substring of the input

and p the state active when reading this input. We define the relstion + between

two configurations such that if ¢tax.p) 1is a configuration then &x,BYi—{ x,7 if there
isa 6(a, B) = . '

bi is the reflexive transitive closure of y— . The language accepted by an adtomaton A
is LA} = fx [, v eE i

Example 1.5. The particular instance of a f.a. equivalent with the t.n. of example 4.1.

is M = (K, T, 8, O, Edwhere K = {00.8,,0,. 0.}, = = {0}, € ={0,] enu

510,01 = g, 5(0,.0) = qQ,
E[QD.l ) = Q1 8[02.13 = QS
5[&1,0 ] = QZ S(QS,U] = DD
5{9,,1) =9 -

Let us do an example with the word '10°’, 6[&0,10] 5 E[QD.I},D) = 6[01,03 = Q

5 -
'10' is eccepted because Qz is in E.

As one can see a finite autcomaton is just an algebralc definition of & transition network.
The reader is advised to rewrite as an exercise every t.n. soc far discussed into the

corresponding f.a..

Cefinition 1.4, A finltie auvtomaton M =(K, Z, S.QD, E ) is deterministic if 8 is a

mepping of K X Z dntc K.
A finite automaton M = (K, £, §, R, E )is nondeterministic 4if &§ is a mapping of

a
K X Z irtoc subsets of K.




So the difference is thet 8(g,a) 1s in the case of nondeterministic autcmata resulting

in a set of states and nmot just cnly in cne state.

Example 1.4. The eguivalent automaton of example 1.2. is:

M=K, %, 8, 9y E) and K = {0, 0, 0}, £ = {01}, € = [0.}and
510,,0 ) ={a, » 0.}
89,.1) =fo,, o

Dbviously M is nondeterministic.
3. REGULAR GRAMMARS

Another related system which is eguivalent with a t.n. (and thus with a f.a.) is

a reguler grammar.

Definition 1.5. Let G ={vn, Vt, P, §)be a system called a regular grammar. where

Vn 1s & finite nonempty set of symbols celled the nonterminal symbols, Vt is a finite
nonempty set of aymbols called the terminal symbols and Vn N Vt = @ ., P is a set

of productions of the form A+ e B or A—- a whers A,B€Vn and eeVt. § is one
distinct symbol from Vn called the start symbol or initial axiom. The symbol '-='
means 'is rewritten as’ and in any string where a symbol appearing on the left hand
side is present, we can replace (rewritel this symbol by the right hend side of that
production.

Starting from the axiom S and rewriting until nc elements of Vn are left, we can

generate a string of the language.

More farmal, if v = xAy and there is a production A.+ a then xAy = Xe@y.
£ i5 the reflexive transitive closure of = and L(G) (the language described by G)
is {x 's & x and x evtﬁ.

Example 1.5. The particular instance of a regular grammar eguivalent with the t.n.
of problem 1.(i1) is G =tVn, Vt, P, S)where vn ={9,, 0., 0. 0, vt =0,
S =0, and P:

D Lo Q> 00y B Oy =1 Oy
2. 0500, 7.0, -1 Qg
3 Q2+ 0 01 B. Q1 -1
4. 9 0 5. 0, +1 0,
5. 04~ 0 0 10. G, ~1 4,

We generate the word '1101C010" as follows. The label on =  is the number of the
rule applied.

2
Qg & 19, i 11Q, EN 1100, s 11014, g lioleq, = 110100@2 2 11010018, % 11010010

The reader can verify theat ths word '101" cen not be generated by this grammar.



A preduction A -+ a B is equivalent with a transition funmction & (A,a) = B or with the

tyn. =

If B is a final state then besides A = aB also the productlion A~ & must be present.
By this method we can esasily rewrite regular gremmars into transition nstworks
or finite automata or vice-versa. The reader is advised to rewrite all %.n.'s so far

discussed into regular grammears as an exercise.

Definition 1.8. A regular grammer is called deterministic if there are no productions

with the same nonterminal at the left AND with the same termimal as first symbol on

the right.

A regular grammar is called nondeterministic if it is not deterministic.

All grammars so far discussed are nondeterminstic
Example 4.6. Let G Xvn, Vt, P, £)be a regular grammar and VYn ={QD. Q1. 02, QS' QB' Q4 1
vi = {61y, s - 0, and P: :

1. QO - D Q1 5. DD -1 Q1

27 Q1 - 0 QB 7. Gq -1 QE
. UZ - 0 Q4 8. Q2 -1 DB

4. Qa =+ 0D 01 g, QS -1 02
. Q4 =+ 0 10, Q5 +1

Obivously G is deterministic.
4, COMMENT

A lot is known abeout the previously described systems. We have charscterization theorems,
we know that the languegesaccepted or generated by these systems form a Boolean algebra
of sets, we have scund mathematicel proofs about their equivalence and so on. The
reader interested in these matters is referred to Hoporoft & Ullman {186%9), Minski (1867),
Salomaa {13973).

In this paper we will furbher concentrate on ore topic: how can these systems be set
to work, For this purpose we will introduce and investigate formal systeme called
parsers, which act &s meta-systems. Basic emphasis will be laid on 'recognition' rather

than 'generation'.



5. PARSERS

Although the systems in the preuibus paragraphs were clearly defined, the actions
undertaken for recognizing strings 0? a language by means of these systems were

rather vaguely defined.

Te overcome this situation we row introduce a device called a parser. A parser
is a meta-system , it takes as data a transition network, a finite state machine,
or a regular grammar and then performs certain jobs on a given input such as decide
whether given strings are in the language, or extract structural information from

the parsing proces, and so on,

A parser conslsts of 4 main parts:
(i) A generating or recognizing system such as a t.n., a f.a., or a regular grammar,
called the driver of the parser.
{(ii) A set of tasks T , these tasks are n-tuples containing all sorts of information.
Tesks are created by the execution of previous tasks. In the definition of a parser,
one defines the form these tasks will taken.
(111} A function N in which it is stated how the execution of tasks must proceed.
N has 3 parts: (a] the base where Ty the first task, is given by definition, (b} the

recursion or recursive step , where it is defined how a task can be computed from

ancther one, and (c)] the restriction where a certain condition is stated for (b) to

take place.

(iv) Finally a parser has a means to filter out the required information from the set

of tasks.

In summary: o
Definition 1.17. A parsercj is defined by a quadruple (A, ti' N, F) where

(1) A 1s either a ten., or & f.a. or a regular grammar. A is called the control structure

or driver.
(1i) ti is an n-tuple called a task
(1ii} N is a fupction computing new tasks from old ones

(iv) F is a function F: T @ where T is the set of tasks and @ is a set of structural

descriptions. F is called the filter.

.

To make the story complete, we need a final mets-system (in fact a meta-meta-system
seen from the control structurel uﬁ which parsers can be executed, this system will

be called the parsing machins,
Oefinition 1.B. A parsing machine PM is defined by a 7-tuple { I,IR,AT,AR,CPU,T,® }

and

(1) I is a lirnear input tape containing symbols of the alphabet
(ii) IR is & device reading symbols from I

(i1i) AT is 2 place to store the control structurs

(iv) AR is a reading device for AT

(vl CPU is the central processing unit



{vi) T is a set of tasks produced during the computation

(vii) © is the resulting output.

Graphically:

iElelel - l1elel -

AT KL cPu

@t |

In general a parser is performed on & parsing machine as follows:
(1) Initially: '
- the underlying contrel structure A is stored in AT
- the central processing unit is programmed toc perform the functions specified
' in N and F.
- an inputword is written on I

- the initial task t1 is stored in T

7 (1i) Second: The parsing machine is set to work such that the central processing
unit creates new tesks by executing tasks from T according to the functions in
M. These new tasks are agein being stored on T and sc on. The computation involves

reading of the inputtape I and consultation of the control structure A,

[ii1) Finally, when no tasks on T are left to be carried out, the central processing

unit computes® by way of F.
We are not intsrested here in the formal properties or the power of the parsing
meching, it is clear however that it is some sert of register machine. In practice

we simulete parsing machines on the currently avellable computers.

For the rest of fhe text we will assumé implicitly the parsing machine.
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6. TYPE 3 PARSERS

Definition 1.9. A parser§?==(A,ti,N,F) is galled a transition network perser,

a f.a. parser or a regular grammar parser if A 1s resp. a transition network,

a f.a. or a regular grammar.

Example 1.7. Let 5? = (A, ti' N, F> be & t.n. parser such that
(1) A is the following t.n. [(cfr. problem 1.(ii))

In tabular form:

1. {0, DD , Gz)
2,40, 9, » Q9
3. (0, Qz » Dd
4, (0, QB s DT)
5. (1, QU s QJ
6. (1, 91 . Qd
7. {1, Qz s 03)
8. (1, 03 : QZ)
(ii) ti is an ordered pair { ai,l '.ai,2)
where @y is the positicn on I tec be read by IR
/] ig ths state active when executing the task

i,2

(iii} N is defined as follows:
1. The base t, = (1, Q. ) (QD is the start stete)

1 0
2, The recursion step: ti+1 is computed from ti by N and
ai.l + 1 for Y = ai b1,
fN(ti]J[Y) = .
.3 for Y = ai+1,2 where rk,1 = I(aiqu and r



3. The restriction:
N is defined iff a. +1 < lgl +1 where ¢ is the inputword and|e¢| denotes

i,1
the length of ¢ , and 3k (I(a i Il =r . ), B> k>0

21 ks

(1v) F+ T > @ where @ is elther 0 or 1. If the last task t, F(a'i o0 g s

such that a, = |lgl +1and a is a final state in A, then @ =0 elss

i1 1,2
=1,

(0 when accepted, 1 if not acceptad],

The recursion step should be understcod as Tollows: N is a function computing

n-tuples from n—tuples. ti is-the input and ti+ “is the result of the computation.

ll
Y is a dummy element Tor the slements of the n—tuple. Thus the function results

in a, ,+1 for ¥ = a, . This means the first element in the n-tuple t, _, i.8.
i,1 i+1,1 i+1
éﬂd.1 becomes ai.1 +1 . The second element of ti+1 , namely 8541, becomes rk'a
with the requirement that rk,3 = I[ai’4] and rK,Z = a5
Example 1.7.1.
¢ = 1001, lgl = 4

t, = (1, QD) (the base) | .
We compute t2 from 1:1 by the recursion step:

a1,1 +1 =2 for Y = Ceq,1 a4
(NCE,)ICY) = _ = -

1 T5,3 = Uy for Y = a1,q,2 T %5
because LI I(a1,ﬂ] = J(1) =4
and Tg p =65 5 7 QD

So: t2 =(2.Ql)
t3 =(3,D§
t4 = (4,01)
t5 = <SJQD)
tB is updefined because ag +1> lgb + 1 (restriction)
Filter: .
©® is 0 hecause ag =lgl+ 1, ag , 1s QD and QD is a final state . Conclusion

¢ is accepted by the transition network.

Example 1.7.2.
o = 1000 ol =4

t, =410,
by = {2.0,2
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tS =< 3103>
t, =$4,0,?
t, =<5,l:|3>

tE is undefined and ® = 1 because QS is not a fimal state.

L

Example 1.7.3.

g = 1010011101 ,bol =10

£, = Cr,gg ) tg = (8,02)

t, = 2,8, ) t, =(7,0,°

£y =€3,05 ) tg = ¢6.0,°

t, =4 4,09, ) tg =4 B,QB)

£ =4 5,8, ) t1D=( 1D.Qf
t11=(11,(;la)

t12 is undefined and® = O because QD iz a fipal state.
It is easy to see that a parser (at this stage) simply mimics the behavior of the

actions described when deciding whether & string is accepted or not by a t.n. (cf., p.Z ).

Note also that the input is in fact independent of the parsing system. We could have

taken another t.n. as well. (Of course there must always be onel.

An interesting thing is also that we can use the seme construct j not only for a t.n.

but also for & f.s. machine and for a regular grammar.

Example 1.8,

Let §)=< As tis N, ) be e f.a. parser such that
(1) A = (K, 2,8, Qg E?is a f.a. and
K ={ag 0, 0, 0%
2 = o,k
E = {;D%

and S[QD,U) = 02 5[Q0.1] = Q1
5[Q1.DJ = O 5(Q1.1] = U
8 (0,.0) = Q4 §(Q,,1) = 0y
5(0,.,0) = @, 5[Q3.1] =Q,
(i1} £, is en ordered pair (ai’1, 4y 5 }

wheretli 115 the position on I to be reed by IR

ai 215 the state active when executing the'task

(i1i) N is defined as follows:

1. the base t, = (1,QU) [QD is the start state)

1
2. the recursion step

ti+1 is computed from ti by N and



{N[tiJJ (y) =

3. the restriction
N is defined 1iff a, 7 1 <lel* 1 where ¢ is the input word and | ol
denctes the length of ¢ and iff I (ay ,]Jé-a .

(iv) F:T = © where © is either 0 or 1. If the last task

t, =¢a, ,a, Yis such that @, , =lod + 1 and o, fEE then ® = 0 else @= 1,
i i.17 1,2 i.1 i,

Examplé 1.8.1.

o = 1001 (ol =4
T:

L
—~
N

£

1
-~
Y

L]

tB is undefined because @ g * 1> lal o+

© is 0 because ag , = | ol + 1 and @, zeE. In other words S°€L[A) and L[A) is the

language accepted by the sutomation.

Note thet the only difference between ex. 1.7. and ex. 1.8, the controlstructure is
and the way in which the control structure is consulted in N. The reader is advised to
try ex. 4.7.2. and ex. 1.7.3. on this parser. .

Note also that the set of tasks T produced during the computaticn ig the same as

in example 1.7.1..

Exampls 1.8.

Leti;= (A, ti‘ N, F?be a reguler grammar perser and

(i) A = {vn, Vt, P, 3,) %8 2 reguler grammar where

v = {0 90 0,0 S Oy 05 )
vt = {01}
S = G
F: 1. QD - 0 02 B. QD > 1 Q1
2.4, = 0 0 7.8, 7 18
3. Qz = 0 Q4 B. Q2 =1 03
4.8, > 0 @, 9.0 7 104,
E. 04 -. 0 10. 0 1
f(ii1) ti ig a pair {« 1,1 a.i,zb
wherg @, = the position to be reed on thke input task

i1
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ai 5 = the nonterminal i at this task
(1141i) N is defined as follows:
1. the base t’l =(’|,EJD)
[QO is the start symboi)

2. the recursion step: ti is computed from t:.L by N and

+ 1
F1,1 41 For Y =ie1.1
[N[ti]][ y) = The last symbol of a procuction # where the left side of
n is a5 end the first symbol of the right is I(ai.1)
for Y = ai+1‘2
3. the restriction:
N is defined iff @, 4t 1 < lel + 1 where ¢ 1s the inputwerd and | ol denotes
the length of o, 1ff I[cLi‘,]J € Vt and iff a i,2 LI U
(iv) F: T © where ® is either 0 or 1. If the last task tiﬂ(li.1 Ay Y is
such that @y 4 = lel + 1 and a5 " A then @ = 0, else ® = 1. (means

cannot be generated).
(Nete 1f a production is of the form A+ a then we assume A [{the empty string) after
ar A—- al)

Example 1.9.1.

o =000, ¢1=3
={1, DD)

={2z2, QZ)

={3, D4)

={4, n )}

& o o o
AWM

® 1s 0 because t4 is such that a4 ’ =lgl+1 and a 4.5 ° A therefore ¢ 1is generate
by A. '

Example 1.8.2.
¢ = 01100 ,lel =5

ty=C 1,040
t,=(2,0,)
t.=( 3,0, )
£, =40,
£ =(5,0,)
t.= B, )

[0 S S I N

® is 0 becguse t5‘1 slgl+ 1 and t8,2 = A

Example 1.8.3.
¢ = 1110 lgl =4

t1 = 1.QD>
t2 < 2,01)
t3 = S,QS)

t4 {4, %}




t5 is undefined because 1:4 5 = A . ® is 1 because in the last task ay 4 #tot+ 1.
Agein the similarity between example 1.9. and example 1.7. and 1.8. should be
obvious. For this reeson we will csll t.n. parsers, f.a. parsers and regular grammar
parsers type 3 parsers. Moreover in the example we always used a deterministic centrol
structure . Therefore the parsers of example 1.7., 1.B. and 1.9. belong to the class

of deterministic type 3 parsers.

Definition 1.10. A parser 553= (A, ti » N, B is a deterministic type 3 parser if A

is & deterministic t.n. or a deterministic f.a. or a deterministic regular grammar.

Before we discuss in further detail what we can do with parsers besides deciding
whether a string is in the language or not, we will construct nondetermingstic type 3
parsers.

7. NONDETERMINISTIC TYPE 3 PARSERS

Definition 1.11. A parser 55:= (A, ti' N, Fyis a nondeterministic tvpe 3 parser

iff A is a nondeterministic t.n., & nondeterministic finite state machine or a

nondeterministic regular grammar.

The only difference between deterministic and nondeterministic type 3 parsers
is that instead of executing function N only once, it must be executed as many
times as this is possible. Se e nendetsrministic t.n. parser is eguivalent with a
deterministic t.n. parser except for the recursion step where N must be executed
for every rule r where r = I(a J and r

ko1 1,1 ko2 4,2
nondeterministic f.a. parser N must be executed fer every element in the set

. Similarly for a

resulting from § (a ,I(ai 1JJ and for a regular grammar parser N must be executed

1.2

for every production =# where the left side is equal to 2y and the first symbol on

2
the right sicde is equel to Il a, 1J.

From now on v will be a variable dencting the number of tasks created; each time
a new task is created v is augmented by 1. Also instead of the last task we will

require Jjust the presence of the tesk specified in F.

We give in full detsil a nendeterminlstic f.a. parser and expect from the reader
that he will construct & nondeterministic t.n. and & nondeterministic regular grammar

parser,

J
Example 17.10. Let {; = (A, Lo, N, B be a nondeterministic f.a. pearser and
(1) A = (,E, 8 , Oy, E)is a nondeterministic f.a. where K = 0., 0., Q. 0. 8,5
r ead.e-f, 0] end

5(,.00 ={og, 0.} 56y, ={ay 0.}
S[Qq,D) = @ (the empty set]
53,.00 =[0,Y 519,13 =[a,}

5(05.00 =(g,) 5(9,.1) ={0,}
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58,00 <{0,] 50,1 =0
510,,1) =[5,
(1i) ti is & pair '<ai.1'ai,2>
where a  , = the position te be read on the input tape
L) = the state of the automaton f_at.this task

{ii1) N is defined as follows:

1. the base : t,1 = (1,QD Yy and v = 1

2. the recursion:

For every element in the set resulting from 6 (a I(a ] a new task (v= v + 1)

_ i,2"° i1
1s made (if the set is empty then no tasks are made), suck that:

o ] ai'1+1 -FUrY=a.V'1

(N[tiJ}EYJ = _

6(&1'2. I{ai,TJJ for Y = @y o
3. the restriction: :
N is defined iff ay 47 1€lel + 1 where ¢ is the inputword and le¢l denotes the
length of ¢ and iff Ifa, ) [

(iv) Finally:
Fi T>© where ©€p,1] and © =0 iff thers is & task in T,0t, ,

such that a, , =lol+ 1 and @, . € E.
i1 i,2?

Example 1.10.1.
g = 1100 , lal =4
=( 'I,QU)
=(2,Qd
=<2.01)
=<8-QU)
=(S,Q1)
=(3,QL)
=(4,Q5)
)
)
)

=(4,Q3
=(4.Q2

e

- ing i | - € E.
4p is @ task having in a4 ol+ 1 ang in ey 5 E. Also i3 has

this property . If this is the case then we say that the word is ambiguous according

to A,

o< L(A) because t
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Definition 1.12. The structural description of the parsing process will be dencted
as @& labeled plane-rooted tree where the top nmde is the first task [t1J and for all

tasks emerging by N from a task ti , We draw llines between these tasks and ti'

Exampla 1.11.

The s.d. for the persing process performed in example 1.10.1. is:

/t1\
/tz\ 3
//;i\ t5 tB
/t7\ t8 tEl
t1D t11 t12 t18
Example 1.10,2.
a= 0101 el = 4
‘ the s.d. for this parsing process:
t1 = (1,QD ) t1
t, = (2,0, / \
t3 = (2.'33 ) . .
t4 = (B.EJG } | 2 3
t5 = (B.Q,l ) \
tB = (4.&10 ) t4 z
t, = (4,05 /\
tg = (5.0 te ot
t9 = (S.Q,f } /\
tg tq
¢ 1is not in L{A) beceuse there 1s ro task ti where ai 26 E and ai ’ =l o]+ 1

Example 1.10,3.

g = (0011

t1 =(1,QD ?

t2= (2!00 )

t3= (l,@a)
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t, =¢3, g ) | t,

tg = {3, Q5 ) / \
t, = ¢3, 9, tg tq
t, = (4, Q5 / x _

t8 = {4, Q1 ) t4 . £
tg = (4, 0, ) \

tig" (5, 0y t/ \ !
ty,” $5, Q, ) 7 8 9
ty,= €5, Q) / \ '

B1a= 50 Q) o F b2 13
t . and t ara both tasks where a igiel + 1 apd e | € E therefore

12 13 1,1 i,2
o is in L(A). '

Note thet the order in which the tasks are cerried out is of no importance (but thay
should all be carried out once !J). To illustrateé-this we do an alterpative way

for example 1.,10.3..

Example 1.10.4.
g = 0011

5 11

= (S,QD ? g 7 12
= (5.EJ1 ) _ \\ [
t t

2 8 g "0 13

D N m o s wW KN

w

—
]

ct ct ct ct t t ct+ c¥ ct ot (3 ct ct
- ~
N =
1 1]
~ -
= N

-
w
I
—~
[E]
-
£

In this case t1D and ‘t,|3 are the tesks fulfilling the conditions in F, therefore thes
result is the same. Note that the structure of the parsing process is the same., only

the indices of the tasks are different.
8. SOME APPLICATIONS OF THE FILTER

Now we try to show that we can do hetter with parsers than just say that something

is in the language or not. We want to remember after the computation HOW its wes done.
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For example we want to find out whether the input string is ambiguous or what the
possible waye of deriving a string are, what the structural description is, what
rules were used to generate'a given string , in what states the autcmaton was, etc...

We wiil give some examples but expect the reader to try out other applications.

The basic strategy is the following: put In a task all information that is
necessary for a given job and then design your filter F such that this necessary

information is extracted from the task and then used to obtein the desired result.

Example 1.12.

The aim of this parser is to accept as data a f.a. and to compute the distinct states
of the automaton when accepting a given inputstring.

Let :5n= (A, t;» N, Flbe a nondeterministic f.a. parser where

(i) Adis (K, Z, 8, Q ., E? (ef. e.g. 1.10.1

K = {mu' 0,0 0p0 Qg0 04 , T ={D.1} , E ={b2, D§§ and

5 (95,00 = {0, 0.} 5y 1) = {05, 0,3
5(g,,0) = 2 39,.1) = {0}
510,.00 =)0y 5(q,.1) = 4a,l
500,.0) =fo, § 8(q,.1) = @
8(g,.0) =kl;1473 500,,1) = 504-';

(14) ti is a triple ( a, )

1,1°%1,2°%1,3
where ai,1 is the position to be read on the input tape

is the state of the automaton

is the index J of the task tj that was the basis

“1.2
%33
for this task, in other words tj was the input for N and ti is the

is called the anchor [i;} of t

output, ai,S i

(iii) N is defined as follows:

1. the base: t , = {1, @

Z. the recursive step:

0* 0} (v =1}

1,3° I[ai'qll a new task

is made (if the set is empty. then no tasks are made), such thatlv = v + 1)

For every element in the set resulting from 8 (a

1]
a

a, + 1 for Y

1,1 v,
(N[tiJ]fY] = O(ai,a, I[ai,Q)J for Y = av.2
i for Y = av.a

3. The restriction: N is defined iff e, 1< fel + 1, ard iff I(ai 135 z

» »
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{(iv) F is a bit more comples:
1,17 V%4, 1,3

as a task t, such that P =lot + 1 and ai‘£E E.

We defineg a valid path P through.T (the set of tasks) as a sequence of indices wherea

We define a valid start task iné?as a task ti such that a

We define a valid end task in{?

= DD and a

(i} i,I is the index of a valid end task in T

(ii) lj i1 aij’a
(iii) if (ai 3] = 0 then P is complete.
(We give an exam&le of the computation of a valid path in the next example)

® is a set of seguences cf states {a { where ij P and j is &n index ranging from

(22
J
the last element of a path P to the first one.
Example 1.12.1.

o = 1100

(o)
~

= (1J Dol

= (21 QDJ

= (21 01:

= (3, QDJ

= (3, Q,]:

= (3, Qz,
= (4, Qg
= (4 Qg
= {4, Qz.
= (5, Qg
= {5, Da.
= {5, Qs

= (5, Qzl

10 "11712 13

Wm o N N M R W NN A
~—
o
o
cr

There are two valid tasks [t1zand t13] » therefore we have two paths:

P =412, 8. 42, 1) and Py = (13, 8, 6, 3, 12
12 13

We give now an explicit example 6f the computation of such a path, i1 is the index fof

a valig end task in T, here t12 iz one. So i1 = 12. Jj is a variesble in the recursive

step, in the beginning = j = 1.

- ij+1 =a, 5 oOF i 141 =a, )3 or i, = a12.3 (from i = 12)
according to T: a12,8 =8 thgrefore i,= B
- J becomes Z
i ouq Ty g OF :'r.3 =ag 4 = 4 Peth up to now: {12.8,4 >
- j becomes 3 2
13{_,| = aia,3 or 14 = a4.3 = 2
- j becomes 4
taer T %1 ,3 or i.=a = 1

4 5 2,3
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® j becomes 5:

i,,3. =4a =a = 0 , therefore the path is complete.

h| 1.3 1,3

Consequently:
o =0y Gy Oy Gy 9,0 Qg B, Oy By 00§

Example 1.12.2

¢ = 0011

t1=(‘l, QU.D) t

t, =$2, Gy, @) /\
ty =2, Gy 1) | | 6, M,
t, =¢3, g, 29 /\

tg = ¢3, 05, 2) N v
e = €3, 9y, 32 /\ ‘ :
£, =4, Q. 4) VA !
tg = (4, B, 4) 7 ts 9
tg = (4, By 8 ) | /\ \ l
typ™ ¢5s 9g0 7 - Bio %1tz B
tyq= (5, Qp0 7)

t,," (5, Gy B)

t 5= (5, Qg 8)

In this case there are ggain two valid end tasks: t12 and t13 . The corresponding paths

are P = (12: es 41 2) 1) End P ! = (13'5'8'3'1 )
t t13

12
© = {H:JD. Qg G By0 072 ¢ 050 Gg0 Qyn Qg @fﬂ
Note that the order in which the tasks are carried out is again of no importance. To

illustrate this we do an alternative way for example 4.2..

Example 1.12.3.

1
00119 ///\\\\
t

(=]
n

2 ty
£y = {1 Qg 0 / 1
=4{2, , 3 _
t2 2 QD ! o t5 £y
t3=<23 QSJ'] ) /\
t4=(3, QD,2> . t
tg = (3, 03, 2 ? g 7 t12
t5=<4, QO,4) / | ‘
t t. t £
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t, = ¢4 Bs 4

tg = {5, Qy 6

ty = {5, 9, 6}

tig™ {5 Gr 7

DO {3, Qe 3l

t, o (4, 0, 11

tg” {5, Oy 12 )

The two valid end tasks are t10 and t13. .

Pt10 =10, 7,4, 2,1} andP, , ={13, 12, 11, 3, 1}
0'® -fta . 8 9 By 9,0 <Gy 8, 0, 0,0 0,0

As the reader can see the same result is obtained.

Exampie 1.13.
Now we construct & perser which accepts & regular grammar as data and computes the rules
which are necessary for generating & given inpuitstring. (These data can be important
e.g. in developing a prokbabilistic grammar). '
Let f?: (A, ti , N, P be a nondeterministic regular grammar parser where
(i) A is a regular grammsr ¢Vn, Vt, P, S ?and

vn= {og 0. 0, 0} s ves{oa} LS =g, and P

1. 055 0 DS 6. 4 =1 ﬂ1
2. 91 =0 02 7 01 =1 QD
3. 0,~>04Q, 6.0, =0

4, 8? d { 8. 0, =1 03
5. QS >0 QD 10. QS 1 02

The integers before & production will be denoted by the symbal w.

(11} ti is a8 quadruple (e )

1,1°%1,2°%1,3°%1,4

where ai.1 ig the position to be read on the input tape
@0 is the symbol of interest at this task
Gy g is the anchor of the task
ai'4 is the ruls applied to construct this task

(111} N is defined as follows:
1. the bese: 1:1 = {1, Qg+ 0» () (v = 1)
2. the recursive step
For every producticn # where the left side is mual to ai.2 and the first
symbol on ;the right side is egual to I(ai’1,13; we meke a new task (v = v +1]

such that:
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a 5.4 + for Y =a v,

the last symbol of a production 7 where the left side of 7 is

(N(t; 23000 = a, _ and the first symbol of the right is If . ,) for Y =@
i;2' 131 V,’2
i for ¥ = av,B
Fis for ¥ = a'v,q-
3. restriction:
N is defined iff o, .+ 1 Stal o+ 1, ey (Yeve, a . #'1
{iv]) F:
A valid start task inffgs a task ti_ where qi " =1 and ai > = 0.
A valid end task in O is a task ty where @, = lol + 1 andai 5 = .\

A valid , path P through T is a sequence of indices and

(iJ :'L,I is the index of & valid end task in T

(11) 1j+1 = aij.B-
(1iii) if ( ¢, 4 ] =0 then P is complete.
® 1is a seguence of indices of gruductions :{(cr,D 3)5 where p € F and j is an
3’ ' .

index ranging from the second last element of a path P to the first one.

Example 1.13.1.

o = 100
t

t = {1, 0g- ©. 0D
t = {2, Q- 1, B £
t =43, A, 2, 8% /x
t = {3, 0, 2 2 - ¢! t,
t = {4, m1.4,3) |

t

The word is not accepted (cannat be generated by A) because there is no valid end task

in T.

Example 1.13.2.

¢ = 010101 lal = &
t, = {1, 01,0,0>
2=(2,03,1.1)
t3=(3. A, 2, 45
t, = {3, mz, 2, 10%
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te = (4.9,:4 ,3) t,
tg = 15,0,5 ,7) I
t, = (6.0,,6 ,1) t,
tg = (7.4 .7 .4) \
ty = (7,0,,7 .8 : t /1:4
*F
’I:a
t

ts/ 7\t9

t is & valid end task. A valid patk from t, is {8, 7, 6, 5, 4, 2, 1 }

8 8

Finally @ is the following segquence: (1, 10, 3, 7, 1, 4
As the reader can see the applicaticn of these rules in the generation process indeed
results in 'G10101':

4 10 3 2 1 4
0,700, ~010,%0108,%0101G;5010100,3010101

Problems 1.2.

(i) Construct a grammar generating the set of sequences {a,b,cS’vﬂmre before and after
gach b (1if there is a b ip the string) there is an a.

Then censtruct & parser where the output is the set of pairs representing a derivation
where the first pair contains the start symbol and A and the last pair the last
terminal symbol of the derivation. '

Parse c, bac, cabacccabaa.
(ii} Construct an equivalent transitlon network parser doing the same job,

(iii) Construct a regular grammar parser which for an arbitrary regular grammar will

decide whether e string is ambiguous according to that grammar or not.
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2. Recursive transition networks and related systems
1. RECURSIVE TRANSITION NETWDRKS

We now introduce a higher class of control structures end conseguently a more complex

parser.

Consider the following transition network M'.

where the condition or label on the directed line going from QZ to QS is a word
accepted by the transition network M. In other words, through a sort of subroutine call,

the network is started again, and if a word ig found, the transition can be made.
The language accepted by M, L(M) = a" &" for n > 1.

Def. Z.1. Transition networks where the condition for a certain transition is

itself a tramsition network are called recursive transition networks.

For convenisnce we denote from now on the states of a network by A/i where A is the
name of the transiticn network end i is the number of the state. For the start state
i is always equel to 1 and for any final state we write after the index 1 an arrow

[1 ] or just the arrow without an index. Finel states are sometimes called pop up states.

M is then written as follows:
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M in tabular representation
1.4a , W/, M/2 %
2.4/, M/2,74 %
3.{b,W/4 ,M/5% 7
4.{b,M/2 , M/31 7

From this representation it becomes clear that the symbol on the recursive transition
is in fact the first state of ancther network. Let us do an example of a scanning
controlsd by M
o = aabb
a b
M/1 M/2, > M4 > M/5%

Q‘Lm
M/ -+ M2 > M/3T

2. CONTEXT - FREE GRAMMAR

An equivalent way of stating the same information ss for a recursive transition network

is a contextfree grammar (for short cfg.)

Def. 2.2. Let G = {Vn, Vt, P, S)be called a cfg. where Vn is a finite set of non-
terminals, vVt is & finite set of terminals and Vn NVt = [, P is the set of productions
of the form A > w where A€ yn and W&V (VU VT = V) and S is the axiom or start symbol,

*
The relation = and = is defined =8 for regular grammars (cfr. def. 1.5.).

Example 2.1,
The grammar eguivalent with the recursive t.n. M is G = {V¥n, Vt, P, S and
Vn = {Ml, Vt, = {a,bg and S = M, P:

.M > aMb

2, M = ab

An example of & derivation:
M aMb # aabo

M
/14\\b
7\
a b

or

S|

G is not only a cfg.. it can be proved that it is impossible to write a regular grammar

n

generating L(G) = a b" Secause of the self embedding property of G.

To indicate the equivalence between cfg.’'s and recursive t.n.'s we construct an slgorithm

to rewrite the one into the other and vice-versa.

1. From cfg. to recursive t.m.

Each nonterminel symbol A is a t.n. . Let I1A where A is & particular t.n., be the index
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of the latest state of a t.n. during the censtruction process, in the beginning

I1A = 1. IZA is the index of the current state of a particular t.n. A. For every pfd&
duction of the grammar, the symbol (A} which is on the left of the production is the
involved t.n.. In the beginning IZA is 1. For every right symbol in a productiﬁn We tfy

to make a transition in A from I2, ; if it is possible te do so I2A is the state after

A o
the transition, if not we make a new rule (k becomes k + 1) in the network where Tk g
is the symbol in the production, T, 18 F\/IZA I’IA becomes I‘IA + 1 and rK,B =-A/I1Af

IZA becomes 12A + 1. If the symbol itself i1s a t.n. then the conditiaon is this _
symbol followed by /1. If the symbol on the left is the last in the rule, we add T to
TK,S because it is a final state.
Example 2.2. _
wWe take the grammar of example Z.1. the.productions were:

.35 » asShb

2, 8 = ab

We start with production 1. The left symbol 'S' denotes the t.n. S. I'IS = 1 and

IZS = 1. Because there is not yet a t.n., we cannct scan 'a' therefore we make a new
transition I1S = 115 +1 from S/JZZS to S/I’IS that is from S/1 to 5/2.

_ 1.{a,5/1 ,5/2 7

Now we take the second element in production 1. Again we can't scan the symbol
and so make a new state: I1S = I']S 4+ ‘13 because S € Vn , we have:

2.45/1,8/2,8/3%

Finally for this production the last symbol b and because b is the last symbol,
3.(b,S/3 , 5/4172

Then we take the seccnd production, the left symbol is agein 5, we try to scan the

first symbel of 2 and it works I25 = 2 [(from r 1 and Iﬂs remains 4.

K.3
Then we %try to scan the sscond symbol in the right part of the producticn, namely 'bB'.
This time we can’t make a transition, therefor a new state is made: Iﬂs + 1 and because
b is the last symbol this state is a final one:

4.{b '8/2,5/5%)

The resulting t.n. is:
1.{a ,8/1 ,5/2 %
2.(8/1,8/2,5/342
3.(b ,8/3,8/4T >
4.{b ,8/2, 8/5 2

Z. From r.t.n. to cfg.

Every t.n. in the set is & nonterminal symbol and every symbol input for a transiticon
that is not 2 t.n, 1s a terminal symbol.

For every t.n. A we make a production with a8t the left the monterminal symbol A. Feor
every input that appears in & path of consecutive states starting with A/% and ending

with AZ1T ., & symbol at the right of the production 1s made.
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If this input is a t.n. then we only use the name of a t.n. and not the incdex.

Example 2.4.
1.¢a ,5/1 .8/2%
2.{58/1,5/2,5/3 %
3.{b ,8/3, 5/41%
4.(n ,8/2, S/54
There is only one t.n. namely S, therefore Vn = {S%. the terminal symbols are {a, bﬁ:
We have two paths starting from 5/1 and ending in S/if 1
rule (1), rule (2], rule (3)
rule (1), Rule (4) '
Therefore we have 2 prnductidns:
1, 8 - asShb
2.5 = ab

3. PUSHCOWN AUTOMATA

Def. 2.3.
A pushdown automaton M (for short pda.), is a system (K, z,T' ;& , qe, ZD,E ) where
1. K iz a finite set of states
. 2. Z is a finite alphebet called the alphabet
3. Tis a finite alphahet called the push do@n alphabet
4. fo1is the initial state, 4.€ K. _ .
5. Zo inT 1is the start symbol, initiaslly present on the pushdown stcre
B.E£<K is the set of final states
7. 8is a mapping from K X. ( 2U{R il ¥ T'to finlte subsets of K x I ¥
'6[1,3,23 = {(p1.7 0 Py ¥5)s eves Py Tm]}, 4,p; inK, ainZ, Z in
' en v, in r, :
This means that if the system is in state g, having in the pushdown store Z-and on the

input tape appears the symbol a, then for any i, we can replace in the store Z by a&

and the new state is Py

Example 2.3. (due to Hopcroft and Ullman (139632))
n=¢ [o,. Qz}.{{D. 1, chir B 6L 8.9, R B
(Q

5 (q,. 0, R = lo,. e} 500, 0. B) = g, 1}
s19,, 0, 8 = {(m,, 882} 50, > R = Ay}
5(g,. 0. 6 = do,, ee2} 5¢q,. 1. R) = h(@,, GRIY
518, C, R) = {(a,, R} 50, 1, B) = 410, 8]}
5(,, ¢, 3) = }(8,, 8)) s, 1.8 = {@,, o1}
5(0,, C. 6) = §(G,, G} 50, 1. 6) = {19, N}

L(M) = {waw“‘w € Z and WR§ denptes the reverse of w.
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There is a thecrem froh formal language theory saying 'If L is & contextfree language,
then there exists. a pda M., such that L = N(M)' (Hoperoft & Ullman, theorem 5.2.).
"The proof is such that first a ofg. generating L is constructed, then this grammer

is put into Greibach normal form and finally an algorithm is applied to extract a

pda. from a cfg,

The important thing is that the grammar must be in Greibach normal form and
although the weak generative capacity is not affected when rewriting an arbitrary
cfg. into 1ts corresponding Greibach normal form, the strong generative capacity
(structural descriptions) certairly is. This is & serious cdrawback in natural

.language research where structural deseriptions are at least as important as the

language generated.

Although we will develop in the following paragraphs parsers feor cfg.'s ,
recursive t.n.'s and pda's, the last sort of systems will not be of great interest

to us. We will only mention the pda. parser for the sake of completeness.

4. TYPE 2 PARSERS

Definition 2.4. A parser 5?= (A, ti' N, F?is called a type 2 parser if the underlying

cantroyétructure or driveeA is a context-free grammar, a recursive trandtion

network or a pushdown automaton.

We give now examples of the three different parsers, We start with pda parsers
because they are the easiest toc understand. Then we spproach recursive transition
netﬁork persers because they incorporate the besic ideas for a cfg. parser. Finally

we construct a cfg. parser.

Example 2.4.

5 .
LetJ = (A, t. No F} be a parser where
(1) A is the pda. of example 2.3.
(ii) ti is a triple (ai,1'ai,2'ai.3)
@y q = the poegition te be read in the input string
ai 5 = the state at this task
ai 3 = the pushdown store

(id1) N:

1. the base: t1 = {1, Qj, R >01 is the start state amd R is the initial configuration

of the pashdown store . v = 1.

2. the recursion step:

(a) Let & rule in the pda. be 8 (qg,a.Z) = {(p1,71J s ves s [pj.Tj], ....,(pm,7n9} .
Then if a = I[ai 1]. g =

a., and Z 1s the first sequence in ai g0 WE apply
for every j in the rule, 15 3 < (and v = v + 1]
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for Y = a

v,
for Y = av,z
= ai,Sx - Z for Y_= av's

7 for a rule 6 (g, A, Z) then vewyv+1)

Ay fervee
(NCE 20 = 33 gor ¥y,
Y.k K=a, -2 forY=a

i R 5 V-

"~ 3; the restriction.

) tV is defined iff. ¢ + 1 lob + 1,. iff I[ai,1l € X and iff ai}a 20
[iv) F:
®c 0,1 if there is a task in T where g . = lol+ 1 , ai 3 = A, © is Qlmeans

accepted), else © =1,

Example 2.4.1.

u
~J

1012101 lol

Q
4

= (1,
= (2, GR )

= (3, Q,, BGR)
= (4, Q,, GBGR )
= {5, 0 GBGR )
= (B, 0,, BGR)
= (7. Q,, GR)

= (8, @
= (8, O, M)

—

54
N
-

o+ o ot o o o o o o

0 o N MU W

and g€ L{A}

o
L]
o

Problems 2.1.

(1) Although the pda. A in example 2.4. was deterministic, the parser 1s nondeterministic.
How can it pe made deterministic?
(ii) Construct a nondeterministic pda. accepting {ww lw E{D.1G¥fand parse the words-

0o011G0, 110011.
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Example 2.5.

o .
Let ;) = { A, ti' N, F ) be a recursive transition network parser and

(i) A is the following network:

in tabular form:

1. (e, M1, M/2)
2. (b, M2, W3ID
3. (MM, M2, N/D
4. (o, M/4 . M50

Pl

i.5 "2y )

[1i) ti is a 6-tuple: ¢ ai 1.5

L10%1,2°%,37%1,4

a; 1 = the position to be read an the input tape I
ai 5 = the state of the autecmaton at the execution of a task
a, = gither 1, 0, 2
i,3
a, = the anchor
i,4
a; & = the index of the rule in the network used to construct this task.
a5 the index of a task were recursively another petwork was called.
(ii1i) N
1. the bass: t, (1, M1, 1, 0, 0, 1) (v = 1)
Z. recursive step:
(a) if Ty 4 =1 then for every rule with index k in the network where
a, = T a new task is made (v =v *1) where
1,2 k,2
ai‘1 Tor Y = aV,1
rk;1 for ¥ = GV,Z
1 if rk 1 is 2 start state,
] otherwise for ¥ = a
. v,3
H 1 =
(h[ti;J(Y] 5 For Y = a
v, 4
ke 'FEJI‘Y=(1V‘5
W if Fk,1 i3 8o start state
a otherwise for ¥ = a
i,6 v,8
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(b) if a; 5 = 0 then (v = v +1}
(restriction if I(a, ,) #a. ., t 1s undefined)
i1 i,2 v
a,i’_] + 1 for ¥ = aV,'I
L for ¥ =g, ,
2 ifr 3 e E [(set of final states)
(N(E DI (Y)= ¢i,s5°
else 1. for Y =«
v,3
i for Y = &v.4
&;,5 for Y = e, ¢
a =
1,6 for Y ¢ 8
() if a3 4 = 2 then [(v= v +1}
(restriction: if a =0 t is undefined
a, ~:D v
i,B
( a1,1 for Y = av'1
Ta .3 for ¥ =a, 5
1,87
2 if Te ,3 € (set of final states)
a. :5 .
i,B
[N[ti)](Y]
alse 1 for ¥ = a
v,3
i for Y = av,4
a for ¥ = e
ai’8;5 V,S
a & for Y = aV,B

(iv) F:
9 |

We define a valid start task in s a task ti such that a 4 y =1, ai 5 =
the start state and ay ¢ = 0
We define a valid end task in ) as a task ti such that a;i 1 =lal +1 , ai ZG.E
and a5 = 1
We define a valid path P through T [(the set of tasks) as e seguence of indices where

(1) :I.,I is the index of a valiid end task in T

(11} 1j+1 =a; 4

_ J

(iii) if aij,4 = 0 then P is complete.

©® =0 if thare is a velid path P through T else € = 1



Example 2.5.1.

& & & o ot o ot
NN s W0 N

n

(1,
{1, a ,-
(2,
{2, b .
{2,
{3,
(2, &

= 0 because

Example 2.5.2.

m U o W N =

ot o o+ ot o o F o o o o+ o+ o o
N N s N o « TN
w MO

—_
o

= {4,M/4 ,

aabb

(1,171
{1,a P
(2,M/2 ,
(2,b ,
(2,071,
(2,a , 0,
(3, M/2, 1,
(3, b, 0,
(3, M1, 1,
(4,M/3%.2 .,
(3, a , 0O,
1,
(4, b, 0,
(4,Mm/5T, 2,

C because ©

a,
1,
2,
3,
3,
5,
B,
73
7,
6.
g,

10,
12,

0,

1,
2,
3
2,
1,

is

2,
3,
gy
1,
3.
4

13,4,

is a valid end task. The path:

[ BN | SN (. . Y

1
11
1

B N ™ L N . )
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valid end task . Pt
16

;
)

{6, 4, 3, 2, 1}

-

o —f —

t
10

12

13

14
P = $14,13,12,10,8,7,8,5,3,2, 1

t
14
flow we construct & context-fresgrammer parser, the idea is to use a recursive
trensiticn network parser but with the ideas of the algorithm to rewrits cfg. into t.n.'s

incorporated in N .
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Example 2.6.

Let f;' ={A, ti, N, F be a context-free grammar parser and
(i3 is & cfgd Vn, Vt, P, 5 ) where Vn = {Sg . Vt ={a,b§ and P:
7. S~ ab '
2. S~ esSh

11 - 4 L . RN PN P .
(i1) ti ig a 7-tuple (a a ’a1,3 ai,4 a1,5 1.8 ,a )

ai 17 the position tc be read on the input tape
@, 5= the symbol of V where the task is interested in
ai 3" the position in a production after *5 5 and the first syMbul on the right
is in positiaon 1
a, = either 1, 0, or 2
i,4
a., = +the ancher
i.5
@ 5 the index of a production consulted to construct this task
Gy 5" the index of the task where the production was first consulted,
{iii) N:
1, the base: €, =(1, 8, 1, 1, 0, 0, 1) v= 1

1

2. the recursive step:

{a) If ai s = 1, a new production is ccnsulted, therefore for every pro-
duction j where ai 5 Appears on the left: (v = v +1)
( ai'1 for Y = av,1
the first symbol on the right of j for ¥ = GV >
2 for ¥ = av,S
1 if av,26 Vp for Y = av,4
[N[ti]](YJ= 0 ctherwise
i . for Y =a
v,5
3 ‘ for Y = av,B
Y if GV‘2€,‘Vn
®i,6 otherwise for ¥ =27
{b) if ﬂi.4 = 0 then [(if I[ai'1] = ai,2 else tV is undefined )

(1] if the a, symbol on the right of a,

i,3 is not empty

5
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ai.‘l + 1 'Fc11.""1’=a,,\h.1
thmi,s symbol on the right of ai,S for Y = av'2
ai’a +1 for Y = aV.S
. e -
1 1if a v,? Vn for Y a'v.4
]
i for Y = av.S
J for ¥ = 2, &
Y 11:“\1,26 Vn for Y = a\“7
else ai,S
(ii) else:
Restriction: 1ifa3, _ = 1 anda, = (o) , t, is e valid end task,
‘ 1,7 — i1 i
if a. =1 t 1is undefined, else
i,7 !ty '
.ai"1 Tfor Y = av,‘l
aai 7-5 symbol on the right of the production specified in e, 5
fl _ i,?‘
for ¥ = @
v,2
a.a .3 + 1 for Y = aV,B
i,7
1 if auj2 Vn for ¥ = a v, 4
0 otherwise
i for Y = a.v'5
aa_ .5 for YEG’\),B
i,7
a for ¥ = "v,7
a E’7
a€, s
i,7

(iv}] F: T-=>@€ is such that ®= D if there is a valid end task in T, else
B = 1.

Example 2.B6.1.

o = ab

t, =(1,8,1, 1,0, 0, 1)
too=41, a 2, 0, 1, 1, 1)

fav}

t, =41, a, 2, 0,1, 2, 12

w

AR e S AR

i R e

AR e el

i T e

AL

B oLpmrenie

i e e e i, T et T B e iy B R

Co et e



t4 = (21 bl 3' D] 2) 1, 1
ts = (2; S; 3; 1; 3.! 2; 5
tB = (za a, 2, 0, 5, 1, 5
t7 = <21 a, 2, 0, 5, 2, 5
t, is a valid end task and

Example 1.8;2.

q\

aabb

{1, s, 1, 1, 0, 0,
={(1, a, 2, 0, 1, 1,
=(1, a, 2, 0, 1, 2,
={2, b, 3, 0, 2, 1.
={2, 8 3, 1, 3. 2,
(2, a, 2, 0, 5. 1,
=(2, a, 2, 0, 5, 2,
=(3, b, 3, 0, B, 1,
=(3, 3, 3, 1. 7, 2,
={4, b, 4, 0, 8, 2.
={3, a, 2, 0, 8, 1,
={(3, a, 2, 0, 9, 2,

n

ot [ S ct ct cr (a8 ct o ot ot ct
1
o W w w [§)] th - — VY

t10 is a valid end task

@:

—

B . N

and
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£y
té//// \\\\ t
| |
////t4 t,
\
tg t;
A\
t, .
ty £
/\
g t,
|
tg  1Ig
|
Y10 iy

12
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5. SOME APﬁLIEATIDNS OF THE FILTER

it would 1ead us too far to develop here in detail interesting appllcations The
reader is: referred tao Steels (1874) for algorithms to extract strings wlth labeled
bracketlngs and structural dEECTlptanE in the form of trees from the set of tasks.

It is also possible to define acticns (e.g. operations over trees) in the filter,

the result is then so called augmented transition networks.

6. SOME DESIGN REMARKS

The type 2 parsers were all what is usually called top down and breadth first. That
this must not necesearily be so may be illustrated by the following ideas of which

the formal definition is left to the reader.

(a) Top down with back track.

This can be done by using the same type of parser with the difference that eesch time
“not all tasks resulting from N are executed but only one of them. N keeps track of
the structural description of the parsing process and if a certein task is
undefined, them it returns to the node [i.e. the task) of the parsing tree where

there was ancther task resulting from the execution of N. This task is then

further executed and sc on.

(b) Bottom up.
The rotion of a task can alsc be applied to bottom up parsers, in this case tasks

carry the informaticn from where to where a constituent goes, what the name of the
constituent is, how it was formed, etc.. . Each task then creates a new higher
constituent if this is possible or proceeds in the ipputstring. If at the end
there ié a task with a constituent egual to the axiom or start symbol and ranging

over the whole input, then the word is accepted.

There are many other ways to design parsers (e.g. in mixsad mode), but we think that

the basic mechanism, the creation of tasks by functions, will always remain.

7. HISTORICAL NOTES

These notes are by no means exhaustive and only cover applications for natural
langusge parsers, Note also that in the paper we cnly treated fundamsntals of parsers,
how they sre worked ocut in pracﬁice is even a mere complex matter, e.g. things are

added such as probability of likelibood for a path, stc... .

For another approach to the/roblem, we refer to Aho & Ullmen {1973) . Transition
netwarks and their eguivalents are used for morphographemic rewriting or crthographide

decoding(cf, Kay (1974])
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Also it is possible to consider a dictionary as a f.s machine and then consulting
the dicticnary becomes again & type 3 parser. If the language sccepted is the product
with itself, then the parser can find all possible parts in a word. This is an alter-

native for the Reiffler calculus (used e.g. in Verloren van Themaat (1972)}.

Transition networks are also a basic data structure in the MIND system (cf. Kay,
1973) ['The chart' is interpreted as a transition network’', 16171) and the General
syntactic processor (Kaplan (1973), The notion of parsing with tasks is found in Kay

(1974) and some ALGOL BC programs are given thare,

Recursive transition networks or basic transgition networks (BTN) were introduced
by Woods (1970) and extended to augmented tramsition networks by the addition to the
model of erbitrary register-setting actions and arbitrary conditions on the arcs'

{Woods 1973, 116). They are used in many syntectic and morphological analysers: (eg;
Woods (1873), Simmons (1874)). Also here we find the basic ideas of the parsers as
was developed in this paper. Woods describes his implemantation as follows: 'the
-most natural way of thinking of its operation is in terms of the noticns of instanta-
neous machine configuratiun’[i.e. tasks],‘and transition functions (a function which

L
computes successors to given instantaneous configuratdions).

In some earlier parsers (cfr the predictive anelyzer, Kuno and Oettinger (1965)
and the selective top-toc-bottem Algorithm by Griffiths end Petrick (71865} the concept
of pushdown automata was used with the result that the grammars must be in some nor-

mal farm. See sg. Kuno (7867} for a discussicn and solution of these problems;

Thers have been alternative ways of parsing neturel langusge on lower levels e.g.
PROGRAMMAR (Winogred 1872), which is a language to write parsers in, some parsers with
limited dictionaries and search strategies based on word order to back upthis leck of
information (cf. Thorpne [1970)), parsers resulting in distributicnal analysis (of
Salkoff (1872)]), etc... We think however that most of them are tco much biased by
the particular grammar or language. Indeed they all have in commen that the grammar
(control structure) is not input to the parser but inccrporated into the format of

the parser.

It is also our experience that a task-oriented parser is very interesting when

designing largser systems where different subsystems (i.e. persers)all interact.
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APPENDIX A.

(Solutions to problems]

Tela
(1) a. QD—‘-; Q,] i.n--EJz ;g.ﬂa-ghDD -E.EJB ["1D100" is not accepted)
A o i o
by Gp=4 Gy — 0, == O ('010" is not accepted)

! 1 : ) o o v oAnar 4
C. QD—- El’l'_'.'QD_"' EJ,]-—F- Dz—’ Q1 LI Qz ( J0G* is accepted)

(ii) The t.n. is the same -

(iiil
L}
‘ [¢)
(iv]
(v)
1.2,

(1) The required grammar is G= {(Vn, Vi, P, A) , a regular grammer_and Vn =
{ac) . vt = {a b, clenc P

1. A~ cA 5.C = a A
2. A= aAh 5. A = ¢
3. A> & B 7« A = &
4, 8~ bC g, C = a
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o
Lét{j) =G, ti' N, F be a regular grammar parssr and !) is the same as in
example 1.13. except for F.
Lot ;. = (B, B p0and By,
symbol. 6% =4{A, A

Let P be a valld path through T, then we canstruct as follows:

is & terminal symbol.:.and ﬂi 5 is a nonterminal

For very element jJ starting from the second last one and going to the first one in

{ , . = - s =
a path P, we construct a pair { ¢ 1,1 ﬁi,2) andﬁl',l I[aj.'l 1} .'Bi,2 aj.2
(1) o= '’
t, ={1, A, 0, 0)
=( )
t2 2, A, 1, 2
=< =)
tS 2, As 1.7
= )
t4 2' B' 1] 3
t. is a valid end task and P ={3, 1
3 t
13
F:'i:t?1 ={x, A}
={
62 c, A
(i1} ¢ = bac
t, =¢. A, 0. O

(the parser blocks because there is no production as reguired in the recursive stepl

is not accepted by G.

(iii} ¢ = cabacccabaa

={1, A, 0, 0)

ty

t, =02, A, 1, 1)
ty =(3, A, 2, 2)
ty =(3, %, 2, 7)
t, =(3, B, 2, 3)

tg =(4, C, 5, 4)
t, =<5, A, 6 §)
tg= ¢ B, A, 7, 1)
tg =¢7, A, 8, 1)
tyg= (68, A, 9, 1)
t14=¢ 8, A, 10, Z)
tyo,=(8, B, 10, 3}
={9,x, 10, 70
ty4= 40, C, 12, 47
tye= 411, A, 14, 59
tys 41, X, 14, 8D
ty;=42, A, 15, 2)
tig= 2, B, 15, 3)
A

t19=(121 , 15, 7))
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T19 is a \?:a:lid end taSk and Pt is (181 151 14: 12: 101 9; Bl 7: 5) 5r 21 1)
. 18 .

b1 =Cx0 A
62=(c.A)
93 ={ a, B »
#,=¢( b, C )
35=(a;P\)
8 =(c, A)
67=(c.F\)
fg =( 6, A )
bg =¢( a, B )
6,|U='(h,C>
Ba92Can A
012=(a.'\)

As one can see ® is in fact a description of the tree which corresponds to the

generation of the string.

(ii) The parser is =quivalent to the regular grammar parser of example 1.13.
except that the t.n. is A:

and the recursicn step goes as follows:

For every rule rk.j is equal to I@li.1] and Ty o is ai,2
ﬂi‘_1 +1 for Y = av,1
(NCE )3 OV) = k.3 for Y = 9,2
i for Y = av,S
k for Y = aV;4

(iii) The pzrser 1s the same as in exampls 1.413. except for F.

Let ©= 0 if ¢ is ambiguous, else B= 1, F: T > @ 1is such that if there is

more them one valid end task in T, @= 0, else © = 1
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2.1,

(1) if the pda. is deterministic, then j in the recursive step is always equal
to 1. Hence we change the condition in 2(al:

'Tf (...} we apply for the pair on the left side of the rule (...]'.

(1i) The pda is: .
m=fo,. oy (o] {resy 8 LR B

1. 819,, O, R) =f(m1, BR)}
2.8(Q,, 1, R) ={ta,, sR)}
3.8(q,, 0, B) ={@,, B8),£0,0)}
4.8¢q,, 0,6) ={w, 86}

5. 800, 1.8 =t@,, s&)}

6. 5(0,, 1, 6) =l@,, 661, (4,1}
7. 81(0Q,, 0, B) =[[G2, 2t

8. 50, 1, 6) =lg,, A

9. 8(9,, A, R} ={wm,, 2%

10.8 (G, A, R = {00,, 22}





