
ANTWERP PAPERS IN LINGUISTICS

1975, .nr. 1.

P A R S I N G S Y S T E M S F 0 R REGULAR

A N D C 0 N T E X T - F R E E L A N G U A G E S

Luc Steels

F\'l\TRSI I FIT \::\T\\'ERPEX

l.'\1\"EKSIT\!RL 1'\SIT,!.L!XG ,\:\"T\\'ERPEX

Departe~enier Ger. en Rom •. Afdeling Linguistiek

1 \'I\ l.I{'-!ITI~r! ~PLFIS 1 - ~610 WILRI,IK -- TEL. 1131 28.2~l.;W

ABSTRACT

In this paper we approach the following problem: Given an arbitrary

language describing device (e.g. a grammar)~ construct an algorithm which

computes structural information for an arbitrary string of the. language

described by this device. Algorithms performing this task are called parsers

and the problem itself is known as the 'recognition' or 'parsing' problem.

In the first part three devices accepting the set of regular or type 3

languages are presented: transition networks, finite state machines and

regular grammars. Then parsers are cons true ted with these systems as data.

Basically a parser works an n-tuples (called tasks) containing all sorts

of information, e~g. what symbol should be read in the inputstring, which

rule can be applied. etc •• I I

Starting from a given initial task, new tasks are constructed from previous

tas~s by means of a recursive function. The execution of the function involves

scanning the inputstring and consulting the grammar. After a finite number

of steps. no more tasks can be created and from the set of tasks produced

during the computation structural information can be filtered out.

In the second part of the paper three devices accepting the set of context­

free or type 2 languages are presented: recursive transition networks. pushdown

automata and context-free grammars. Then parsers are constructed for these

systems with the same basic strategy.

Emphasis is laid on the construction of a fundamental theoretical framework

rather than the description of sophisticated parsers and their implementations.

- 'I -

This paper is an attempt to create a theoretical frameworl'\ for parsers. Parsers

are systems taking as ~ grammars or other language describing devices and com­

puting structural information for arbitrary strings of the described language.

It is clear that structural descriptions are of great importance . It is strange

therefore that there is no interest within theoretical linguistics in finding exact

methods to recognize structural information for a given inputstring according to a

given grammar.

Although we approach this subject from a formal point of view~ the main ideas

and the final aim of the study arose from research in natural language processing.

We personally think that only a carefu.l (and therefore formal) study of the models

underlying the implementations will lead to sound results.

Due to time and space limits we cannot but sketch a framework. It is possible

to bL!ild more efficient (and therefore more complicated) parsers~ but we must

start somewhere.

The paper has two parts:

(i) type 3 parsers: i.e. parsi~systems for type 3 grammars, finite automata or

transition networks.

(iiJ type 2 parsers: i.e. parsing systems for context-free grammars, pushdown

automata and recursive translion networks.

In natural language processing type 3 grammars can be used for the construction

and consultation of the lexicon and for orthographemic rewriting. Type 2 grammars

can be used for morphological and syntactic analysis. Together both types of

systems lead to a complete automatic analysis of the surface structure of a

natural language. References about applications are given in 2. 7 ••

We included some problems which are solved at the end (in appendix A.) to help

the reader in understanding the text. The introduction and emphasis an transition

networks must be seen in the light of the growing popularity of this form of

representation especially in computational linguistics.

Many ideas expressed in this paper are influenced by the seminars at the I.S.

far Mathematical and Computational Linguistics in Pisa by M. Kay and W. Woods. Th~

background for this study was provided by the exciting seminars in formal systems

by prof. dr. G. Rozenberg. I thank the reading committee of the Antwerp papers in

linguistics w~o accepted this paper for publication and especially prof. dr. R.G.

Van de Velds who took the pain to examine with great care the manuscripts and by

whose remarks the readibility of the text could be highly improved.

Of course the author is fully responsible for all remaining errors.

- 2 -

Contents

1. Simple transition networks and related systems.

1 • Transition networks

2. Finite automata

3. Regular grammars

4. Comment

5. Parsers

6. Type 3 parsers

7. Nondeterministic type 3 parsers

B. Some applications of the filter

2. Recursive transition networks and related systems.

1. Recursive transition networks

2. Context-free grammars

3. Pushdown automata

4. Type 2 parsers

5. Same applications of the filter

6. Some design remarks

7. Historical notes.

3. Bibliography

Appendix A. Solutions to the problems

- 3 -

1. Simple transition networks and related systems.

1. TRANSITION NETWORKS

Definition 1.1. A simple transition network (for short t.n.) is .a set of states repre­

sented by circles and a set of transitions from one state to another represented by

directed labeled lines between the circles. The labels are the conditions for a transition

to take place.

The initial or start state is marked by a little arrow. Final states are indicated by

a double circle.

Example 1.1. The following diagram 0 is a particular instance of a t.n.:

0

1

A transition network is a sort of control structure, that is a pattern for a series

of actions. By means of a transition network we can 'scan' a word and tell at the

end whether it is accepted or not. To do this we proceed as follows.

Take for example the word '110100'. The first state is the start state in this

case Q0 , Then we look at the first symbol of the word (here 1] and follow the line

in .the diagram with that particular symbol as a label. Doing so ~t~.•e arrive in Q1 :

Q
0
~ Q

1
We repeat this action and obtain the following sequence of transitions:

Q1,Q~Q4Q~ Q1 !'. Q 2' At 1 0 3 2
and also we are in the state Q2 .

this moment there are no symbols left in the word

(Note that Oo is the final state), If this is the
" case then we say that the word is accepted by that particular t.n .•

As a second example consider the word '1010'. The sequence of states is: Q0 ~ Q
1
~

0
2

'!,.. Q3 ~ 0
0

. The word is not accepted because 00 is not a final state.

The set accepted by the t.n. is the set of all sequences in~D,l} 4 , i.e .. combinations

with the alphabet 0,1 containing at least one 0 and one 1 but an odd number of

D's and an odd number of l's.

Problems 1.1.

(i] Are the words '10100', '010' and '111000' accepted by 0?

[ii) Turn D into a t.n. accepting all sequences info.11*containing both an even number

of D's and an even number of l's

(iii) Construct a t.n. accepting all strings in fo,l)•such that there is a 1 immediately

following a 0.

(iv) Construct a t.n. accepting all sequences of ambon and n,m;> 0,

- 4 -

(v) Construct a t.n. accepting all strings in(o,l}~containing any number of l's and

one and only one 0.

Definition 1.2. A simple transition network is called deterministic iff there are no

states from which more than one line is leaving with the same label.

A simple transition network is called nondeterministic if it is not deterministic.

All the examples (included the problems) so far discussed are determininistic t.n. •s.

Example 1.2. The following t.n. accepting strings Onlm for m,n ;?-= 1' is a nondeterministic

t. n.:

a l

Representation The tabular representation of a t.n. is a list of triples where the

first element denotes the label or condition, the second the first state and the third

the state after the transition is made.

The order of the list is irrelevant and we number the triples for convenience.

The tabular representation of the t.n. in example l.l. is:

1 . (1 • Qa Q1)

2. (1 ' Q1 Qo >

3. <a. Q1 Qz >

4. <a. Qz Q1)

5. (l, Qz Q3)

6. (l, Q3 Qz >

7. < a. Q3 Qo >

B. (a, Qa Q3)

We will often leave out braCkets and comma's.

The tabular representation of the t. n. in example 1.2. is:

1 . <a. Qo Qo >

2. (0, Qa Ql)

3. (1 • Ql Ql)

4. (l, Q1 Qz >

A triple in the set will be called a rule r. The i-th triple is denoted as r. and the ,
j-th element r ..

'·J
E.g. in the last tabular representation r 1 •2 = Qa, r 3, 3 = 01 and

- 5 -

2. FINITE AUTOMATA

An equivalent way of stating the same information as was expressed in a t.n. is

the following.

Definition 1.3. Let M be a system called a finite automaton or finite state

machine (for short f.a.), specified by a quintuple IK,Z,5,Q
0

,E ~.Where K is a finite

nonempty set of states. Z is a finite alphabet, 5 is a mapping from K X Z into K, Q
0

in K is the initial state and E ~ K is the set of final states.

5 is called a transition function. It has the form 5 (q,al = p and q is the first state,

p the second and a E ~

corresponds to the t.n.:

is the 'condition' or input s~mbal. The expressionS (q,a) = p

Note that 5 is a recursive function, namely S (q. ·A)

5 (q,xal = 5 (5 (q,xl,al where x E Z..- en a E Z .

q (A is the empty string) and

If for a word the final state reached after execution of 5 (q,x) is in E, x is accepted.

More formal. Let a configuration be a pair (a·,fj) and a is a substring of the input

and fj the state active when reading this input, We define the relation t-- between

two configurations such that if~ ax.~) is a configuration then i'lx.~)l-(x•r> if there

is a 5 (a, ~ J = r

~ is the reflexive transitive closure of r- . The language accepted by an aUtomaton A

is LCAJ = {x lcx.Q0> F-<A.r> , r E E I

Example 1.3. The particular instance of a f.a. eq~ivalent with the t.n. of example 1.1.

isM= (K. z. 5, Q0 , E >where K fo 0 .o1 ,Q2 , Q3\. 'l: = {o.1}. E =[o2 } and

5 CQo.o J 03 6 CQz.Dl 01

5 c0o· 1 01 5 C0z·ll Q3

B co1 ,o Q2 6 co3.oJ Qo

5 co1.1 oo 5 co3,ll Oz

Let us do an example with the word '10'. 6 CQ
0

,1D)

'10' is accepted because Q
2

is in E.

P;s one can see a finite automaton is just an algebraic definition of a transition network.

The reader is advised to rewrite as an exercise every t.n. so far discussed into the

corresponding f.a ..

Definition 1.4. A finite automaton M =(K, z. 5,Q
0

, E) is deterministic if 6 is a

mapping of K X ~ into K.

A finite automaton M = (K, ~. 8, o0• E) is nondeterministic if 8 is a mapping of

K X L into subsets of K.

- 6 -

So the difference is that 8[q,a) is in the case of nondeterministic automata resulting

in a set of states and not just only in one state.

Example 1.4. The equivalent automaton of example 1.2. is:

M =(K, L, 6, Q
0

, E) and K

6CQ
0
,oJ

6 [Q1,1)

= foo· 01· 02t· :E

={oo • 01l
= {o.11 . E ={oL1and

=f01· 02\

Obviously M is nondeterministic.

3. REGULAR GRAMMARS

Another related system which is equivalent with a t.n. [and thus with a f.a,) is

a regular grammar.

Definition 1.5. Let G =(Vn, Vt, P, S')be a system called a regular grammar, where

Vn is a finite nonempty set of symbols called the nonterminal symbols~ Vt is a finite

nonempty set of symbols called the terminal symbols and Vn n Vt = 0 , P is a set

of productions of the form A -7 a 8 or A-+ a where A,BE.Vn and aE Vt. Sis one

distinct symbol from Vn called the start symbol or initial axiom. The symbol '-7'

means 'is rewritten as' and in any string where a symbol appearing on the left hand

side is present, we can replace [rewrite) this symbol by the right hand side of that

production.

Starting from the axiom S and rewriting until no elements of Vn are left, we can

generate a string of the language.

More formaL if v = xAy and there is a production A~ a then xAy""' Xu.,y,

~is the reflexive transitive closure of~ and L(G) (the language described by G)

is { x I S ! x and x EVt ~ .

Example 1.5. The particular instance of a regular grammar equivalent with the t.n.

of problem 1. [ii) is G =(Vn, Vt, P, S) where Vn ={0
0

, 0
1

• 0
2

• 0
3

}

S = o
0

and P:

1. Oa-+ o Q3 6. Qo -+1 Q1
2. Of' 0 02 7. Q1 -+1 Qo
3. 02-+ 0 Q1 B • 01 -+1

4. Q3-+ 0 9. Q2 -+1 Q3
5. 03-+ 0 Oa 1 o. Q3 -+1 Q2

We generate the word 'llOlCOlO' as follows. The label on ::> is the number of the

rule applied.

Q
0

i 10
1

! 110
0
~ 1100

3
~ 11010

2
t 110100

1
~ 11010DQ

2
~ 1101001Q

3
! 11010010

The reader can verify that the word '101' can not be generated by this grammar.

A production A~ a 8 is equivalent with a transition function 6 (A, a) B or with the

t_.n. :

If B is a final state then besides A~ aB also the production A ~ a must be present.

By this method we can easily rewrite regu·;lar grammars into transition networks

or finite automata or vice-versa. The reader is advised to rewrite all t.n. 's so far

discussed into regular grammars as an exercise.

Definition 1.6. A regular grammar is called deterministic if there are no productions

with the same nonterminal at the left AND with the same terminal as first symbol on

the right.

A regular grammar is called nondeterministic if it is not deterministic.

All grammars so far discussed are nondeterminstic

Example 1.6. Let G =(Vn, Vt, P, S} be a regular grammar and Vn =[Q0, Q1. Q2. Q5. Q3.

vt = {o,l~ . s = Qo and P:

1. Qo -+ 0 Q1 6. Q -+ 1 Q1 0
2. Q -+

1 0 Q3 7. Q -+
1 1 Q5

3. Q -> 0 Q4 8. Q2 ... 1 Q3 2
4. Q3 ... 0 Q1 8. Q3

... 1 Q2

5. Q4 ... 0 10. Q5 ... 1

Obivously G is deterministic.

4. COMMENT

Q4 1

A lot is known about the previously described systems. We have characterization theorems.

we know that the languagesaccepted or generated by these systems form a Boolean algebra

of sets, we have sound mathematical proofs about their equivalence and so on. The

reader interested in these matters is referred to Hopcroft g Ullman (1868), Minski (1867),

Salomaa (1973).

In this paper we will further concentrate on one topic: how can these systems be set

to work. For this purpose we will introduce and investigate formal systems called

parsers, which act as meta-systems. Basic emphasis will be laid on 'recognition' rather

than 'generation'.

- 8 -

5, PARSERS

Although the systems in the previous paragraphs were clearly defined, the actions

undertaken for recognizing strings of a language by means of these systems were

rather vaguely defined.

To overcame this situation we riow introduce a device called a parser. A parser

is a meta-system , it takes as data a transition network, a finite state machine,

or a regular grammar and then performs certain jobs on a given input such as decide

whether given strings are in the language, or extract structural information from

the parsing proces, and so on.

A parser consists of 4 main parts:

(i) A generating or recognizing system such as a t.n., a f.a .• or a regular grammar.

called the driver of the parser.

(ii) A set of tasks T , these tasks are n-tuples containing all sorts of information.

Tasks are created by the execution of previous tasks. In the definition of a parser~

one defines the form these tasks will taken.

(iii) A function N in which it is stated how the execution of tasks must proceed.

N has 3 parts: (a) the base where t1.' the first task, is given by definition, (b) the

recursion or recursive step ~ where it is defined how a task can be computed from

another one~ and (c) the restriction where a certain condition is stated far (b) to

take place.

(iv) Finally a parser has a means to filter out the required information from the set

of tasks.

In summary:

Definition 1 .17.
(,:J

A parser0 is defined by a quadruple (A, ti' N, F) where

(i) A is either a t.n., or a f.a. or a regular grammar. A is called the control structure

or driver.

(iil t. is an n-tuple called a task
l

(iii) N is a function computing new tasks from old ones

(iv) F is a function F: T ~ 8 where T is the set of tasks and 8 is a set of structural

descriptions. F is called the filter.

To make the story complete, we need a final meta-system (in fact a meta-meta-system

seen from the control structure) on which parsers can be executed~ this system will

be called the parsing machine.

Definition 1.8. A parsing machine PM is defined by a 7-tuple (I,IR,AT,AR,CPU,T,8 >
and

(i) I is a linear input tape containing symbols of the alphabet

(iil IR is a device reading symbols from I

(iii) AT is a place to store the control structure

[iv) AR is a reading device for AT

(vJ CPU is the central processing unit

- 9 -

lv"i) T is a set of tasks produced during the computation

(vii) e is the resulting output.

Graphically:

I

}-it\@\@\ \ ® (©. \

AT I~ CPU

C0-
1---

T -

In general a parser is performed on a parsing machine as follows:

(i) Initially:

- the underlying control structure A is stored in AT

e

- the central processing unit is programmed to perform the functions specified

in N and F.

- an inputward is written on I

the initial task t 1 is stored in T

(ii) Second: The parsing machine is set to work such that the central processing

unit creates new tasks by executing tasks from T according to the functions in

N. These new tasks are again being stored on T and so on. The computation involves

reading of the inputtape I and consultation of the control structure A.

(iii) Finally. when no tasks on T are left to be carried out, the central processing

unit computes 8 by way of F.

We are not interested here in the formal properties or the power of the parsing

nachine, it is clear however that it is some sort of register machine. In practice

we simulate parsing machines on the currently available computers.

For the rest of the text we will assume implicitly the parsing machine.

- 10 -

6, TYPE 3 PARSERS

Definition 1.9. A parserf! = <A~t.,N.F) is caliled a transition network parser,
l

a f.a. parser or a regular grammar parser if A is resp. a transition network.

a f.a. or a regular grammar.

Example 1.7.

(i) A is the

t:? Let \) = (A, t.,
l

following t. n. (cfr.

0

In tabular form:

I. (0, 00 02)

2. < 0, 01 03)

3. < 0, 02 oo>
4. < 0, 03 01)

5. (I, 00 01)

6. (I, 01 OrJ
7. < I. 02 Q3)

8. (I, 03 Q2)

(iil t. is an ordered pair
l

where ai,l is the position

N, F) be a t.n. parser such that

problem I. (ii) J

0

< ai,l . ai. 2)

on I to be read by IR

a i, 2 is the state active when executing the task

[iii} N is defined as fallows:

1. The base t
1

= < I. o
0

> CQ0 is the start state)

2. The recursion step: t 1+
1

is computed from t 1 by N and

-{
a + 1

1.1
for Y =

for y = a
1+1,2 where rk, 1

- 11 -

3. The restriction:

N is defined iff a.
1

+
l,

1 < lal

3 k (I(a

+ 1 where a is the inputword and I a I denotes

the length of a , and
L1

8;;. k> 0

(ivl F: T -. 9 where 9 is either 0 or l. If the last task ti.r(ai,
1
.a i,Z}is

such that aLi = I al + 1 and a1 , 2 is a final state in A, then 8 = 0 else

e = l.

(0 when accepted, 1 if not accepted).

The recursion step should be understood as fol.J:ows: N is a function computing

n-tuples from n-tuples. t. is the input and t.
1

is the result of the computation.
l l•

Y is a dummy element for the elements of the n-tuple. Thus the function results

in a.
1

+1 for Y =a.
1 1

. This means the first element in then-tuple t.
1

, i.~.
l, ~+ • l+

aif4 , 1 becomes a1 , 1 +1 • The second element of ti+i , namely a1+1 , 2 becomes rk, 3
with the requirement that rk, 3 = I(ai, 1 J and rk, 2 = ai, 2

Example 1. 7 .1.

a = 1001, I al 4

t
1

= < l, Q
0

} (the basel

We compute t
2

from t
1

by the recursion step:

(N(t
1

)) (Y) ~

So: t
2

=(2,Q
1
>

t3 (3,03}

t4 < 4,Q}

t5 (5,0o>

{ a1~1
+ 2

r5,3 = Q
1

because

and

for y = a1+1,1

for y
= a1+1,2

r5,1= I(a1,4)

r5,2 = a1,2 = 0
0

a2,1

a2.2

I (1 l 1

t
6

is undefine'd because a
5

,
1

+1> lal + 1 (restriction)

Filter:

e is o because a
5

,
1

=I al + ·1 • a
5

,
2

is Q
0

and Q
0

is a final state • Conclusion

a is accepted by the transition network.

Exam2le 1.7.2.

0 = 1000 , I al 4

t1
t2

(l, 00)
(2.01?

- 12 -

t3 =13,03)

t4 =<4.o4>

t5 = (5. 03)

t
6

is undefined and e = 1 because Q3 is not a final state.

Example 1. 7. 3.

a= 1010011101

ti = < 1. o0

t2 = (2,01

t3 = (3. 03

t4 = < 4. o2

t5 = < 5. oo

, I a I 10

t6=<s.o2>

t7=<7.o3>

t
8

= (8, 0
2

)

t9 = (9. 03)

tiD=< 10,01

tii= (11,0J

t12 is undefined and e 0 because o
0

is a final state.

It is easy to see that a parser (at this stags) simply mimics ths behavior of the

actions described when deciding whether a string is accepted or not by a t.n. (cf. p.3),

Note also that the input is in fact independent of the parsing system. We could have

taken another t. n. as well. (Of course there must always be one).

An interesting thing is also that we can use the same construct qnot only for a t.n.

but also for a f.s. machine and for a regular grammar.

Example 1.8.

Lst fj = (A, t .• N, f) be a f.a. parser such that
l

(i) A =<K.~.o. Oo· E) is a f.a. and

K tOo• 01' Oz' 03 '\
L ~D,il
E { Oo \

and 5 lo
0

,oJ Oz 5 lo0 .1J 01
5 (0

1
,0l 03 5(01.1) oo

5 lo
2

.oJ Oo 5[Q
2
,il 03

5 (03,0) 01 5 (03 .1) 02

(ii) t. is an ordered pair (a. 1 • ai,2 l l,

where a.
1
is ths position on I to be read by IR

l,
a .

i,2lS the state active when executing ths task

(iii) N is defined as follows:

1. the bass t
1

= < 1, 00 > (00 is the start state)

2. the recursion step

t 1+
1

is computed from t 1 by N and

- "l.j -

{ a. + 1 for Y= ai, 1 >,1
11'-Ht. J J (y) ,

6 (a.
2

, I(a. 1)) for y aL2 ,, ,,

3. the restriction

N is defined iff a. + 1 ..:: I al + 1 where a is the input word and I al
, '1

denotes the length of a and iff I (a.
1

) "-~ .
l,

(ivl F:T.., E> where E> is either 0 or 1. If the last task

ti = (ai,
1
,ai,

2
) is such that a:i,i = la-t + 1 and ai,-fE. then f)

Example 1. 8 .1.

a = 1001 ,I al = 4

T:
t1 (1 '00)

tz (2,01)

t3 (3' 03)

t4 (4,01)

t5 < 5, o0 >

t6 is undefined because a + 1 > I al
6' 1

+ 1

0 else e = 1.

8 is 0 because aS,
1

language accepted by

I a I + 1 and a
5

,
2
e:E. In other words <rEL(AJ and L(A) is the

the automation.

Note that the only difference between ex. 1.7. and ex. 1.8. the controlstructure is

and the way in which the control structure is consulted in N. The reader is advised to

try ex. 1.7.2. and ex. 1.7.3. on this parser.

Note also that the set of tasks T produced during the computation is the same as

in example 1.7.1 •.

Example 1.9.

<-' Let C)= (A, ti, N, F)be a regular grammar parser and

[i) A= <vn, Vt, P, s,> fs a regular grammar where

Vn { 0
0

, 0
1

, 0
2

• 0
3

• o4 • 0
5

)

vt (o.1 ~
s o.
P: 1 . 00 ~ 0 02 6. Oo ~

01
2. Q, ~ 0 Q3 7. 01

~ Q
' 5

3. Q2 ~ 0 04 8. 02
~ 1 02.

4, 03 ~ 0 ~1 9. Oo ~
02 0

5. Q4 ~ 0 10. 05
~

liiJ t. lS a pair (" i,1'
a , i,2

~t..,'here aL 1 = the position to be reed on tr,e input task

~
2

= the nonterminal ,,

(iii) N is defined as follows:

1. the base t
1

= (1. Q0)

lQ
0

is the start symbol)

- 14 c

at this task

2. the recursion step: t
1

+
1

is computed from t 1 by N and

for y =a
1+1~1

(N(t. JJ (y) ,
{

ai,1+1

The last symbol of a procuction n where the left side of

3. the restriction:

n is a.
2 '·

and the first symbol of the right is I(a i ,
1

J

for Y = a 1• 1 , 2

N is defined iff a.
1

+ 1 .;;; I al + 1 where a is the inputword and I al denotes
'· the length of a, iff I(ai, 1) E Vt and iff a i, 2 I A·

(iv) F: T->0 where e is either 0 or l. If the last task t. o(a i
1

,a. _) is
l . 1, L.

such that a .
1

= I a I + 1 and a .
2 l, l,

=A then e = 0, else e = 1. (means

cannot be generated),

(Note if a production is of the form A -')o- a then we assume A (the empty string) after

a:A->aAl

Example 1.9.1.

a = 000, I a I = 3

t1 = (1 ' Qo >

t2 = (2' Q2)

t3 = (3' Q4)

t4 = (4, A)

8 is 0 because t
4

is such that a
4

,
1

by A.

Example 1.9.2.

a = 01100 ,I a I 5

t1~<1.Qo>

t2=(2,Q2)

t3=< 3,Q3)

t4=(4,Q2)

ts==< s,Q4 >

t 6 =<6.A)

8 is 0 because t =lui+ 1
6. 1

Example 1.9.3.

a = 1110 I al 4

+
" 1. Qo > ''1

t"
'

o(2,Q1)

t3 o(3,Q5)

t4 o(4, A)

and

I al + 1 and a
4

,
2

= A therefore a is generatE

10 -

t
5

is undefined because t4 ~ 2 =A. • El is 1 because in the last task a 4 ~ 1 "tal+ 1.

Again the similarity between example 1 .9. and example 1.7. and 1.8. should be

obvious. For this reason we will call t.n. parsers. f.a. parsers and regular grammar

parsers type 3 parsers. Moreover in the example we always used a deterministic control

structure. Therefore the parsers of example 1.7., 1.8. and 1~9. belong to the class

of deterministic type 3 parsers,

Definition 1.1D. A parser D =(A, ti, N. F) is a deterministic type 3 parser if A

is a deterministic t.n. or a deterministic f.a. or a deterministic regular grammar.

Before we discuss in further detail what we can do with parsers besides deciding

whether a string is in the language or not, we will construct nondetermir\stic 'type 3

parsers.

7. NONDETERMINISTIC TYPE 3 PARSERS

a Definition 1.11. A parser~= (A~ t.~ N, F) is a nondeterministic type 3 parser ,
iff A is a nondeterministic t.n., a nondeterministic finite state machine or a

nondeterministic regular grammar.

The only difference between deterministic and nondeterministic type 3 parsers

is that instead of executing function N only once, it must be executed as many

times as this is possible. So a nondeterministic t.n. parser is equivalent with a

deterministic t.n. parser except for the recursion step where N must be executed

for every ruler where rk, 1 = I(a1 , 1 J and rk, 2 ~ ai~ 2 . Similarly for a

nondeterministic f.a. parser N must be executed for every element in the set

resulting from S (a, ~,I(a,
1

)J and for a regular grammar parser N must be executed
l,u. l.

for every production n where the left side is equal to a.
2

and th8 first symbol on
'· the right side is equal to I(a.

1
l. ,,

From now on v will be a variable denoting the number of tasks created; each time

a new task is created vis augmented by 1. Also instead of the last task we will

require just the presence of the task specified in F.

We give in full detail a nondeterministic f,a, parser and expect from the reader

that he \.\rill construct a nondeterministic t.n. and a nondeterministic regular grammar

parser.

Example 1.10. Let (l = (A, ti' N, F) be a nondeterministic f,a, parser and

Q1. Q2. Q3. Q4~ (i) A = (K, ~ S , Q
0

, E >is a nondeterministic f.a. where K fQo•

~ ={o.d • E ={o2. Q4l and

s ro
0

.DJ =(oo. Q3 \ S(Q
0

.1l =f0o· Q1 ~
s (Q1,0) = 0 (the empty set)

0 (Q". 0) =\ 02) O(Q1.1) = (Q2 \
'-

s (Q3. 0) = (o4 \ S(Q
2

.1l = {Q2)

- 16 -

(ii) t.
l

is a pair (a.1,a.2)
l, l~

6 (03,1) = 0

6 Lo4.1l =fo4 \

where a .
1

=
l,

a . ,2. =
l.,

the position to be read on the input tape

the state of the automaton at this task

(iii) N is defined as follows:

1. the base : t
1

= < 1, o
0

) and v 1

2. the recursion:

For every element in the set resulting from S (ai,
2

, I (a
1

,
1

J) a new task (v:. v + 1 J

is made (if the set is empty then no tasks are made), such that:

{""'. 1 for Y = a
v .1

(N(t.)) (Y)
l

S (ai,2' I(a.
1

JJ for Y = a
v,2 l,

3. the restriction:

N is defined iff

!Length of a and

a. +1~1al +1 l,1
where a is the inpu tword and l.al denotes the

(iv) Finally:

F: T-+El

such that

Examule 1 .1 o .1 •

a = 1100 .
t1 =< 1. OJ
t2 =< 2, OJ
t3 =(2,01)

t4 =<s.oo>

t5 =(3,Q1)

t6 =(3,0L>

t7 =<4.Qo>

ts =(4,Q3)

tg =(~. Q2)

t1o=< 5,Qo

t11=(5,03

t12=(5,Q4)

t13=(5 ' 02)

iff I(a .
1

) E ~
l,

where E>Ep,l~
a =lal+1

i .1

I al 4

and e
and a.

2
E

l,

0

E.

iff there is a task in T ··t . ' i

a.; L(AJ because t
12

is a task having in aL
1

I al + 1 and in ai,
2

E E. Also t
13

has

this property If this is the case then we say that the word is ambiguous according

to A.

- 17 -

Definition 1.12. The structural description of the parsing process will be denoted

as a labeled plane-rooted tree where the top node is the first task (t
1

J and for all

tasks emerging by N from a task t 1 ~we draw lines between these tasks and t
1

.

Example 1.11.

The s.d. for the parsing process performed in example 1 .10.1. is:

Example 1 .10. 2.

a= 0101 , I a I 4

the s.d. for this parsing process:

t1 < 1. Qo >

tz < z. Qo >

t3 (2,Q3)

t4 < 3. Qo >

t5 (3,Q1)

t6 < 4. Qo >

t7 (4. Q3)

te < 5. Qo >

t9 (5. Q1)

a is not in L[A) because there is no task a.
2

E E
l'

and

Example 1.10.3.

a DOll

t1 =< 1,Qo >

tz= <Z,Qo >

tf (z.. Q3)

a
L1

=I a I + 1

t4 (3' Qo >

t5 (3, Q3)

t6 (3, Q4)

t7 (4' Qo >

te (4' Q1)

tg (4' Q4)

t10= (5' Qo >

t11= (5' Q1)

t12= (5, Q2)

t13=(5, Q4)

t
12

and t
13

are

a is in L(A).

- 18 -

bath tasks where is I al + 1 and a .
2 l'

E E therefore

Note that the order in which the tasks are carried out is of no importance (but they

should all be carried out once !). To illustrat~··this we do an alternative way

for example 1.10.3 ..

Example 1.10.4.

a = DOll

t1 <1,Qo>

t2 < 2, Qo >

t3 (2. Q3)

t 4 < 3. Qo >

t5 (3. Q3)

t6 < 4,Qo>

t7 (4,Q1)

te < 5. Qo >

tg (5,Q1)

t10= (5' 02)

t11= (3 ' 04)

t12= (4,Q4)

t13= (5' 04)

In this case t
10

and t
13

are the tasks fulfilling the conditions in F, therefore the

result is the same. Note that the structure of the parsing process is the same, only

the indices of the tasks are different.

8. SOME APPLICATIONS OF THE FILTER

Now 1.111B try to show that we can do better with parsers than just say that something

is in the language or not. We want to remember after the computation HOW its was done.

- 19 -

For example we want to find out whether the input string is ambiguous or what the

possible ways of deriving a string are, what the structural description is, what

rules were used to generate a given string in what states the automaton was~ etc •.•

We will give some examples but expect the reader to try aut other applications.

The basic strategy is the following: put in a task all information that is

necessary for a given job and then design your filter F such that this necessary

information is extracted from the task and then used to obtain the desired result.

Example 1.12.

The aim of this parser is to accept as data a f.a. and to compute the distinct states

of the automaton when accepting a given inputstring.

Let fJ = (A, ti' N, F) be a nondeterministic f. a. parser where

(il A is (K, ~. 6, Q, E) (cf. e.g. 1.10.1

K = { Qo' Qj • Oz· Q3, 04 J
6 (Q

0
.oJ

6(Q1,0)

6 (Q2,0)

6(Q3,0)

6 (Q4,0)

{ Qo,

0

=\OzJ

= ~Q4 \
=\04 \

~ ={o.l~ , E

03\ 6 (Qo, 1)

6(Q1,1)

6 (Q2,1)

6(Q3,1)

6(Q4,1)

=f0z· 0!1~
{ 0o· 0 1~
\Oz}

~ Q2 ~
0

l 04 l

and

where a
1

,
1

is the position to be read on the input tape

is the state of the automaton

ai, 3 is the index j of the task

for this task, in other words t. was the
J

output, ai,
3

is called the anchor (:1;.)

(iii) N is defined as follows:

1. the base: t 1 = <1. Q0 , 0 > (v 1 J

2. the recursive step:

t. that was
J

input for N

of t ..
l

the basis

and t. is
l

the

For every element in the set resulting from S [ai,
3

' I(ai, 1 JJ a new task

is made (if the set is empty, then no tasks are made), such that(v = v + 11

aL1 + 1 for Y a
v' 1

(N(ti)J(Y) b (a.
3

, I(ai,2)) for Y a
l, v,2

i for Y = a
v,3

3. The restriction: N is defined iff a <I ul + 1. and iff I(a. 1JE ~
1,1 l,

- 20 -

(iv.j F is a bit more comples:

We define a valid start task in(Jas a task ti such that ai,
1

= 1,ai,Z = Q
0

and ai,
3

0.

We define a valid end task in 6' as a task ti such that ai, 1 =ial + 1 and ai,ZE E.

We define a valid path P through.T (the set of tasks) as a sequence of indices where

(i) i
1

is the index of a valid end task in T

(ii) i . = a
J+1 i.l3

J
(iii) if (a.

3
J = 0 then P is complete.

1 .•

(We give an exam~le of the computation of a valid path in the next example)

8 is a set of sequences of states {aP.~ 2 ~ where pjE P and j is an index ranging from
J

the last element of a path P to the first one.

Example 1.12.1.

a = 11 DO

t1 = (1. Qo, 0)

/\ t2 = (2. Qo,

t3 (2. Q1. 1\ 13
t4 (3, Qo, 2

t5 (3. Q1, 2)

t6 = (3. Q2, 3) 1\ t5

1
6

t7 (4. Qo, 4)

tB (4, Q3, 4)

/\ 'B r9 t9 (4. Q2, 6

t10= (5. Qo, 7
t10 t11t12 t13

t11= (5, Q3, 7

t12=(5, Q4, B

t13= (5, Q2, 9

There are two valid tasks (t12and t 13 J , therefore we have two paths:

<12, B. 4, 2, 1 > andP =(13,9,6,3,1>
t13

We give now an explicit example Of the computation of such a path, 1
1

is the index fof

a valid end task in T, here t 12 is one. Sa 11 = 12. j is a variable in the recursive

step, in the beginning j = 1.

- i j +1 =a or i a. 3 or i2 = a12,3 (from i 12)
i .• 3 1 +1 11' J according to T: a12,3 = B therefore i = B

2
- j becomes 2

i a. 3 or i3 a8,3 = 4 Path up to now: (12,8,4)
2+1 12'

- j becomes 3

1
3+1

= a or i4 a4,3 2
13,3

- j becomes 4

14+1 a. 3 i = = 1 14' or 5 a2,3

- 21 -

-" j becomes 5:

0 , therefore the path is complete.

Consequently:

8 ~ ~< Oa' Oa' 0o· Q3, Q4 >' < 0o· 01· 02· 02· 02 >!

Example 1.12.2

a = DOll

t1 = (1' Oa, 0)

t2 = (2, Oa' n >

t3 = (2, 03' 1)

t4 = (3' Oq' 2)

t5 ~ (3, 03' 2)

t6 = (3, 04' 3)

t7 = (4, Qa, 4)

t8 (4' 01' 4)

t9 (4, 04' 6

t10= (5, QO' 7)

t11=<5, 01' 7)

t12= (5, Q2' 8)

t13= (5, 04' 9)

t/\t

1\ 1

3

t)\ t5 t6

1\ \8
19)

t10 t11 t12 t13

In this case there are ~gain two valid end tasks: t 12 and t 13 . The corresponding paths

are P t <12, 8, 4, 2, 1) and P t < 13,9,6,3,1)
12 13

0 ~ < Qo, 0o· 0o• 01· 02>' < 0o· 03• 04' 04' 04> ~
Note that the order in which the tasks are carried out is again of no importance. To

illustrate this we do an alternative way for example 4.2 ..

Example 1.12.3.

a 0011

t!\t

t1 = (1' Oa' 0 ;\ r
t2 = (2, Qo,

;\4

t5 t11
t3 = (2' Q3,)

I t4 = (3, Qo, 2)

t5 (3, Q3, 2)\ r tr2
t6 (4, oo' 4

t8 t9 t10 t13

- 22 -

t7 " I 4 • Q1. 4)

tB (5. Qo· 6

t9 (5. Q1. 6

t1o" (5. Q2, 7)

t11 = (3, Q4, 3)

t12" (4, Q4, 11)

t13= (5, Q4. 12)

The two valid end tasks are t
10

and t
13

•

P o(10,7 4 2,1) andPt (13,12,11,3,1)

~10 =(< Qo• Qo. Oo• Q1, 02 > • < 0o• 0~· 04' 04' 04 >}
As the reader can see the same result is obtained.

Example 1.13.

Now we construct a parser which accepts a regular grammar as data and computes the rules

which are necessary for generating a given inputstring. (These data can be important

e.g. in developing a probabilistic grammar).

Let 'J" (A. t. , N, f) be a nondeterministic regular
l

grammar parser where

(i) A is a regular grammar < Vn, Vt, P, S) and

vn" {o0 • o1 • o2 • o3 } • Vt = {o.1} • s = o0
and P:

l. Qo -> 0 Q3 6. Qo -> 1 Q1

2. Q1 ->0 Q2 7. Q1 -> 1 Qo

3. Q2 ->0 Q1 B. Q1 ->0

4. ~
-> l 9. Q2 -> l Q3

5. Q3 ... o· Q 10. Q3 -> 1 Q2 0

The integers before a production will be denoted by the symbol"·

(i.iJ t. is a quadruple (ai~ 1 ~a i,2'a i,3'a 1,4 l

where a 1,1 is the position to be read on the input taps

(iii)

a i, 2 is the symbol of interest at this task

ai,3 is the anchor of the task

ai,4 is the rullil applied to construct this task

N is defined as follows:

1. the base: (v 1)

2. the recursive step

For every production ~ where the left side is ~ual

symbol on ;the right side is equal to I (a.
1

,1 J J we
1.

such that:

\

to a.
2

and the first
l,

make a new task (v = v +1)

a . , + 1
~,'l

for Y

- 23 -

=a v ,1

the last symbol of a production n where the left side of n is
(N(t.J)(YJ , ai and the first symbol of the right is r(' .

1
J

,2 ~.

i

n

3. restriction:

for Y

for Y

= a v,3

= a v,4

N is defined iff a.
1

+ 1 ~ I al + 1 , I(a. 1 JE= Vt
~I ~I

(iv J F:

A valid

A valid

start task in~is a

end task in {) is a

where a 1 ,
1

where a
1.1

1

I al

A valid , path P through T is a sequence of indices and

a
1.2

and a
1.2

+ 1

(i) i
1

is ths index of a valid end task in T

(ii) i = a
j+1 i ... 3

for Y =a

~ . A

= o.

and a.
2

= A

'·

v,2

e is a sequence

(iii) if [a.
3

) = 0 then P is complete.
'i.

of indices of productions :f< a
3
> J where p e P and j is an

pj'
index ranging from the second last element of a path P to the first one.

Example 1.13.1.

a = 100

t (1, Qo, 0, 0) 11

t (2, Q1, 1 • 6) It\ t <3. '/. • 2, 8 ~

t (3, Q2, 2, 2 >
t Z4. Q1, 4. 3) 13 t4

ts

The word is not accepted (cannot be generated by AJ because there is no valid end task

in T.

Example 1 . 13, 2,

a = 010101 I al 6

t1 = (1. Q1. 0 0 >
t2 = (2, Q3, 1 >
t3 = < 3,).. 2, 4 >
t4 = (3, Q2, 2 . 10 >

- 24 -

t5 (4,Q1,4 '3)

11 t6 C5,Q
0

,5 ,7)

t7 (6,Q3,6 ' 1) It\ tB (7 ,A , 7 '4)

t (7,Q2,7 '9) t3 t4 9

t/

15

t6

I
t7

I\
t
8

t 9

t
8

is a valid end task. A valid path from t
8

is (8, 7, 6, 5, 4, 2, 1

Finally E> is the following sequence: (1, 10, 3, 7, 1, 4)

As the reader can see the application of these rules in the generation process indeed

results in '010101':

Q J 0 Q w 0 1 Q ~ 0 1 0 Q .!; 0 1 0 1 Q J 0 1 0 1 0 Q3 j 0 1 0 1 0 1
0 3 2 1 0

Problems 1 .z.

(i) Construct a grammar generating the set of sequences {a,b,c~~where before and after

each b (if there is a b in the string) there is an a.

Then construct a parser where the output is the set of pairs representing a derivation

where the first pair contatns the start symbol and ~ and the last pair

terminal symbol of the derivation.

Parse c, bac, cabacccabaa.

(ii) Construct an equivalent transition network parser doing the same job.

,the last

(iii) Construct a regular grammar parser which for an arbitrary regular grammar will

decide whether a. string is ambiguo,us according to that grammar or not.

- 25 -

2. Recursive transition networks and related systems

1. RECURSIVE TRANSITION NETWORKS

We now introduce a higher class of control structures and consequently a more complex

parser.

Consider the following transition network M'.

The language accepted by M': UM' J ab

Suppose we extend M' into M in the following way:

where the condition or label on the directed line going from Q
2

to 0
3

is a word

accepted by the transition network M. In other words, through a sort of subroutine calL

the network is started again. and if a word is found, the transition can be made,

The language accepted by M, L(MJ an bn for n ;;;. 1.

Oaf. 2.1. Transition networks where the condition for a certain transition is

itself a transition network are called recursive transition networks.

For convenience we denote from now on the states of a network by A/i where A is the

name of the transition network and i is the number of the state. For the start state

i is always equal to 1 and for any final state we write after the index i an arrow

(f) or just the arrow without an index. Final states are sometimes called pop up states.

r. is then written as follows:

M in tabular representation

1. ~a , M/ 1 , M/2 ')

2.(M/1 ,M/2, M/4)

3.<b ,M/4, M/Sf)

4.(b,M/2, M/3t)

- 26 -

From this representation it becomes clear that the symbol on the recursive transition

is in fact the first state of another network. Let us do an example of a scanning

controled by M

a = aabb

M/1 ~ M/2 -> M/4 ~ M/5'1'

2~~
2. CONTEXT- FREE GRAMMAR

An equivalent way of stating the same information as for a recursive transition network

is a contex~free grammar (for short cfg.)

Oef. 2.2. Let G = <Vn, Vt, P, S) be called a cfg. where Vn is a finite set of non­

terminals, Vt is a finite ~et of terminals and Vn n Vt = ~. P is the set of productions

of the form A-> w where A€ Vn and W £V (V~U VT = V) and Sis the axiom or start symbol.

The relation~ and tis defined as for regular grammars (cfr. def. 1.5.).

Example 2.1.

The grammar equivalent with the recursive t.ri. M is G

vn =tM\. Vt, = Za.b~and s = M. P:
1,M-+aMb

2. M -> ab

An example of a derivation:

M J a M b ~ aabb

or

(Vn, Vt, P, ~ and

G is not only a cfg., it can be proved that it is impossible to write a regular grammar

generating L(GJ = an bn because of the self embedding property of G.

To indicate the equivalence between cfg. 'sand recursive t.n.'s we construct an algorithm

to rewrite the one into the other and vice-versa.

1. From cfg, to recursive t.n.

Each nonterminal symbol A is a t.n •. Let I1A where A is a particular t.n., be the index

- 27 -

of the latest state of a t.n. during the construction process~ in the beginning

I1A = 1. I2A is the index of the current state of a particular t.n. A. For every pro~

duction of the grammar, the symbol (A) which is on the left of the production is the

involved t.n .• In the beginning I2A is 1. For every right symbol in a production we try

to make a transition in A from I2A ; if it is possible to do sa I2A is the state after

the transition, if not we make a new rule (k becomes k + 1) in the network where rK
• 1

is the symbol in the production, rK, 2 is A/I2A I1A becomes I1A + 1 and rK, 3 = A/I1A.

I2A becomes I2A + 1. If the symbol itself is a t.n. then the condition is this

symbol followed by /1. If the symbol on the left is the last in the rule, we add 't to

rK, 3 because it is a final state.

Example 2.2.

We take the grammar of example 2.1. the productions were:

1.S->aSb

2. S -> ab

We start with production 1. The left symbol 'S' denotes the t.n. s. I1
5

= 1 an~

12
5

= 1. Because there is not yet a t.n., we cannot scan 'a' therefore we make a new

transition I1 5 = 11 5 +1 from S/~25 to S/I1 5 that is from S/1 to S/2.

1.(a ,S/1 , S/2 ;>
Now we take the second element in production 1. Again we can't

and so make a new state: 11 5 = 11 3 + 1; because s E Vn • we have:

2 ·<S/1 ,S/2 ,S/3 ';.

scan the symbol

Finally for this production the last symbol b and because b is the last symbol.

3. (b , S/3 , S/ 4'(')

Then we take the second production, the left symbol is again S, we try to scan the

first symbol of 2 and it works I25 = 2 (from rK. 3 J and I1 5 remains 4.

Then we try to scan the second symbol in the right part of the production. namely 'b'.

This time we can't make a transition. therefor a new state is made: I1
8

+ 1 and because

b is the last symbol this state is a final one:

4.(b , S/2 ,S/St)

The resulting t.n. is:

1 .(a , S/1 , S/2)

2. (S/1, S/2, S/31')

3.(b, S/3,5/41'")

4.(b ,S/2, S/5)

2. From r.t.n. to cfg.

Every t.n. in the set is a nonterminal symbol and every symbol input far a transition

that is not a t.n. is a terminal symbol.

For every t.n. A we make a production vJith at the left the rtonterminal symbol A. For

every input that appears in a path of consecutive states starting with A/1 and ending

with A/i 1', a symbol at the right of the production is made.

5

- 28 -

If this input is a t.n. then we only use the name of a t.n. and not the index.

Example 2.4.

1.(_a ,S/1 • S/2)

2.(S/1,S/2,S/3?

3:(b , S/3, S/41' ')

4.(b ,S/2, S/Sf)

There is only one t. n. namely S, therefore Vn = t S ~ the terminal symbols are \a, b~,
We have two paths starting from S/1 and ending in S/if :

rule (1), rule (2), rule (3)

rule (1), Rule (4)

Therefore we have 2 productions:

1. S -+ aS b

2. S -+ ab

3. PUSHDOWN AUTOMATA

Def. 2.3.

A pushdown automaton M (for short pda.), is a system (K, :E,r ,5 , ~ 0 , z
0

,E l where

1. K is a finite set of states

2. :!: is a finite alphabet called the alphabet

3. ris a finite alphabet called the push down alphabet

4. "'ois the initial state, ~E. K.

5. Zo in r is the start symbol, initially present an the pushdown store

6.~£K is the set of final states

7. 5 is a mapping from K X. (:!:U(X ~ l X rto finite subsets of K X r i"

5 (~,a.Zl = {rp1 .r 1J. (p 2 • r 2 l. (pm' rmlt. "1. f'< inK, a in:!:, z in

r en 'Y . in r.
l

This means that if the system is in state q, having in the pushdown store Z and on the

input tape appears the symbol a, then for any i, we can replace in the store Z by 2(i

and the new state is p1 .

Example 2.3. (due to Hopcroft and Ullman (1969))

M = \ [o1 • o21· {o. 1. cHR. B, G} • .S .~,, R, 0,)

(Q1. 0, Rl = 1ro
1

• BRl} 5 (Q2, o. B) !ro2.x l}

5 (Q1. 0, Bl lro1 • ssJ~ 5 (Q2, ')., Rl \ro2.x l1

5 (Q1. o. G) \(Q
1

, BG)} 5 (Q1. 1 • Rl \ro1 • GRJ\

5 (Q1. c. Rl I roz. R J} 5 (Q1. 1. B) lro1.Gsl)

5 (Q1, c. Bl l (Q2. B Jl 5 (Q1. 1. Gl (ro1 • GGJ\

5 (Q1. c. G) l (Q2. G)~ 5 (Q2. 1 • Gl (ro2 ./\J\

L(Ml = { wcw"'\ w €: ~ and wR ~ denotes the reverse of w.

- 29 -

There is a theorem from formal language theory saying 'If L is a cantextfree language.

then there exists a pda M, such that L = N(M)' (Hopcroft & Ullman, theorem 5.2.).

The proof is such that ,first a cfg. generating L is constructed, then this grammar

is put into Greibach normal form and finally an algorithm is applied to extract a

pda. from a cfg.

The important thing is that the grammar must be in Greibach normal form and

although the weak generative capacity is not affected when rewriting an arbitrary

cfg. into its corresponding Greibach normal farm. the strong generative capacity

(structural descriptions) certainly is. This is a serious drawback in natural

language research where structural descriptions are at least as important as the

language generated.

Although we Will develop in the following paragraphs parsers for cfg. 's ,

recursive t.n. 's and pda's, the last sort of systems will not be of great interest

to us. We will only mention the pda, parser for the sake of completeness.

4. TYPE 2 PARSERS

Def:i;nition 2.4. A parser f) = (A, t . , , N, F) is called a type 2 parser if the underlying

contro¥structure or driverA is a context-free grammar, a recursive tranation

network or a pushdown automaton.

We give nov.: examples of the three different parsers. We start with pda parsers

because they are the easiest to understand. Then we approach recursive transition

network parsers because they incorporate the basic ideas for a cfg. parser. Finally

we construct a cfg. parser.

Example

Let IJ =

(il ~. is

(iil t. ,

2.4.

(A,

the

is a

t., N. F) be a parser Where ,
pda. of example 2.3.

triple (a,
1

,a
1 2

,a,
3 ~. . ~.

ai,1 the position to be read in the input string

a,
,,2

the state at this task

ai.3 = the pushdown store

(iii) N:

1. the base: t
1

= (1, Q
1

, R) 0
1

is the start state and R is the initial configuration

of the p~shdown store. v = 1.

2. the recursion step:

(a) Let a rule in the pda. be6(q,a,Zl = {cp
1
,r

1
J

Then if a I(a,
1

1. q =a and Z is the
l, i. 2

for every j in the rule, 1< j < m (and v

, (pj.rjl' ,(pm,rml].

first sequence in a.
3

, we apply
'· = v + 1)

+ 1 for Y

(N(t.))(Y) for Y
l

- 30 -

= a
v' 1

= a
v,2

(b) If at a certain stage a.
3

= Z for a rule 6 (q, A, Zl then
l,

(v

a i~ 1 for y = a
v' 1

(N(t.))(Y) pj for y = a v,2 l

r iK K = ai~ 3 - z for y = a v,3

3; the restriction

tv is defined iff, + 1 I al + 1, iff I (a.
1

) E ~
l,

Civl F:

e E 0,1 if there is a task in T where aL
1

accepted)~ else 8 = 1.

Example 2,4 .1.

u 101c101 I al 7

t1 (1 ' Q1 ' R)

t, (2' Q1 ' GR)

t3 (3, Q1' BGR)

t4 (4, 01' G6GR

t5 (5' Q2, GBGR

t6 (6' 02' BGR)

t7 (7' Q2, GR)

tB (8' 02' R)

tg (8' Q2,))

8: 0 and aE L(A)

Problems 2.1.

and iff

v + 1)

A, e is O(means

(i] Although the pda. A in example 2.4. was deterministic~ the parser is nondeterministic.

How can it be made deterministic?

(ii) Construct a nondeterministic pda. accepting tww lw E{D.1~~~and parse the wards

001100, 110011.

- 31. -

Example 2. 5.

Let B' = (A. t. ~ N, F) be a recursive transition network parser and ,
[i) A is the following network:

in tabular form:

1. (a, M/1

2. (b, M/2

M/2)

M/3t)

3. (M/1, M/2, M/4)

4. (b, M/4 , M/5'1/

b

M/1

is a 6-tuple: {a. 1'ai z•a. 3'ai 4 ,a. 5 ,a. 6)
l. • l, • 1, l,

a
1

•
1

the position to be read an the input tape I

ai.2

aL3

aL4

ai,5

aLB

[iii) N :

the state

either l,

the anchor

the index

the index

of

0,

of

of

the automaton at the execution

2

the rule in the network used to

a task were recursively another

1. the base: t
1

=(1, M/1, 1, 0, 0, 1) lv 1)

2. recursive step:

of a task

construct this task.

network was called.

[a l if 1 then for every rule with index k in the network where

a new task is made (v =v +1) where

a
i,1

for y a
v .1

rk,1 for y a
v,Z

{ ~ if rk,1 is B start state,

othendse for y a
v,3

[~ [t.)) [Y)
i for y a ,

v.4

k for y a v,S

(: i-7 r k,1 j.s a start state

othen-Jise for y = a
L6 v,6

- 3.2. -

[v=v+1) [b) if a .
3

= 0 then ,,
(restriction if I[a. 1 l ,, ~ a. 2' ,, t is undefined)

v
+ 1 for Y av ~ 1

"'· 5'3 ,, for Y = a
~:.v, 2

{

2 if r
a.

5
,3 ,, E E [set of final states)

[N[t.) l [Yl= ,
else 1.

i

for Y = a
v,3

for Y = d v,4

for Y

ai,6

[c) if ai,
3

= 2 then

(res tric tio n:

for Y
[v=v+1l

if a

a >,1

r
a

5
,3

«f.s·

a.
6

, 5 ,,
for

for

0

y a

y a

t v

v' 1

v,2

is undefined

[,
if ra ,3 E F" [set of final states)

a.
6

, 5 , '
[N[t.))[Yl ,

for y a v,3

i for y a v,4

a
a. 6 • 5

for y a v,5 ,,

a a ,6
for Y a v,6

a. 6 .4 ,,

[iv l F:

We define a valid start task in ~as a task t
1

such that

the start state and ai, 5 = 0 ~

We define a valid end task in) as a task t 1 such that a.
1

= Ia\ +1 , a.
2
'"E

1, l,

and 1

\-)e define a valid path P through T (the set of tasks) as a sequence of indices where

[i) i1 is the index of a valid end task in T

[ii) .
l j +1

[iii) if a· 4 lj' 0 then P is complete.

e 0 if th,re is a valid path P through T else e

- 33 -

Example 2.5.1.

a ab

11

t1 = (1 • M/1, 1 • 0, o. 1)

12 t2 = (1. a 0, 1. 1. 1)

t3 = (2, M/2, 1 • 2, 1. 1

t4 = (2, b 0, 3, 2. 1 /t3

t5 = (2. M/1. 1 • 3, 3. 5)
t4 \5 t6 = (3, M/31',2, 4, 2, 1)

I I
t7 = (2, a ,0, 5' 1 ' 5)

t6 t7

e 0 bSCBUBS t
6

is a valid end task • p
t16

(6' 4. 3, 2, 1)

Example 2.5.2.

t1

a aabb I
t2

I
t1 =(1.M/1 1 • 0, 0,

/t3\
t2 = (1, a 0, 1 ' 1, 1)

t3 = (2,i'l/2 1' 2, 1' t4 15
t4 = (2' b 0, 3, 2. 1

t5 (2,M/1, 1 ' 3, 3, 5)
t6

t6 (2,a 0 ' 5' 1, 5) I
t7 (3' ~1/2. 1 ' 6' 1 • 5)

/t7.
tB (3' b ' 0 ' 7. 2, 5)

t
8

\t
9 tg (3. M/1, " 7' 3, g)

I '

I l t10= (4,M/3'!",2 , B • 2, 5)

t11 = (3, a 0, 9, 1, g) t10 t11
t12= (4JI/4 1 • 10,3. I t13= (4. b ' o. 12,4 ' 1

t2 t14= < 4,rl/5f, c 13. 4. 1 "'

e '"' 0 because t
14

is a valid end task. The path:

p
t14

(14,13, 12, 10, 8, 7, 6, 5,3,2, 1>
113

t14

Nmv we construct a context-freegrammar parser, the idea is to use a recursive

transition network. parser but with the ideas of the algorithm to rewrite cfg. into t.n. 's

incorporated in N .

- o4 -

Example 2.6.

Let ':} =(A, t., N, F) be a context-free grammar parser and
1

(il is a cfg,(Vn, Vt, P, S) where Vn = ~ s\ , Vt ={a,b~ and P:

1. S -+ ab

2. S-+ a S b

(ii) \ is a 7-tuple: (a i 1 ,a · 2 ,a · 3 ,ai 4 ,a · 5 ,a · 6 ,a · 7)
' l, l, ' l, l, J.,

(iii) N:

aL4

aL5

ai,6

aL7

the position to be read on the input tape

the symbol of V where the task is interested in

the position in a production after~- 2 and the first symbol on the right
1,

is in position

either 1, D. or 2

the anchor

the index of a production consulted to construct this task

the index of the task where the production was first consulted~

1, the base: t
1

= (1, S, 1, 1, 0, 0, 1) v= 1

2. the

[a)

recursive step:

Ifai, 4
1. a new production is consulted,

duction j where a.
2 1,

appears on the left:

a for Y = a
1,1 v,1

the first symbol on the right of j

2

if a

for Y = a
v,3

v,2 E. v~ for y a
v,4

therefore for every pro­

(v = v +1)

for Y =a
v,2

{~
(N(t

1
JJ[Y)=

otherwise

i for y a

(b) if (J.. 4
1,

j

~
v

a.
1,6

for

if a
2

E.· Vn
v.

otherwise

y a

for Y

v,5

v,6

a
v~7

0 then (if I (a.
1

l = a
l, i, 2

else tv is undefined)

[i) if the a
1

•
3

symbol on the right of ai.
5

is not empty

a + 1
i,1

for Y = a
1 v,

- 35 -

then.
3

symbol on the right df a.
5 ~. ~.

for Y

if a E. Vn
v,2

i

j

(iil else:

= a v,3

for Y

for y

for y

for y

=a
v,4

= a v,5

= a v,6

= a v,7

for Y a
v,2

Restriction: if a.
7

= 1 and a. 1 = I a I • ti is a valid end task,
l, -- l,

if a.
7

= 1 1 t is undefined, else
l, v

for Y =

aa
1

•
7
.s symbol on the right of the production specified in

a + 1
a.

7
,3

i

a

l,

if c 2 v,

otherwise

a.
7

, 6
l,

Vn

for y

for y

for Y

for Y

for Y

for Y

a
v,2

a
v,3

a

a
v,5

v,4

a
a.

7
,6

l,

(iv)F: T->P.

e = 1.

is such that 8= 0 if there is a valid end task in T, else

Example 2. 6.1.

u ab

t" (1 • s, 1. 1. 0, 0,
'

t2 (1 • a, 2, 0, 1 • 1 • 1

t3 (1 • a, L, 0, 1 • 2, 1)

i
\:'
'· \'

·'

- 36 -

t4 = (2, b, 3, a, 2, 1 '

t/t\t
t5 = (2' s, 3, 1 ' 3, 2, 5

t6 = (2, a, 2, a, 5, 1 ' 5

t7 = (2, a, 2, a, 5' 2, 5
12 13

t4 is a valid end task and 8= a /\ t5

t6 t7

Example 1,6,2.

f' = aabb

t = (1 ' s, 1' 1 ' a, a, 1

)\ t = (1 ' a, 2, a, 1' 1 '

t = (1' a, 2, a, 1, 2, 1

t = (2, b, 3, a, 2, 1' 1 ,, ['
t = (2, s, 3, 1' 3, 2, 5

t = (2, a, 2, a, 5, 1' 5

t = (2, a, 2, a, 5' 2, 5 t4

tA

t = (3' b, 3, a, 6, 1 ' 5

t = (3' s, 3, 1' 7, 2, 9

t = (4, b, 4, a, 8, 2, 1
16 t7

t = { 3' a, 2, a, 9, 1' 9 . I
t = (3' a, 2, a, 9' 2, 9

18 \9

r1a
t11

T12

t1a is a valid end task an'd e a

\

- 37 -

5, SOME AP~LICATIONS OF THE FILTER

It would lead us too far to develop here in detail interesting appl'ications. The

reader is .referred to Steels (1974) for algorithms to extract strings 1r..1ith labeled

bracketings and structural descriptions in the form of trees from the Set of tasks.

It is also possible to define actions (e.g. operation5 over trees) in the filter,

the result is then so called augmented transition networks.

6. SOME DESIGN REMARKS

The type 2 parsers were all what is usually called top down and breadth first. That

this must not necessarily be so may be illustrated by the following ideas of which

the formal definition is left to the reader.

(a) Top down with back track.

This can be done by using the same type of parser with the difference that each time

not all tasks resulting from N are executed but only one of them. N keeps track of

the structural description of the parsing process and if a certain task is

undefined# then it returns to the node (i.e. the task) of the parsing tree where

thers was another task resulting from the execution of N. This task is then

further executed and so on.

(b) Bottom up.

The notion of a task can also be applied to bottom up parsers# in this case tasks

carry the information from where to where a constituent goes~ what the name of the

constituent is, how it was formed, etc •.• Each task then creates a new higher

constituent if this is possible or proceeds in the inputstring. If at the end

there is a task with a constituent equal to the axiom or start symbol and ranging

over the whole input, then the word is accepted.

There are many other ways to design parsers (e.g. in mixed mode), but we think that

the basic mechanism, the creation of tasks by functions. will always remain.

7. HISTORICAL NOTES

These notes are by no means exhaustive and only cover applications for natural

language parsers. Note also thaJ~ in the paper we only treated fundamentals of parsers,

how they are worked out in praci:ice is even a more complex matter, e.g. things are

added such as probability of likslihood for a path, etc,,.

For another approach to the/.Jroblem, we refer to Aha & Ullman (1973) • Transition

networks and their equivalent·.; are used for morphographemic rewriting or orthographd.G:

decoding(cf, Kay (1974))

- 38 -

Also it is possible to consider a dictionary as a f.s machine and then consulting

the dictionary becomes again a type 3 parser. If the language accepted is the product

with itself. then the parser can find all possible parts in a word. This is an alter­

native for the Reiffler calculus (used e.g. in Verloren van Themaat (1972)),

Transition networks are also a basic data structure in the MIND system (cf. Kay,

1973) ('The chart' is interpreted as a transition network', 161) and the General

syntactic processor (Kaplan (1973». The notion of parsing with tasks is found in Kay

(1974) and some ALGOL 60 programs are given there.

Recursive transition networks or basic transition networks (BTNJ were introduced

by Woods (1970) and extended to augmented transition networks by the addition to the

model of arbitrary register-setting actions and arbitrary conditions on the arcs'

(Woods 1973, 116). They are used in many syntactic and morphological analysers: (e.g:

Woods (1973), Simmons (1974)). Also here we find the basic ideas of the parsers as

was developed in this paper. Woods describes his implementation as follows: 'the

most natural way of thinking of its operation is in terms of the notions of instanta­

neous machine configuration 1 (i.e. tasks],'and transition functions (a function which .
computes successors to given instantaneous configurat~ons),

In some earlier parsers (cfr the predictive analyzer, Kuno and Oettinger (1965)

and the selective top-to-bottom Algorithm by Griffiths and Petrick (1965) the concept

of pushdown automata was used with the result that the gramma~ must be in some nor­

mal form. See e.g. Kuno (19671 for a discussion and solution of these problems;

There have been alternative ways of parsing natural language on lower levels e.g.

PROGRAMMAR (Winograd 1972), which is a language to write parsers in, some parsers with

limited dictionaries and search strategies based on word order to back upthis lack of

information (df. Thorne (1970)), parsers resulting in distributional analysis (of

Salkoff (1973)), etc ... We think however that most of them are too much biased by

the particular grammar or language. Indeed they all have in common that the grammar

(control structure) is not input to the parser but incorporated into the format of

the parser.

It is also our experience that a task-oriented parser is very interesting when

designing larger systems where different subsystems (i.e. parsers)all interact.

- 38 -

3. Bj_bliograpry

?ho, A.V. and J.D. U~lnan:

(1973) The thenl'y of ~a:-Bin.g, tr::~ns1ation end compiling, Vol I. Parsing.Prentice

HalL Englet•tood Cliffs, New Jersey.

Chomsky, N.:

[1963) On certain formal properties of grammars. In: Lues, R. et.al. (ed)

Handbook of Mathematical Psychology, Vol II. Wiley, New York.

Griffiths, T. and S.R. Petrick:

(1965) On the relative efficiencies of context-free grammar ~ecognizers,

Comm. Assoc. Comput. Mach. 12, no 1, 42- 52. '(SL6o) unsn~

:ur 'SJ8WW8J~ ~JoM+aU UOJ+JSUBJ+ JO} Wa+SAS ~UJSJ8d IB+USWJJBdxa UV (SLBo)

Hopcroft,'§~~~ ~~~d~:o~8§ 1 i~~n~AS UOJ+BWJO}UI a~en~U8l IBJn+BN S8DU8JDS JBUni 8 ~l (ZLBo)

(1969) Formal languages and their relation to automata. 1\Bdaoomgl'leMoyiO/\ 'WJV 8~+ }o

Publi~~~h~e~6~P~~~~ L~~~~h~ue a~en~uer re~n~eu JDJ s~ewweJ~ ~JDM+au UD1+19UBJ1 (OL6~)

: 'M 'SPOOM

Kay, M.:

(1973 J The' '/n'l_li,'if'");}l;~m'I.J9:-\, :M'M!Js'tl'ff'-{~ 9'l'WJBP8DV '82en~U8I IB.In+eu ~UJPUB+S.Iapun (GL6 0 J

(1974) Automatic morphological and syntactic analysis. Mimeo. I.S. for

Mathematical and computational linguistics, Pisa.

'W8pJS+SWV WnJ+USO ~OSJ+9WS~+9W

Kaplan."flr. ,8P 8'"'l 8'"'+UBJ I9onew8~+ew •spJoM punodwoo ~o+np }O sJsoreue onewo+nv (MBol

(1973) A general syntactic processor. In: Rustin (1973),

Kuno, s.: ·~gJnqUJP3 ·~gJnqu~p3 &o A+~SJSA~un '+Jun ~oJeasa~ agenguel

(196 7J cor:Jd'Jt~f!~,;~~{,J'OM '/la'El1f\l'J:'+!'a~Bg'gi!;ii\SVGJ-P m:J<I:~~~g!ii~fi8pow V (DL6 0 J

Symposia in applied mathematics, 52-110, Mathematical aspects of com~$t~e ''d'l •auJo~l

science. American Mathematical Society, Providence, Rhode Island.

'vLBo .Iaqwao8o "+.Iodde.I ~OSJU~D8l ·vrn

Kuno, s. and A~t78~~Pt~~g~~?SJ+ 8In~U>I ueA 8J+B+Uasa.Ida~ 8p +Ua.I+Wo ua~~n+s~eB.I/\ (vLBol

(1963) MUltiple path syntactic analyzer, Information Processing - 62.

North Holland, Publishing Co. Amsterdam.

: 'l 'SI8B+S

'OOSJOUeJ~ UeS 1 U9W88J~ •a~engUBI

Minsky, M.:pue ·~~no~+ }0 8I8POW .I8+ndWOJ : (P8) AqiOJ pue ~ue~os :ur '88DU8+UBS ~SJT2U3

(1967) Co~putati~A~u~~±~~u~n~0~n~iRi~~9m~~~l~e~qwp~e~t~~~ ~8~J9M1~~.DJ+Uewas (vL6ol

Englewood Cliffs, New Jersey. : • ~ • t1 • su oww~s

Rustin, R.: ''>IJDA MaN •ssaJd ::q:wape:::l'lf ·sagen'auet IBWJD.::J (8L6l)

(1973] Natural language processing. Algorithmics press, New York.

Salkoff, M.

(1973 J Une grammaire en chEline du Franr;:ais. Analyse distribu tionelle. Ounad,

Paris. " ov -

- 41 -

APPENDIX A.

(Solutions to problems)

1 • 1 •

(l') Q ' Q 0 Q • Q 0 Q 0 Q
a. D- 1 ~ 2 - 3- D - 3

('1D1DD' is not accepted)

['010' is not accepted)

(' ODD' is accepted)

(iil The t.n. is the same

(iii J

(ivl

(vl

0

1.2.

(i) The required grammar is G=(Vn, Vt, P, A) ' a regular grammar,and Vn

{A,B,C~ ' Vt = (a, b, c}and P:

1. A -> c A 5. c -> a A

2. A _, a A 6. A -> c

3. A -> a 8 7. A -> a

4. B-> b c 8. c -;. a

- 42 -

be a regular grammar parser and ~ is the same as in

example 1.13. except for F.

Let e <

symbol.

= (P •
1

, ~-
2

) and
~.. l, e

1
• (A, A)

p . . 1 ,, is a terminal symbol.:·.and (i . 2
'·

is a nonterminal

Let P be a valid path through T, then we construct as follows:

For very element j starting from the second last one and going to the first one in

a path P, we construct

(i) a= 'c'

t1 • (1, A, 0, 0)

t2 = (2, A, 1, 2)

t3 = (2, A , 1 , 7)

t4 = (2, B, 1 , 3)

t
3

is a valid end task end

~:e 1 =<A,A>

e
2

=<c,A)

(ii) a = bao

t
1

= (1, A, 0, 0)

and P .
1

= I (a .
1

- 1), P .
2

= a
l, J· 1, j,2

a pair (p ·1'P.2> 1, J.,

p • (3, 1)
t13

(the parser blocks because there is no production as required in the recursive step)

is not accepted by G.

(iii) a cabacccabaa

t1 . (1 , A, 0, 0)

t2 . (2, A, 1 , 1)

t3 . (3, A, 2, 2)

t4 = (3, A , 2, 7)

t5 = (3, B, 2, 3)

t6 = (4, C, 5, 4)

t7 . (5, A, 6, 5)

t8 • (6, A, 7, 1)

tg . (7, A, 8, 1)

t1o= < 8, A, 9, 1)

t11 = (9, A, 10, 6 >
t12= (9, 8, 10, 3)

t13= (9, A, 10, 7)

t14" <10, c, 12, 4)

t15·<11, A, 14, 5)

t11i' <11 , A , 14, 8)

t17·<12, A, 15, 2)

t 18 =<1z, 8, 15, 3)

t19=(12, A, 15, 7)

- 43 -

is a· \1ia1id end task and P is (19, 15, 14, 12, 10, 9, B, 7, 6, 5, 2, 1)
t19

81 (. A• A

82 (c, A

83 a, B)

8 4 b, c)

85 (a: A

86 (c, A

87 c. A)

88 = (c, A)

8g a, B

8 1 o= b, c
8 11 = a, A

8 12= (
A a,

As one can see 8 is in fact a description of the tree which corresponds to the

generation of the string.

(ii) The parser is equivalent to the regular grammar parser of example 1.13.

except that the t.n. is A:

•

and the recursion step goes as follows:

For every rule rk . is equal to rca)
,J i,1

a +1 for y a
L1 v ,1

(N(t.JJ CYJ r k,3 for y a
v,2

l

i for y a
v,3

k for y a
v.4

(iii) The parser is the same as in example 1.13. except for F.

is a
i.2

Let 8= 0 i-f a is ambiguous, else EJ= 1. F: T -> El is such that if there is

more then one valid end task in T, 8= 0, else 8 = 1

- 44 -

2.1.

(i) if the pda. is deterministic. then j in the recursive step is always equal

to 1. Henes ws change the condition in 2[a):

'If (,,,) ws apply for the pair on the left side of the rule (...)'.

(iil The pda is:

M =((Q
1

, Q2 ~ , ~0,1}, (R,B,G~ ,6 , Q
1

, R, 0 /'

1. 6 (Q1' 0, Rl =f(Q1, BRl\

2. 6 (Q1, 1' Rl =((Q1, GR)j

3. 6 (Q1' 0, B) = {(Q1' BBl.{Q
2

,A)}

4. 6 (Q1' O,G l = \(Q1, BGl}

5. 6 (Q1' 1 , Bl =I(Q1, GBJ!

6. 6 (Q1' 1 ' Gl ={(Q
1

, GG), (Q2,All

7. 6 (Q2, 0, Bl =((Q2,Al\

e. 6 (Q2, 1 ' G) =\(Q2,A))

9. 6 (Q1' A, Rl = \(Q2, A l~

10.6 (Q2, A, Rl = !(Q2, A0

