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ABSTRACT 

In this paper we approach the following problem: Given an arbitrary 

language describing device (e.g. a grammar)~ construct an algorithm which 

computes structural information for an arbitrary string of the. language 

described by this device. Algorithms performing this task are called parsers 

and the problem itself is known as the 'recognition' or 'parsing' problem. 

In the first part three devices accepting the set of regular or type 3 

languages are presented: transition networks, finite state machines and 

regular grammars. Then parsers are cons true ted with these systems as data. 

Basically a parser works an n-tuples (called tasks) containing all sorts 

of information, e~g. what symbol should be read in the inputstring, which 

rule can be applied. etc •• I I 

Starting from a given initial task, new tasks are constructed from previous 

tas~s by means of a recursive function. The execution of the function involves 

scanning the inputstring and consulting the grammar. After a finite number 

of steps. no more tasks can be created and from the set of tasks produced 

during the computation structural information can be filtered out. 

In the second part of the paper three devices accepting the set of context­

free or type 2 languages are presented: recursive transition networks. pushdown 

automata and context-free grammars. Then parsers are constructed for these 

systems with the same basic strategy. 

Emphasis is laid on the construction of a fundamental theoretical framework 

rather than the description of sophisticated parsers and their implementations. 
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This paper is an attempt to create a theoretical frameworl'\ for parsers. Parsers 

are systems taking as ~ grammars or other language describing devices and com­

puting structural information for arbitrary strings of the described language. 

It is clear that structural descriptions are of great importance . It is strange 

therefore that there is no interest within theoretical linguistics in finding exact 

methods to recognize structural information for a given inputstring according to a 

given grammar. 

Although we approach this subject from a formal point of view~ the main ideas 

and the final aim of the study arose from research in natural language processing. 

We personally think that only a carefu.l (and therefore formal) study of the models 

underlying the implementations will lead to sound results. 

Due to time and space limits we cannot but sketch a framework. It is possible 

to bL!ild more efficient (and therefore more complicated) parsers~ but we must 

start somewhere. 

The paper has two parts: 

(i) type 3 parsers: i.e. parsi~systems for type 3 grammars, finite automata or 

transition networks. 

(iiJ type 2 parsers: i.e. parsing systems for context-free grammars, pushdown 

automata and recursive translion networks. 

In natural language processing type 3 grammars can be used for the construction 

and consultation of the lexicon and for orthographemic rewriting. Type 2 grammars 

can be used for morphological and syntactic analysis. Together both types of 

systems lead to a complete automatic analysis of the surface structure of a 

natural language. References about applications are given in 2. 7 •• 

We included some problems which are solved at the end (in appendix A.) to help 

the reader in understanding the text. The introduction and emphasis an transition 

networks must be seen in the light of the growing popularity of this form of 

representation especially in computational linguistics. 

Many ideas expressed in this paper are influenced by the seminars at the I.S. 

far Mathematical and Computational Linguistics in Pisa by M. Kay and W. Woods. Th~ 

background for this study was provided by the exciting seminars in formal systems 

by prof. dr. G. Rozenberg. I thank the reading committee of the Antwerp papers in 

linguistics w~o accepted this paper for publication and especially prof. dr. R.G. 

Van de Velds who took the pain to examine with great care the manuscripts and by 

whose remarks the readibility of the text could be highly improved. 

Of course the author is fully responsible for all remaining errors. 
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1. Simple transition networks and related systems. 

1. TRANSITION NETWORKS 

Definition 1.1. A simple transition network (for short t.n.) is .a set of states repre­

sented by circles and a set of transitions from one state to another represented by 

directed labeled lines between the circles. The labels are the conditions for a transition 

to take place. 

The initial or start state is marked by a little arrow. Final states are indicated by 

a double circle. 

Example 1.1. The following diagram 0 is a particular instance of a t.n.: 

0 

1 

A transition network is a sort of control structure, that is a pattern for a series 

of actions. By means of a transition network we can 'scan' a word and tell at the 

end whether it is accepted or not. To do this we proceed as follows. 

Take for example the word '110100'. The first state is the start state in this 

case Q0 , Then we look at the first symbol of the word (here 1] and follow the line 

in .the diagram with that particular symbol as a label. Doing so ~t~.•e arrive in Q1 : 

Q
0 
~ Q

1 
We repeat this action and obtain the following sequence of transitions: 

Q1,Q~Q4Q~ Q1 !'. Q 2' At 1 0 3 2 
and also we are in the state Q2 . 

this moment there are no symbols left in the word 

(Note that Oo is the final state), If this is the 
" case then we say that the word is accepted by that particular t.n .• 

As a second example consider the word '1010'. The sequence of states is: Q0 ~ Q
1 
~ 

0
2 

'!,.. Q3 ~ 0
0

. The word is not accepted because 00 is not a final state. 

The set accepted by the t.n. is the set of all sequences in~D,l} 4 , i.e .. combinations 

with the alphabet 0,1 containing at least one 0 and one 1 but an odd number of 

D's and an odd number of l's. 

Problems 1.1. 

(i] Are the words '10100', '010' and '111000' accepted by 0? 

[ii) Turn D into a t.n. accepting all sequences info.11*containing both an even number 

of D's and an even number of l's 

(iii) Construct a t.n. accepting all strings in fo,l)•such that there is a 1 immediately 

following a 0. 

(iv) Construct a t.n. accepting all sequences of ambon and n,m;> 0, 
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(v) Construct a t.n. accepting all strings in(o,l}~containing any number of l's and 

one and only one 0. 

Definition 1.2. A simple transition network is called deterministic iff there are no 

states from which more than one line is leaving with the same label. 

A simple transition network is called nondeterministic if it is not deterministic. 

All the examples (included the problems) so far discussed are determininistic t.n. •s. 

Example 1.2. The following t.n. accepting strings Onlm for m,n ;?-= 1' is a nondeterministic 

t. n.: 

a l 

Representation The tabular representation of a t.n. is a list of triples where the 

first element denotes the label or condition, the second the first state and the third 

the state after the transition is made. 

The order of the list is irrelevant and we number the triples for convenience. 

The tabular representation of the t.n. in example l.l. is: 

1 . ( 1 • Qa Q1 ) 

2. ( 1 ' Q1 Qo > 

3. <a. Q1 Qz > 

4. <a. Qz Q1 ) 

5. (l, Qz Q3 ) 

6. (l, Q3 Qz > 

7. < a. Q3 Qo > 

B. (a, Qa Q3 ) 

We will often leave out braCkets and comma's. 

The tabular representation of the t. n. in example 1.2. is: 

1 . <a. Qo Qo > 

2. ( 0, Qa Ql ) 

3. ( 1 • Ql Ql ) 

4. (l, Q1 Qz > 

A triple in the set will be called a rule r. The i-th triple is denoted as r. and the , 
j-th element r .. 

'·J 
E.g. in the last tabular representation r 1 •2 = Qa, r 3, 3 = 01 and 
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2. FINITE AUTOMATA 

An equivalent way of stating the same information as was expressed in a t.n. is 

the following. 

Definition 1.3. Let M be a system called a finite automaton or finite state 

machine (for short f.a.), specified by a quintuple IK,Z,5,Q
0

,E ~.Where K is a finite 

nonempty set of states. Z is a finite alphabet, 5 is a mapping from K X Z into K, Q
0 

in K is the initial state and E ~ K is the set of final states. 

5 is called a transition function. It has the form 5 (q,al = p and q is the first state, 

p the second and a E ~ 

corresponds to the t.n.: 

is the 'condition' or input s~mbal. The expressionS (q,a) = p 

Note that 5 is a recursive function, namely S (q. ·A) 

5 (q,xal = 5 (5 (q,xl,al where x E Z..- en a E Z . 

q (A is the empty string) and 

If for a word the final state reached after execution of 5 (q,x) is in E, x is accepted. 

More formal. Let a configuration be a pair ( a·,fj) and a is a substring of the input 

and fj the state active when reading this input, We define the relation t-- between 

two configurations such that if~ ax.~) is a configuration then i'lx.~)l-( x•r> if there 

is a 5 (a, ~ J = r 

~ is the reflexive transitive closure of r- . The language accepted by an aUtomaton A 

is LCAJ = {x lcx.Q0> F-<A.r> , r E E I 

Example 1.3. The particular instance of a f.a. eq~ivalent with the t.n. of example 1.1. 

isM= ( K. z. 5, Q0 , E >where K fo 0 .o1 ,Q2 , Q3\. 'l: = {o.1}. E =[o2 } and 

5 CQo.o J 03 6 CQz.Dl 01 

5 c0o· 1 01 5 C0z·ll Q3 

B co1 ,o Q2 6 co3.oJ Qo 

5 co1.1 oo 5 co3,ll Oz 

Let us do an example with the word '10'. 6 CQ
0

,1D) 

'10' is accepted because Q
2 

is in E. 

P;s one can see a finite automaton is just an algebraic definition of a transition network. 

The reader is advised to rewrite as an exercise every t.n. so far discussed into the 

corresponding f.a .. 

Definition 1.4. A finite automaton M =(K, z. 5,Q
0

, E) is deterministic if 6 is a 

mapping of K X ~ into K. 

A finite automaton M = (K, ~. 8, o0• E) is nondeterministic if 8 is a mapping of 

K X L into subsets of K. 
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So the difference is that 8[q,a) is in the case of nondeterministic automata resulting 

in a set of states and not just only in one state. 

Example 1.4. The equivalent automaton of example 1.2. is: 

M =( K, L, 6, Q
0

, E ) and K 

6CQ
0
,oJ 

6 [Q1,1 ) 

= foo· 01· 02t· :E 

={oo • 01l 
= {o.11 . E ={oL1and 

=f01· 02\ 

Obviously M is nondeterministic. 

3. REGULAR GRAMMARS 

Another related system which is equivalent with a t.n. [and thus with a f.a,) is 

a regular grammar. 

Definition 1.5. Let G =(Vn, Vt, P, S')be a system called a regular grammar, where 

Vn is a finite nonempty set of symbols called the nonterminal symbols~ Vt is a finite 

nonempty set of symbols called the terminal symbols and Vn n Vt = 0 , P is a set 

of productions of the form A -7 a 8 or A-+ a where A,BE.Vn and aE Vt. Sis one 

distinct symbol from Vn called the start symbol or initial axiom. The symbol '-7' 

means 'is rewritten as' and in any string where a symbol appearing on the left hand 

side is present, we can replace [rewrite) this symbol by the right hand side of that 

production. 

Starting from the axiom S and rewriting until no elements of Vn are left, we can 

generate a string of the language. 

More formaL if v = xAy and there is a production A~ a then xAy""' Xu.,y, 

~is the reflexive transitive closure of~ and L(G) (the language described by G) 

is { x I S ! x and x EVt ~ . 

Example 1.5. The particular instance of a regular grammar equivalent with the t.n. 

of problem 1. [ii) is G =( Vn, Vt, P, S) where Vn ={0
0

, 0
1

• 0
2

• 0
3

} 

S = o
0 

and P: 

1. Oa-+ o Q3 6. Qo -+1 Q1 
2. Of' 0 02 7. Q1 -+1 Qo 
3. 02-+ 0 Q1 B • 01 -+1 

4. Q3-+ 0 9. Q2 -+1 Q3 
5. 03-+ 0 Oa 1 o. Q3 -+1 Q2 

We generate the word 'llOlCOlO' as follows. The label on ::> is the number of the 

rule applied. 

Q
0 

i 10
1 

! 110
0 
~ 1100

3 
~ 11010

2 
t 110100

1 
~ 11010DQ

2 
~ 1101001Q

3 
! 11010010 

The reader can verify that the word '101' can not be generated by this grammar. 



A production A~ a 8 is equivalent with a transition function 6 (A, a) B or with the 

t_.n. : 

If B is a final state then besides A~ aB also the production A ~ a must be present. 

By this method we can easily rewrite regu·;lar grammars into transition networks 

or finite automata or vice-versa. The reader is advised to rewrite all t.n. 's so far 

discussed into regular grammars as an exercise. 

Definition 1.6. A regular grammar is called deterministic if there are no productions 

with the same nonterminal at the left AND with the same terminal as first symbol on 

the right. 

A regular grammar is called nondeterministic if it is not deterministic. 

All grammars so far discussed are nondeterminstic 

Example 1.6. Let G =( Vn, Vt, P, S} be a regular grammar and Vn =[ Q0, Q1. Q2. Q5. Q3. 

vt = {o,l~ . s = Qo and P: 

1. Qo -+ 0 Q1 6. Q -+ 1 Q1 0 
2. Q -+ 

1 0 Q3 7. Q -+ 
1 1 Q5 

3. Q -> 0 Q4 8. Q2 ... 1 Q3 2 
4. Q3 ... 0 Q1 8. Q3 

... 1 Q2 

5. Q4 ... 0 10. Q5 ... 1 

Obivously G is deterministic. 

4. COMMENT 

Q4 1 

A lot is known about the previously described systems. We have characterization theorems. 

we know that the languagesaccepted or generated by these systems form a Boolean algebra 

of sets, we have sound mathematical proofs about their equivalence and so on. The 

reader interested in these matters is referred to Hopcroft g Ullman (1868), Minski (1867), 

Salomaa (1973). 

In this paper we will further concentrate on one topic: how can these systems be set 

to work. For this purpose we will introduce and investigate formal systems called 

parsers, which act as meta-systems. Basic emphasis will be laid on 'recognition' rather 

than 'generation'. 
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5, PARSERS 

Although the systems in the previous paragraphs were clearly defined, the actions 

undertaken for recognizing strings of a language by means of these systems were 

rather vaguely defined. 

To overcame this situation we riow introduce a device called a parser. A parser 

is a meta-system , it takes as data a transition network, a finite state machine, 

or a regular grammar and then performs certain jobs on a given input such as decide 

whether given strings are in the language, or extract structural information from 

the parsing proces, and so on. 

A parser consists of 4 main parts: 

(i) A generating or recognizing system such as a t.n., a f.a .• or a regular grammar. 

called the driver of the parser. 

(ii) A set of tasks T , these tasks are n-tuples containing all sorts of information. 

Tasks are created by the execution of previous tasks. In the definition of a parser~ 

one defines the form these tasks will taken. 

(iii) A function N in which it is stated how the execution of tasks must proceed. 

N has 3 parts: (a) the base where t1.' the first task, is given by definition, (b) the 

recursion or recursive step ~ where it is defined how a task can be computed from 

another one~ and (c) the restriction where a certain condition is stated far (b) to 

take place. 

(iv) Finally a parser has a means to filter out the required information from the set 

of tasks. 

In summary: 

Definition 1 .17. 
(,:J 

A parser0 is defined by a quadruple (A, ti' N, F) where 

(i) A is either a t.n., or a f.a. or a regular grammar. A is called the control structure 

or driver. 

(iil t. is an n-tuple called a task 
l 

(iii) N is a function computing new tasks from old ones 

(iv) F is a function F: T ~ 8 where T is the set of tasks and 8 is a set of structural 

descriptions. F is called the filter. 

To make the story complete, we need a final meta-system (in fact a meta-meta-system 

seen from the control structure) on which parsers can be executed~ this system will 

be called the parsing machine. 

Definition 1.8. A parsing machine PM is defined by a 7-tuple (I,IR,AT,AR,CPU,T,8 > 
and 

(i) I is a linear input tape containing symbols of the alphabet 

(iil IR is a device reading symbols from I 

(iii) AT is a place to store the control structure 

[iv) AR is a reading device for AT 

(vJ CPU is the central processing unit 
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lv"i) T is a set of tasks produced during the computation 

(vii) e is the resulting output. 

Graphically: 

I 

}-it\@\@\ \ ® (©. \ 

AT I~ CPU 

C0-
1---

T -

In general a parser is performed on a parsing machine as follows: 

(i) Initially: 

- the underlying control structure A is stored in AT 

e 

- the central processing unit is programmed to perform the functions specified 

in N and F. 

- an inputward is written on I 

the initial task t 1 is stored in T 

(ii) Second: The parsing machine is set to work such that the central processing 

unit creates new tasks by executing tasks from T according to the functions in 

N. These new tasks are again being stored on T and so on. The computation involves 

reading of the inputtape I and consultation of the control structure A. 

(iii) Finally. when no tasks on T are left to be carried out, the central processing 

unit computes 8 by way of F. 

We are not interested here in the formal properties or the power of the parsing 

nachine, it is clear however that it is some sort of register machine. In practice 

we simulate parsing machines on the currently available computers. 

For the rest of the text we will assume implicitly the parsing machine. 
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6, TYPE 3 PARSERS 

Definition 1.9. A parserf! = <A~t.,N.F) is caliled a transition network parser, 
l 

a f.a. parser or a regular grammar parser if A is resp. a transition network. 

a f.a. or a regular grammar. 

Example 1.7. 

(i) A is the 

t:? Let \) = ( A, t., 
l 

following t. n. (cfr. 

0 

In tabular form: 

I. ( 0, 00 02) 

2. < 0, 01 03) 

3. < 0, 02 oo> 
4. < 0, 03 01) 

5. (I, 00 01) 

6. (I, 01 OrJ 
7. < I. 02 Q3) 

8. (I, 03 Q2) 

(iil t. is an ordered pair 
l 

where ai,l is the position 

N, F) be a t.n. parser such that 

problem I. (ii) J 

0 

< ai,l . ai. 2 ) 

on I to be read by IR 

a i, 2 is the state active when executing the task 

[iii} N is defined as fallows: 

1. The base t
1 

= < I. o
0 

> CQ0 is the start state) 

2. The recursion step: t 1+
1 

is computed from t 1 by N and 

-{ 
a + 1 

1.1 
for Y = 

for y = a 
1+1,2 where rk, 1 
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3. The restriction: 

N is defined iff a. 
1 

+ 
l, 

1 < lal 

3 k (I( a 

+ 1 where a is the inputword and I a I denotes 

the length of a , and 
L1 

8;;. k> 0 

(ivl F: T -. 9 where 9 is either 0 or l. If the last task ti.r(ai,
1
.a i,Z}is 

such that aLi = I al + 1 and a1 , 2 is a final state in A, then 8 = 0 else 

e = l. 

(0 when accepted, 1 if not accepted). 

The recursion step should be understood as fol.J:ows: N is a function computing 

n-tuples from n-tuples. t. is the input and t. 
1 

is the result of the computation. 
l l• 

Y is a dummy element for the elements of the n-tuple. Thus the function results 

in a. 
1

+1 for Y =a. 
1 1

. This means the first element in then-tuple t. 
1

, i.~. 
l, ~+ • l+ 

aif4 , 1 becomes a1 , 1 +1 • The second element of ti+i , namely a1+1 , 2 becomes rk, 3 
with the requirement that rk, 3 = I(ai, 1 J and rk, 2 = ai, 2 

Example 1. 7 .1. 

a = 1001, I al 4 

t
1 

= < l, Q
0

} (the basel 

We compute t
2 

from t
1 

by the recursion step: 

(N(t
1

)) (Y) ~ 

So: t
2 

=( 2,Q
1
> 

t3 (3,03} 

t4 < 4,Q} 

t5 (5,0o> 

{ a1~1 
+ 2 

r5,3 = Q 
1 

because 

and 

for y = a1+1,1 

for y 
= a1+1,2 

r5,1= I(a1,4) 

r5,2 = a1,2 = 0 
0 

a2,1 

a2.2 

I ( 1 l 1 

t
6 

is undefine'd because a
5

,
1 

+1> lal + 1 (restriction) 

Filter: 

e is o because a
5

, 
1 

=I al + ·1 • a
5

,
2 

is Q
0 

and Q
0 

is a final state • Conclusion 

a is accepted by the transition network. 

Exam2le 1.7.2. 

0 = 1000 , I al 4 

t1 
t2 

( l, 00) 
(2.01? 
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t3 =13,03) 

t4 =<4.o4> 

t5 = ( 5. 03 ) 

t
6 

is undefined and e = 1 because Q3 is not a final state. 

Example 1. 7. 3. 

a= 1010011101 

ti = < 1. o0 

t2 = ( 2,01 

t3 = ( 3. 03 

t4 = < 4. o2 

t5 = < 5. oo 

, I a I 10 

t6=<s.o2> 

t7=<7.o3> 

t
8 

= ( 8, 0
2 

) 

t9 = ( 9. 03 ) 

tiD=< 10,01 

tii= ( 11,0J 

t12 is undefined and e 0 because o
0 

is a final state. 

It is easy to see that a parser (at this stags) simply mimics ths behavior of the 

actions described when deciding whether a string is accepted or not by a t.n. (cf. p.3 ), 

Note also that the input is in fact independent of the parsing system. We could have 

taken another t. n. as well. (Of course there must always be one). 

An interesting thing is also that we can use the same construct qnot only for a t.n. 

but also for a f.s. machine and for a regular grammar. 

Example 1.8. 

Lst fj = ( A, t .• N, f ) be a f.a. parser such that 
l 

(i) A =<K.~.o. Oo· E) is a f.a. and 

K tOo• 01' Oz' 03 '\ 
L ~D,il 
E { Oo \ 

and 5 lo
0

,oJ Oz 5 lo0 .1J 01 
5 (0

1
,0l 03 5(01.1) oo 

5 lo
2

.oJ Oo 5[Q
2
,il 03 

5 (03,0) 01 5 (03 .1) 02 

(ii) t. is an ordered pair ( a. 1 • ai,2 l l, 

where a. 
1
is ths position on I to be read by IR 

l, 
a . 

i,2lS the state active when executing ths task 

(iii) N is defined as follows: 

1. the bass t
1 

= < 1, 00 > (00 is the start state) 

2. the recursion step 

t 1+
1 

is computed from t 1 by N and 
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{ a. + 1 for Y= ai, 1 >,1 
11'-Ht. J J (y) , 

6 (a. 
2

, I(a. 1)) for y aL2 ,, ,, 

3. the restriction 

N is defined iff a. + 1 ..:: I al + 1 where a is the input word and I al 
, '1 

denotes the length of a and iff I (a. 
1

) "-~ . 
l, 

(ivl F:T.., E> where E> is either 0 or 1. If the last task 

ti = (ai,
1
,ai,

2 
) is such that a:i,i = la-t + 1 and ai,-fE. then f) 

Example 1. 8 .1. 

a = 1001 ,I al = 4 

T: 
t1 ( 1 '00 ) 

tz (2,01) 

t3 ( 3' 03 ) 

t4 (4,01) 

t5 < 5, o0 > 

t6 is undefined because a + 1 > I al 
6' 1 

+ 1 

0 else e = 1. 

8 is 0 because aS, 
1 

language accepted by 

I a I + 1 and a 
5

, 
2
e:E. In other words <rEL(AJ and L(A) is the 

the automation. 

Note that the only difference between ex. 1.7. and ex. 1.8. the controlstructure is 

and the way in which the control structure is consulted in N. The reader is advised to 

try ex. 1.7.2. and ex. 1.7.3. on this parser. 

Note also that the set of tasks T produced during the computation is the same as 

in example 1.7.1 •. 

Example 1.9. 

<-' Let C)= (A, ti, N, F )be a regular grammar parser and 

[i) A= <vn, Vt, P, s,> fs a regular grammar where 

Vn { 0
0

, 0
1

, 0
2

• 0
3

• o4 • 0
5

) 

vt (o.1 ~ 
s o. 
P: 1 . 00 ~ 0 02 6. Oo ~ 

01 
2. Q, ~ 0 Q3 7. 01 

~ Q 
' 5 

3. Q2 ~ 0 04 8. 02 
~ 1 02. 

4, 03 ~ 0 ~1 9. Oo ~ 
02 0 

5. Q4 ~ 0 10. 05 
~ 

liiJ t. lS a pair ( " i,1' 
a , i,2 

~t..,'here aL 1 = the position to be reed on tr,e input task 



~ 
2 

= the nonterminal ,, 

(iii) N is defined as follows: 

1. the base t
1 

= ( 1. Q0 ) 

lQ
0 

is the start symbol) 

- 14 c 

at this task 

2. the recursion step: t
1 

+ 
1 

is computed from t 1 by N and 

for y =a 
1+1~1 

(N(t. JJ ( y) , 
{

ai,1+1 

The last symbol of a procuction n where the left side of 

3. the restriction: 

n is a. 
2 '· 

and the first symbol of the right is I(a i ,
1 

J 

for Y = a 1• 1 , 2 

N is defined iff a. 
1 

+ 1 .;;; I al + 1 where a is the inputword and I al denotes 
'· the length of a, iff I(ai, 1 ) E Vt and iff a i, 2 I A· 

(iv) F: T->0 where e is either 0 or l. If the last task t. o( a i 
1 

,a. _ ) is 
l . 1, L. 

such that a . 
1 

= I a I + 1 and a . 
2 l, l, 

=A then e = 0, else e = 1. (means 

cannot be generated), 

(Note if a production is of the form A -')o- a then we assume A (the empty string) after 

a:A->aAl 

Example 1.9.1. 

a = 000, I a I = 3 

t1 = ( 1 ' Qo > 

t2 = ( 2' Q2 ) 

t3 = ( 3' Q4 ) 

t4 = ( 4, A ) 

8 is 0 because t
4 

is such that a 
4

,
1 

by A. 

Example 1.9.2. 

a = 01100 ,I a I 5 

t1~<1.Qo> 

t2=(2,Q2) 

t3=< 3,Q3) 

t4=( 4,Q2) 

ts==< s,Q4 > 

t 6 =<6.A) 

8 is 0 because t =lui+ 1 
6. 1 

Example 1.9.3. 

a = 1110 I al 4 

+ 
" 1. Qo > ''1 

t" 
' 

o(2,Q1) 

t3 o(3,Q5) 

t4 o( 4, A ) 

and 

I al + 1 and a 
4

, 
2 

= A therefore a is generatE 
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t
5 

is undefined because t4 ~ 2 =A. • El is 1 because in the last task a 4 ~ 1 "tal+ 1. 

Again the similarity between example 1 .9. and example 1.7. and 1.8. should be 

obvious. For this reason we will call t.n. parsers. f.a. parsers and regular grammar 

parsers type 3 parsers. Moreover in the example we always used a deterministic control 

structure. Therefore the parsers of example 1.7., 1.8. and 1~9. belong to the class 

of deterministic type 3 parsers, 

Definition 1.1D. A parser D =(A, ti, N. F) is a deterministic type 3 parser if A 

is a deterministic t.n. or a deterministic f.a. or a deterministic regular grammar. 

Before we discuss in further detail what we can do with parsers besides deciding 

whether a string is in the language or not, we will construct nondetermir\stic 'type 3 

parsers. 

7. NONDETERMINISTIC TYPE 3 PARSERS 

a Definition 1.11. A parser~= (A~ t.~ N, F) is a nondeterministic type 3 parser , 
iff A is a nondeterministic t.n., a nondeterministic finite state machine or a 

nondeterministic regular grammar. 

The only difference between deterministic and nondeterministic type 3 parsers 

is that instead of executing function N only once, it must be executed as many 

times as this is possible. So a nondeterministic t.n. parser is equivalent with a 

deterministic t.n. parser except for the recursion step where N must be executed 

for every ruler where rk, 1 = I(a1 , 1 J and rk, 2 ~ ai~ 2 . Similarly for a 

nondeterministic f.a. parser N must be executed for every element in the set 

resulting from S (a, ~,I(a, 
1

)J and for a regular grammar parser N must be executed 
l,u. l. 

for every production n where the left side is equal to a. 
2 

and th8 first symbol on 
'· the right side is equal to I( a. 

1
l. ,, 

From now on v will be a variable denoting the number of tasks created; each time 

a new task is created vis augmented by 1. Also instead of the last task we will 

require just the presence of the task specified in F. 

We give in full detail a nondeterministic f,a, parser and expect from the reader 

that he \.\rill construct a nondeterministic t.n. and a nondeterministic regular grammar 

parser. 

Example 1.10. Let (l = (A, ti' N, F ) be a nondeterministic f,a, parser and 

Q1. Q2. Q3. Q4~ (i) A = ( K, ~ S , Q
0 

, E >is a nondeterministic f.a. where K fQo• 

~ ={o.d • E ={o2. Q4l and 

s ro
0

.DJ =(oo. Q3 \ S(Q
0

.1l =f0o· Q1 ~ 
s (Q1,0) = 0 (the empty set) 

0 (Q". 0) =\ 02) O(Q1.1) = ( Q2 \ 
'-

s (Q3. 0) = (o4 \ S(Q
2

.1l = {Q2) 



- 16 -

( ii) t. 
l 

is a pair (a.1,a.2) 
l, l~ 

6 (03,1) = 0 

6 Lo4.1l =fo4 \ 

where a . 
1 

= 
l, 

a . ,2. = 
l., 

the position to be read on the input tape 

the state of the automaton at this task 

(iii) N is defined as follows: 

1. the base : t
1 

= < 1, o
0 

) and v 1 

2. the recursion: 

For every element in the set resulting from S (ai,
2 

, I (a
1

,
1 

J) a new task (v:. v + 1 J 

is made (if the set is empty then no tasks are made), such that: 

{""'. 1 for Y = a 
v .1 

(N(t.)) (Y) 
l 

S (ai,2' I(a. 
1

JJ for Y = a 
v,2 l, 

3. the restriction: 

N is defined iff 

!Length of a and 

a. +1~1al +1 l,1 
where a is the inpu tword and l.al denotes the 

(iv) Finally: 

F: T-+El 

such that 

Examule 1 .1 o .1 • 

a = 1100 . 
t1 =< 1. OJ 
t2 =< 2, OJ 
t3 =( 2,01) 

t4 =<s.oo> 

t5 =( 3,Q1 ) 

t6 =(3,0L> 

t7 =<4.Qo> 

ts =(4,Q3) 

tg =( ~. Q2 ) 

t1o=< 5,Qo 

t11=( 5,03 

t12=(5,Q4) 

t13=( 5 ' 02 ) 

iff I( a . 
1 

) E ~ 
l, 

where E>Ep,l~ 
a =lal+1 

i .1 

I al 4 

and e 
and a. 

2
E 

l, 

0 

E. 

iff there is a task in T ··t . ' i 

a.; L(AJ because t
12 

is a task having in aL
1 

I al + 1 and in ai,
2 

E E. Also t
13 

has 

this property If this is the case then we say that the word is ambiguous according 

to A. 
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Definition 1.12. The structural description of the parsing process will be denoted 

as a labeled plane-rooted tree where the top node is the first task (t
1

J and for all 

tasks emerging by N from a task t 1 ~we draw lines between these tasks and t
1

. 

Example 1.11. 

The s.d. for the parsing process performed in example 1 .10.1. is: 

Example 1 .10. 2. 

a= 0101 , I a I 4 

the s.d. for this parsing process: 

t1 < 1. Qo > 

tz < z. Qo > 

t3 (2,Q3) 

t4 < 3. Qo > 

t5 (3,Q1) 

t6 < 4. Qo > 

t7 ( 4. Q3 ) 

te < 5. Qo > 

t9 ( 5. Q1 ) 

a is not in L[A) because there is no task a. 
2

E E 
l' 

and 

Example 1.10.3. 

a DOll 

t1 =< 1,Qo > 

tz= <Z,Qo > 

tf ( z.. Q3 ) 

a 
L1 

=I a I + 1 



t4 ( 3' Qo > 

t5 ( 3, Q3 ) 

t6 ( 3, Q4 ) 

t7 ( 4' Qo > 

te ( 4' Q1 ) 

tg ( 4' Q4 ) 

t10= ( 5' Qo > 

t11= ( 5' Q1 ) 

t12= ( 5, Q2 ) 

t13=(5, Q4 ) 

t
12 

and t
13 

are 

a is in L(A). 
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bath tasks where is I al + 1 and a . 
2 l' 

E E therefore 

Note that the order in which the tasks are carried out is of no importance (but they 

should all be carried out once !). To illustrat~··this we do an alternative way 

for example 1.10.3 .. 

Example 1.10.4. 

a = DOll 

t1 <1,Qo> 

t2 < 2, Qo > 

t3 ( 2. Q3 ) 

t 4 < 3. Qo > 

t5 ( 3. Q3 ) 

t6 < 4,Qo> 

t7 (4,Q1) 

te < 5. Qo > 

tg (5,Q1) 

t10= ( 5' 02) 

t11= ( 3 ' 04) 

t12= ( 4,Q4) 

t13= ( 5' 04) 

In this case t
10 

and t
13 

are the tasks fulfilling the conditions in F, therefore the 

result is the same. Note that the structure of the parsing process is the same, only 

the indices of the tasks are different. 

8. SOME APPLICATIONS OF THE FILTER 

Now 1.111B try to show that we can do better with parsers than just say that something 

is in the language or not. We want to remember after the computation HOW its was done. 
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For example we want to find out whether the input string is ambiguous or what the 

possible ways of deriving a string are, what the structural description is, what 

rules were used to generate a given string in what states the automaton was~ etc •.• 

We will give some examples but expect the reader to try aut other applications. 

The basic strategy is the following: put in a task all information that is 

necessary for a given job and then design your filter F such that this necessary 

information is extracted from the task and then used to obtain the desired result. 

Example 1.12. 

The aim of this parser is to accept as data a f.a. and to compute the distinct states 

of the automaton when accepting a given inputstring. 

Let fJ = (A, ti' N, F) be a nondeterministic f. a. parser where 

(il A is (K, ~. 6, Q, E) (cf. e.g. 1.10.1 

K = { Qo' Qj • Oz· Q3, 04 J 
6 (Q

0
.oJ 

6(Q1,0) 

6 (Q2,0) 

6(Q3,0) 

6 (Q4,0) 

{ Qo, 

0 

=\OzJ 

= ~Q4 \ 
=\04 \ 

~ ={o.l~ , E 

03\ 6 (Qo, 1) 

6(Q1,1) 

6 (Q2,1) 

6(Q3,1) 

6(Q4,1) 

=f0z· 0!1~ 
{ 0o· 0 1~ 
\Oz} 

~ Q2 ~ 
0 

l 04 l 

and 

where a
1

,
1 

is the position to be read on the input tape 

is the state of the automaton 

ai, 3 is the index j of the task 

for this task, in other words t. was the 
J 

output, ai,
3 

is called the anchor ( :1;.) 

(iii) N is defined as follows: 

1. the base: t 1 = <1. Q0 , 0 > ( v 1 J 

2. the recursive step: 

t. that was 
J 

input for N 

of t .. 
l 

the basis 

and t. is 
l 

the 

For every element in the set resulting from S [ai,
3

' I(ai, 1 JJ a new task 

is made (if the set is empty, then no tasks are made), such that(v = v + 11 

aL1 + 1 for Y a 
v' 1 

(N(ti)J(Y) b (a. 
3

, I(ai,2)) for Y a 
l, v,2 

i for Y = a 
v,3 

3. The restriction: N is defined iff a <I ul + 1. and iff I(a. 1JE ~ 
1,1 l, 
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(iv.j F is a bit more comples: 

We define a valid start task in(Jas a task ti such that ai,
1 

= 1,ai,Z = Q
0 

and ai,
3 

0. 

We define a valid end task in 6' as a task ti such that ai, 1 =ial + 1 and ai,ZE E. 

We define a valid path P through.T (the set of tasks) as a sequence of indices where 

(i) i
1 

is the index of a valid end task in T 

( ii) i . = a 
J+1 i.l3 

J 
(iii) if (a. 

3
J = 0 then P is complete. 

1 .• 

(We give an exam~le of the computation of a valid path in the next example) 

8 is a set of sequences of states {aP.~ 2 ~ where pjE P and j is an index ranging from 
J 

the last element of a path P to the first one. 

Example 1.12.1. 

a = 11 DO 

t1 = ( 1. Qo, 0 ) 

/\ t2 = ( 2. Qo, 

t3 ( 2. Q1. 1\ 13 
t4 ( 3, Qo, 2 

t5 ( 3. Q1, 2 ) 

t6 = ( 3. Q2, 3 ) 1\ t5 

1
6 

t7 ( 4. Qo, 4 ) 

tB ( 4, Q3, 4 ) 

/\ 'B r9 t9 ( 4. Q2, 6 

t10= ( 5. Qo, 7 
t10 t11t12 t13 

t11= (5, Q3, 7 

t12=(5, Q4, B 

t13= ( 5, Q2, 9 

There are two valid tasks (t12and t 13 J , therefore we have two paths: 

<12, B. 4, 2, 1 > andP =(13,9,6,3,1> 
t13 

We give now an explicit example Of the computation of such a path, 1
1 

is the index fof 

a valid end task in T, here t 12 is one. Sa 11 = 12. j is a variable in the recursive 

step, in the beginning j = 1. 

- i j +1 =a or i a. 3 or i2 = a12,3 (from i 12) 
i .• 3 1 +1 11' J according to T: a12,3 = B therefore i = B 

2 
- j becomes 2 

i a. 3 or i3 a8,3 = 4 Path up to now: (12,8,4 ) 
2+1 12' 

- j becomes 3 

1
3+1 

= a or i4 a4,3 2 
13,3 

- j becomes 4 

14+1 a. 3 i = = 1 14' or 5 a2,3 
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-" j becomes 5: 

0 , therefore the path is complete. 

Consequently: 

8 ~ ~< Oa' Oa' 0o· Q3, Q4 >' < 0o· 01· 02· 02· 02 >! 

Example 1.12.2 

a = DOll 

t1 = ( 1' Oa, 0 ) 

t2 = ( 2, Oa' n > 

t3 = ( 2, 03' 1 ) 

t4 = ( 3' Oq' 2 ) 

t5 ~ ( 3, 03' 2 ) 

t6 = ( 3, 04' 3 ) 

t7 = ( 4, Qa, 4 ) 

t8 ( 4' 01' 4 ) 

t9 ( 4, 04' 6 

t10= ( 5, QO' 7 ) 

t11=<5, 01' 7 ) 

t12= ( 5, Q2' 8 ) 

t13= ( 5, 04' 9 ) 

t/\t 

1\ 1

3 

t)\ t5 t6 

1\ \8 
19 ) 

t10 t11 t12 t13 

In this case there are ~gain two valid end tasks: t 12 and t 13 . The corresponding paths 

are P t <12, 8, 4, 2, 1) and P t < 13,9,6,3,1) 
12 13 

0 ~ < Qo, 0o· 0o• 01· 02>' < 0o· 03• 04' 04' 04> ~ 
Note that the order in which the tasks are carried out is again of no importance. To 

illustrate this we do an alternative way for example 4.2 .. 

Example 1.12.3. 

a 0011 

t!\t 

t1 = ( 1' Oa' 0 ;\ r 
t2 = ( 2, Qo, 

;\4 

t5 t11 
t3 = ( 2' Q3, ) 

I t4 = ( 3, Qo, 2 ) 

t5 ( 3, Q3, 2 )\ r tr2 
t6 ( 4, oo' 4 

t8 t9 t10 t13 
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t7 " I 4 • Q1. 4) 

tB ( 5. Qo· 6 

t9 ( 5. Q1. 6 

t1o" ( 5. Q2, 7 ) 

t11 = ( 3, Q4, 3 ) 

t12" ( 4, Q4, 11) 

t13= ( 5, Q4. 12 ) 

The two valid end tasks are t
10 

and t
13

• 

P o(10,7 4 2,1) andPt (13,12,11,3,1) 

~10 =(< Qo• Qo. Oo• Q1, 02 > • < 0o• 0~· 04' 04' 04 >} 
As the reader can see the same result is obtained. 

Example 1.13. 

Now we construct a parser which accepts a regular grammar as data and computes the rules 

which are necessary for generating a given inputstring. (These data can be important 

e.g. in developing a probabilistic grammar). 

Let 'J" (A. t. , N, f) be a nondeterministic regular 
l 

grammar parser where 

(i) A is a regular grammar < Vn, Vt, P, S ) and 

vn" {o0 • o1 • o2 • o3 } • Vt = {o.1} • s = o0 
and P: 

l. Qo -> 0 Q3 6. Qo -> 1 Q1 

2. Q1 ->0 Q2 7. Q1 -> 1 Qo 

3. Q2 ->0 Q1 B. Q1 ->0 

4. ~ 
-> l 9. Q2 -> l Q3 

5. Q3 ... o· Q 10. Q3 -> 1 Q2 0 

The integers before a production will be denoted by the symbol"· 

(i.iJ t. is a quadruple (ai~ 1 ~a i,2'a i,3'a 1,4 l 

where a 1,1 is the position to be read on the input taps 

(iii) 

a i, 2 is the symbol of interest at this task 

ai,3 is the anchor of the task 

ai,4 is the rullil applied to construct this task 

N is defined as follows: 

1. the base: (v 1 ) 

2. the recursive step 

For every production ~ where the left side is ~ual 

symbol on ;the right side is equal to I (a. 
1

,1 J J we 
1. 

such that: 

\ 

to a. 
2 

and the first 
l, 

make a new task (v = v +1) 



a . , + 1 
~,'l 

for Y 

- 23 -

=a v ,1 

the last symbol of a production n where the left side of n is 
(N(t.J)(YJ , ai and the first symbol of the right is r(' . 

1 
J 

,2 ~. 

i 

n 

3. restriction: 

for Y 

for Y 

= a v,3 

= a v,4 

N is defined iff a. 
1 

+ 1 ~ I al + 1 , I(a. 1 JE= Vt 
~I ~I 

(iv J F: 

A valid 

A valid 

start task in~is a 

end task in {) is a 

where a 1 ,
1 

where a 
1.1 

1 

I al 

A valid , path P through T is a sequence of indices and 

a 
1.2 

and a 
1.2 

+ 1 

(i) i
1 

is ths index of a valid end task in T 

(ii) i = a 
j+1 i ... 3 

for Y =a 

~ . A 

= o. 

and a. 
2 

= A 

'· 

v,2 

e is a sequence 

(iii) if [a. 
3 

) = 0 then P is complete. 
'i. 

of indices of productions :f< a 
3
> J where p e P and j is an 

pj' 
index ranging from the second last element of a path P to the first one. 

Example 1.13.1. 

a = 100 

t (1, Qo, 0, 0) 11 

t (2, Q1, 1 • 6) It\ t <3. '/. • 2, 8 ~ 

t (3, Q2, 2, 2 > 
t Z4. Q1, 4. 3 ) 13 t4 

ts 

The word is not accepted (cannot be generated by AJ because there is no valid end task 

in T. 

Example 1 . 13, 2, 

a = 010101 I al 6 

t1 = (1. Q1. 0 0 > 
t2 = ( 2, Q3, 1 > 
t3 = < 3, ).. 2, 4 > 
t4 = ( 3, Q2, 2 . 10 > 
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t5 (4,Q1,4 '3) 

11 t6 C5,Q
0

,5 ,7) 

t7 (6,Q3,6 ' 1 ) It\ tB ( 7 ,A , 7 '4) 

t (7,Q2,7 '9) t3 t4 9 

t/ 

15 

t6 

I 
t7 

I\ 
t
8 

t 9 

t
8 

is a valid end task. A valid path from t
8 

is (8, 7, 6, 5, 4, 2, 1 

Finally E> is the following sequence: ( 1, 10, 3, 7, 1, 4 ) 

As the reader can see the application of these rules in the generation process indeed 

results in '010101': 

Q J 0 Q w 0 1 Q ~ 0 1 0 Q .!; 0 1 0 1 Q J 0 1 0 1 0 Q3 j 0 1 0 1 0 1 
0 3 2 1 0 

Problems 1 .z. 

(i) Construct a grammar generating the set of sequences {a,b,c~~where before and after 

each b (if there is a b in the string) there is an a. 

Then construct a parser where the output is the set of pairs representing a derivation 

where the first pair contatns the start symbol and ~ and the last pair 

terminal symbol of the derivation. 

Parse c, bac, cabacccabaa. 

(ii) Construct an equivalent transition network parser doing the same job. 

,the last 

(iii) Construct a regular grammar parser which for an arbitrary regular grammar will 

decide whether a. string is ambiguo,us according to that grammar or not. 
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2. Recursive transition networks and related systems 

1. RECURSIVE TRANSITION NETWORKS 

We now introduce a higher class of control structures and consequently a more complex 

parser. 

Consider the following transition network M'. 

The language accepted by M': UM' J ab 

Suppose we extend M' into M in the following way: 

where the condition or label on the directed line going from Q
2 

to 0
3 

is a word 

accepted by the transition network M. In other words, through a sort of subroutine calL 

the network is started again. and if a word is found, the transition can be made, 

The language accepted by M, L(MJ an bn for n ;;;. 1. 

Oaf. 2.1. Transition networks where the condition for a certain transition is 

itself a transition network are called recursive transition networks. 

For convenience we denote from now on the states of a network by A/i where A is the 

name of the transition network and i is the number of the state. For the start state 

i is always equal to 1 and for any final state we write after the index i an arrow 

(f) or just the arrow without an index. Final states are sometimes called pop up states. 

r. is then written as follows: 



M in tabular representation 

1. ~a , M/ 1 , M/2 ') 

2.(M/1 ,M/2, M/4 ) 

3.<b ,M/4, M/Sf) 

4.(b,M/2, M/3t ) 
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From this representation it becomes clear that the symbol on the recursive transition 

is in fact the first state of another network. Let us do an example of a scanning 

controled by M 

a = aabb 

M/1 ~ M/2 -> M/4 ~ M/5'1' 

2~~ 
2. CONTEXT- FREE GRAMMAR 

An equivalent way of stating the same information as for a recursive transition network 

is a contex~free grammar (for short cfg.) 

Oef. 2.2. Let G = <Vn, Vt, P, S) be called a cfg. where Vn is a finite set of non­

terminals, Vt is a finite ~et of terminals and Vn n Vt = ~. P is the set of productions 

of the form A-> w where A€ Vn and W £V (V~U VT = V) and Sis the axiom or start symbol. 

The relation~ and tis defined as for regular grammars (cfr. def. 1.5.). 

Example 2.1. 

The grammar equivalent with the recursive t.ri. M is G 

vn =tM\. Vt, = Za.b~and s = M. P: 
1,M-+aMb 

2. M -> ab 

An example of a derivation: 

M J a M b ~ aabb 

or 

( Vn, Vt, P, ~ and 

G is not only a cfg., it can be proved that it is impossible to write a regular grammar 

generating L(GJ = an bn because of the self embedding property of G. 

To indicate the equivalence between cfg. 'sand recursive t.n.'s we construct an algorithm 

to rewrite the one into the other and vice-versa. 

1. From cfg, to recursive t.n. 

Each nonterminal symbol A is a t.n •. Let I1A where A is a particular t.n., be the index 
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of the latest state of a t.n. during the construction process~ in the beginning 

I1A = 1. I2A is the index of the current state of a particular t.n. A. For every pro~ 

duction of the grammar, the symbol (A) which is on the left of the production is the 

involved t.n .• In the beginning I2A is 1. For every right symbol in a production we try 

to make a transition in A from I2A ; if it is possible to do sa I2A is the state after 

the transition, if not we make a new rule (k becomes k + 1) in the network where rK 
• 1 

is the symbol in the production, rK, 2 is A/I2A I1A becomes I1A + 1 and rK, 3 = A/I1A. 

I2A becomes I2A + 1. If the symbol itself is a t.n. then the condition is this 

symbol followed by /1. If the symbol on the left is the last in the rule, we add 't to 

rK, 3 because it is a final state. 

Example 2.2. 

We take the grammar of example 2.1. the productions were: 

1.S->aSb 

2. S -> ab 

We start with production 1. The left symbol 'S' denotes the t.n. s. I1
5 

= 1 an~ 

12
5 

= 1. Because there is not yet a t.n., we cannot scan 'a' therefore we make a new 

transition I1 5 = 11 5 +1 from S/~25 to S/I1 5 that is from S/1 to S/2. 

1.(a ,S/1 , S/2 ;> 
Now we take the second element in production 1. Again we can't 

and so make a new state: 11 5 = 11 3 + 1; because s E Vn • we have: 

2 ·<S/1 ,S/2 ,S/3 ';. 

scan the symbol 

Finally for this production the last symbol b and because b is the last symbol. 

3. (b , S/3 , S/ 4'(') 

Then we take the second production, the left symbol is again S, we try to scan the 

first symbol of 2 and it works I25 = 2 (from rK. 3 J and I1 5 remains 4. 

Then we try to scan the second symbol in the right part of the production. namely 'b'. 

This time we can't make a transition. therefor a new state is made: I1
8 

+ 1 and because 

b is the last symbol this state is a final one: 

4.(b , S/2 ,S/St) 

The resulting t.n. is: 

1 .(a , S/1 , S/2 ) 

2. (S/1, S/2, S/31') 

3.(b, S/3,5/41'") 

4.(b ,S/2, S/5) 

2. From r.t.n. to cfg. 

Every t.n. in the set is a nonterminal symbol and every symbol input far a transition 

that is not a t.n. is a terminal symbol. 

For every t.n. A we make a production vJith at the left the rtonterminal symbol A. For 

every input that appears in a path of consecutive states starting with A/1 and ending 

with A/i 1', a symbol at the right of the production is made. 
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If this input is a t.n. then we only use the name of a t.n. and not the index. 

Example 2.4. 

1.(_a ,S/1 • S/2) 

2.(S/1,S/2,S/3? 

3:(b , S/3, S/41' ') 

4.(b ,S/2, S/Sf) 

There is only one t. n. namely S, therefore Vn = t S ~ the terminal symbols are \a, b~, 
We have two paths starting from S/1 and ending in S/if : 

rule (1), rule (2), rule (3) 

rule (1), Rule (4) 

Therefore we have 2 productions: 

1. S -+ aS b 

2. S -+ ab 

3. PUSHDOWN AUTOMATA 

Def. 2.3. 

A pushdown automaton M (for short pda.), is a system ( K, :E,r ,5 , ~ 0 , z
0

,E l where 

1. K is a finite set of states 

2. :!: is a finite alphabet called the alphabet 

3. ris a finite alphabet called the push down alphabet 

4. "'ois the initial state, ~E. K. 

5. Zo in r is the start symbol, initially present an the pushdown store 

6.~£K is the set of final states 

7. 5 is a mapping from K X. ( :!:U(X ~ l X rto finite subsets of K X r i" 

5 (~,a.Zl = {rp1 .r 1J. (p 2 • r 2 l. .... (pm' rmlt. "1. f'< inK, a in:!:, z in 

r en 'Y . in r. 
l 

This means that if the system is in state q, having in the pushdown store Z and on the 

input tape appears the symbol a, then for any i, we can replace in the store Z by 2(i 

and the new state is p1 . 

Example 2.3. (due to Hopcroft and Ullman (1969)) 

M = \ [o1 • o21· {o. 1. cHR. B, G} • .S .~,, R, 0,) 

(Q1. 0, Rl = 1ro
1

• BRl} 5 (Q2, o. B) !ro2.x l} 

5 ( Q1. 0, Bl lro1 • ssJ~ 5 (Q2, ')., Rl \ro2.x l1 

5 (Q1. o. G) \(Q
1

, BG)} 5 (Q1. 1 • Rl \ro1 • GRJ\ 

5 (Q1. c. Rl I roz. R J} 5 ( Q1. 1. B) lro1.Gsl) 

5 (Q1, c. Bl l (Q2. B Jl 5 (Q1. 1. Gl (ro1 • GGJ\ 

5 (Q1. c. G) l (Q2. G )~ 5 (Q2. 1 • Gl (ro2 ./\J\ 

L(Ml = { wcw"'\ w €: ~ and wR ~ denotes the reverse of w. 
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There is a theorem from formal language theory saying 'If L is a cantextfree language. 

then there exists a pda M, such that L = N(M)' (Hopcroft & Ullman, theorem 5.2.). 

The proof is such that ,first a cfg. generating L is constructed, then this grammar 

is put into Greibach normal form and finally an algorithm is applied to extract a 

pda. from a cfg. 

The important thing is that the grammar must be in Greibach normal form and 

although the weak generative capacity is not affected when rewriting an arbitrary 

cfg. into its corresponding Greibach normal farm. the strong generative capacity 

(structural descriptions) certainly is. This is a serious drawback in natural 

language research where structural descriptions are at least as important as the 

language generated. 

Although we Will develop in the following paragraphs parsers for cfg. 's , 

recursive t.n. 's and pda's, the last sort of systems will not be of great interest 

to us. We will only mention the pda, parser for the sake of completeness. 

4. TYPE 2 PARSERS 

Def:i;nition 2.4. A parser f) = ( A, t . , , N, F ) is called a type 2 parser if the underlying 

contro¥structure or driverA is a context-free grammar, a recursive tranation 

network or a pushdown automaton. 

We give nov.: examples of the three different parsers. We start with pda parsers 

because they are the easiest to understand. Then we approach recursive transition 

network parsers because they incorporate the basic ideas for a cfg. parser. Finally 

we construct a cfg. parser. 

Example 

Let IJ = 

(il ~. is 

(iil t. , 

2.4. 

(A, 

the 

is a 

t., N. F) be a parser Where , 
pda. of example 2.3. 

triple (a, 
1

,a
1 2

,a, 
3 ~. . ~. 

ai,1 the position to be read in the input string 

a, 
,,2 

the state at this task 

ai.3 = the pushdown store 

(iii) N: 

1. the base: t
1 

= ( 1, Q
1

, R ) 0
1 

is the start state and R is the initial configuration 

of the p~shdown store. v = 1. 

2. the recursion step: 

(a) Let a rule in the pda. be6(q,a,Zl = {cp
1
,r

1
J 

Then if a I(a, 
1

1. q =a and Z is the 
l, i. 2 

for every j in the rule, 1< j < m (and v 

, .... (pj.rjl' .... ,(pm,rml]. 

first sequence in a. 
3

, we apply 
'· = v + 1) 
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= a 
v' 1 

= a 
v,2 

(b) If at a certain stage a. 
3 

= Z for a rule 6 (q, A, Zl then 
l, 

(v 

a i~ 1 for y = a 
v' 1 

(N(t.))(Y) pj for y = a v,2 l 

r iK K = ai~ 3 - z for y = a v,3 

3; the restriction 

tv is defined iff, + 1 I al + 1, iff I (a. 
1

) E ~ 
l, 

Civl F: 

e E 0,1 if there is a task in T where aL 
1 

accepted)~ else 8 = 1. 

Example 2,4 .1. 

u 101c101 I al 7 

t1 ( 1 ' Q1 ' R ) 

t, ( 2' Q1 ' GR ) 

t3 ( 3, Q1' BGR ) 

t4 ( 4, 01' G6GR 

t5 ( 5' Q2, GBGR 

t6 ( 6' 02' BGR ) 

t7 ( 7' Q2, GR ) 

tB ( 8' 02' R ) 

tg ( 8' Q2, )) 

8: 0 and aE L(A) 

Problems 2.1. 

and iff 

v + 1) 

A, e is O(means 

(i] Although the pda. A in example 2.4. was deterministic~ the parser is nondeterministic. 

How can it be made deterministic? 

(ii) Construct a nondeterministic pda. accepting tww lw E{D.1~~~and parse the wards 

001100, 110011. 
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Example 2. 5. 

Let B' = (A. t. ~ N, F) be a recursive transition network parser and , 
[i) A is the following network: 

in tabular form: 

1. (a, M/1 

2. ( b, M/2 

M/2 ) 

M/3t) 

3. (M/1, M/2, M/4) 

4. ( b, M/4 , M/5'1/ 

b 

M/1 

is a 6-tuple: {a. 1'ai z•a. 3'ai 4 ,a. 5 ,a. 6) 
l. • l, • 1, l, 

a
1

•
1 

the position to be read an the input tape I 

ai.2 

aL3 

aL4 

ai,5 

aLB 

[iii) N : 

the state 

either l, 

the anchor 

the index 

the index 

of 

0, 

of 

of 

the automaton at the execution 

2 

the rule in the network used to 

a task were recursively another 

1. the base: t
1 

=(1, M/1, 1, 0, 0, 1) lv 1 ) 

2. recursive step: 

of a task 

construct this task. 

network was called. 

[a l if 1 then for every rule with index k in the network where 

a new task is made (v =v +1) where 

a 
i,1 

for y a 
v .1 

rk,1 for y a 
v,Z 

{ ~ if rk,1 is B start state, 

othendse for y a 
v,3 

[~ [ t.)) [Y) 
i for y a , 

v.4 

k for y a v,S 

(: i-7 r k,1 j.s a start state 

othen-Jise for y = a 
L6 v,6 
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[v=v+1) [b) if a . 
3 

= 0 then ,, 
(restriction if I[a. 1 l ,, ~ a. 2' ,, t is undefined) 

v 
+ 1 for Y av ~ 1 

"'· 5'3 ,, for Y = a 
~:.v, 2 

{

2 if r 
a. 

5
,3 ,, E E [set of final states) 

[N[t.) l [Yl= , 
else 1. 

i 

for Y = a 
v,3 

for Y = d v,4 

for Y 

ai,6 

[c) if ai,
3 

= 2 then 

(res tric tio n: 

for Y 
[v=v+1l 

if a 

a >,1 

r 
a 

5
,3 

«f.s· 

a. 
6

, 5 ,, 
for 

for 

0 

y a 

y a 

t v 

v' 1 

v,2 

is undefined 

[, 
if ra ,3 E F" [set of final states) 

a. 
6

, 5 , ' 
[N[t.))[Yl , 

for y a v,3 

i for y a v,4 

a 
a. 6 • 5 

for y a v,5 ,, 

a a ,6 
for Y a v,6 

a. 6 .4 ,, 

[iv l F: 

We define a valid start task in ~as a task t
1 

such that 

the start state and ai, 5 = 0 ~ 

We define a valid end task in ) as a task t 1 such that a. 
1 

= Ia\ +1 , a. 
2
'"E 

1, l, 

and 1 

\-)e define a valid path P through T (the set of tasks) as a sequence of indices where 

[ i) i1 is the index of a valid end task in T 

[ ii) . 
l j +1 

[iii) if a· 4 lj' 0 then P is complete. 

e 0 if th,re is a valid path P through T else e 



- 33 -

Example 2.5.1. 

a ab 

11 

t1 = ( 1 • M/1, 1 • 0, o. 1 ) 

12 t2 = ( 1. a 0, 1. 1. 1 ) 

t3 = ( 2, M/2, 1 • 2, 1. 1 

t4 = ( 2, b 0, 3, 2. 1 /t3 

t5 = ( 2. M/1. 1 • 3, 3. 5 ) 
t4 \5 t6 = ( 3, M/31',2, 4, 2, 1 ) 

I I 
t7 = ( 2, a ,0, 5' 1 ' 5 ) 

t6 t7 

e 0 bSCBUBS t
6 

is a valid end task • p 
t16 

( 6' 4. 3, 2, 1 ) 

Example 2.5.2. 

t1 

a aabb I 
t2 

I 
t1 =(1.M/1 1 • 0, 0, 

/t3\ 
t2 = ( 1, a 0, 1 ' 1, 1 ) 

t3 = ( 2,i'l/2 1' 2, 1' t4 15 
t4 = ( 2' b 0, 3, 2. 1 

t5 (2,M/1, 1 ' 3, 3, 5 ) 
t6 

t6 ( 2,a 0 ' 5' 1, 5 ) I 
t7 ( 3' ~1/2. 1 ' 6' 1 • 5 ) 

/t7. 
tB ( 3' b ' 0 ' 7. 2, 5 ) 

t
8 

\t
9 tg ( 3. M/1, " 7' 3, g ) 

I ' 

I l t10= ( 4,M/3'!",2 , B • 2, 5 ) 

t11 = ( 3, a 0, 9, 1, g ) t10 t11 
t12= ( 4JI/4 1 • 10,3. I t13= ( 4. b ' o. 12,4 ' 1 

t2 t14= < 4,rl/5f, c 13. 4. 1 "' 

e '"' 0 because t
14 

is a valid end task. The path: 

p 
t14 

( 14,13, 12, 10, 8, 7, 6, 5,3,2, 1> 
113 

t14 

Nmv we construct a context-freegrammar parser, the idea is to use a recursive 

transition network. parser but with the ideas of the algorithm to rewrite cfg. into t.n. 's 

incorporated in N . 
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Example 2.6. 

Let ':} =(A, t., N, F) be a context-free grammar parser and 
1 

(il is a cfg,( Vn, Vt, P, S ) where Vn = ~ s\ , Vt ={a,b~ and P: 

1. S -+ ab 

2. S-+ a S b 

(ii) \ is a 7-tuple: ( a i 1 ,a · 2 ,a · 3 ,ai 4 ,a · 5 ,a · 6 ,a · 7 ) 
' l, l, ' l, l, J., 

(iii) N: 

aL4 

aL5 

ai,6 

aL7 

the position to be read on the input tape 

the symbol of V where the task is interested in 

the position in a production after~- 2 and the first symbol on the right 
1, 

is in position 

either 1, D. or 2 

the anchor 

the index of a production consulted to construct this task 

the index of the task where the production was first consulted~ 

1, the base: t
1 

= (1, S, 1, 1, 0, 0, 1) v= 1 

2. the 

[a) 

recursive step: 

Ifai, 4 
1. a new production is consulted, 

duction j where a. 
2 1, 

appears on the left: 

a for Y = a 
1,1 v,1 

the first symbol on the right of j 

2 

if a 

for Y = a 
v,3 

v,2 E. v~ for y a 
v,4 

therefore for every pro­

(v = v +1) 

for Y =a 
v,2 

{~ 
(N(t

1
JJ[Y)= 

otherwise 

i for y a 

(b) if (J.. 4 
1, 

j 

~
v 

a. 
1,6 

for 

if a 
2 

E.· Vn 
v. 

otherwise 

y a 

for Y 

v,5 

v,6 

a 
v~7 

0 then (if I (a. 
1 

l = a 
l, i, 2 

else tv is undefined ) 

[i) if the a
1

•
3 

symbol on the right of ai.
5 

is not empty 
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i,1 

for Y = a 
1 v, 
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then. 
3 

symbol on the right df a. 
5 ~. ~. 

for Y 

if a E. Vn 
v,2 

i 

j 

(iil else: 

= a v,3 

for Y 

for y 

for y 

for y 

=a 
v,4 

= a v,5 

= a v,6 

= a v,7 

for Y a 
v,2 

Restriction: if a. 
7 

= 1 and a. 1 = I a I • ti is a valid end task, 
l, -- l, 

if a. 
7 

= 1 1 t is undefined, else 
l, v 

for Y = 

aa
1

•
7
.s symbol on the right of the production specified in 

a + 1 
a. 

7
,3 

i 

a 

l, 

if c 2 v, 

otherwise 

a. 
7

, 6 
l, 

Vn 

for y 

for y 

for Y 

for Y 

for Y 

for Y 

a 
v,2 

a 
v,3 

a 

a 
v,5 

v,4 

a 
a. 

7
,6 

l, 

(iv)F: T->P. 

e = 1. 

is such that 8= 0 if there is a valid end task in T, else 

Example 2. 6.1. 

u ab 

t" ( 1 • s, 1. 1. 0, 0, 
' 

t2 ( 1 • a, 2, 0, 1 • 1 • 1 

t3 ( 1 • a, L, 0, 1 • 2, 1 ) 

i 
\:' 
'· \' 

·' 
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t4 = ( 2, b, 3, a, 2, 1 ' 

t/t\t 
t5 = ( 2' s, 3, 1 ' 3, 2, 5 

t6 = ( 2, a, 2, a, 5, 1 ' 5 

t7 = ( 2, a, 2, a, 5' 2, 5 
12 13 

t4 is a valid end task and 8= a /\ t5 

t6 t7 

Example 1,6,2. 

f' = aabb 

t = ( 1 ' s, 1' 1 ' a, a, 1 

)\ t = ( 1 ' a, 2, a, 1' 1 ' 

t = ( 1' a, 2, a, 1, 2, 1 

t = ( 2, b, 3, a, 2, 1' 1 ,, [' 
t = ( 2, s, 3, 1' 3, 2, 5 

t = ( 2, a, 2, a, 5, 1' 5 

t = ( 2, a, 2, a, 5' 2, 5 t4 

tA 

t = ( 3' b, 3, a, 6, 1 ' 5 

t = ( 3' s, 3, 1' 7, 2, 9 

t = ( 4, b, 4, a, 8, 2, 1 
16 t7 

t = { 3' a, 2, a, 9, 1' 9 . I 
t = ( 3' a, 2, a, 9' 2, 9 

18 \9 

r1a 
t11 

T12 

t1a is a valid end task an'd e a 

\ 
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5, SOME AP~LICATIONS OF THE FILTER 

It would lead us too far to develop here in detail interesting appl'ications. The 

reader is .referred to Steels (1974) for algorithms to extract strings 1r..1ith labeled 

bracketings and structural descriptions in the form of trees from the Set of tasks. 

It is also possible to define actions (e.g. operation5 over trees) in the filter, 

the result is then so called augmented transition networks. 

6. SOME DESIGN REMARKS 

The type 2 parsers were all what is usually called top down and breadth first. That 

this must not necessarily be so may be illustrated by the following ideas of which 

the formal definition is left to the reader. 

(a) Top down with back track. 

This can be done by using the same type of parser with the difference that each time 

not all tasks resulting from N are executed but only one of them. N keeps track of 

the structural description of the parsing process and if a certain task is 

undefined# then it returns to the node (i.e. the task) of the parsing tree where 

thers was another task resulting from the execution of N. This task is then 

further executed and so on. 

(b) Bottom up. 

The notion of a task can also be applied to bottom up parsers# in this case tasks 

carry the information from where to where a constituent goes~ what the name of the 

constituent is, how it was formed, etc •.• Each task then creates a new higher 

constituent if this is possible or proceeds in the inputstring. If at the end 

there is a task with a constituent equal to the axiom or start symbol and ranging 

over the whole input, then the word is accepted. 

There are many other ways to design parsers (e.g. in mixed mode), but we think that 

the basic mechanism, the creation of tasks by functions. will always remain. 

7. HISTORICAL NOTES 

These notes are by no means exhaustive and only cover applications for natural 

language parsers. Note also thaJ~ in the paper we only treated fundamentals of parsers, 

how they are worked out in praci:ice is even a more complex matter, e.g. things are 

added such as probability of likslihood for a path, etc,,. 

For another approach to the/.Jroblem, we refer to Aha & Ullman (1973) • Transition 

networks and their equivalent·.; are used for morphographemic rewriting or orthographd.G: 

decoding(cf, Kay (1974)) 
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Also it is possible to consider a dictionary as a f.s machine and then consulting 

the dictionary becomes again a type 3 parser. If the language accepted is the product 

with itself. then the parser can find all possible parts in a word. This is an alter­

native for the Reiffler calculus (used e.g. in Verloren van Themaat (1972)), 

Transition networks are also a basic data structure in the MIND system (cf. Kay, 

1973) ('The chart' is interpreted as a transition network', 161) and the General 

syntactic processor (Kaplan (1973». The notion of parsing with tasks is found in Kay 

(1974) and some ALGOL 60 programs are given there. 

Recursive transition networks or basic transition networks (BTNJ were introduced 

by Woods (1970) and extended to augmented transition networks by the addition to the 

model of arbitrary register-setting actions and arbitrary conditions on the arcs' 

(Woods 1973, 116). They are used in many syntactic and morphological analysers: (e.g: 

Woods (1973), Simmons (1974)). Also here we find the basic ideas of the parsers as 

was developed in this paper. Woods describes his implementation as follows: 'the 

most natural way of thinking of its operation is in terms of the notions of instanta­

neous machine configuration 1 (i.e. tasks],'and transition functions (a function which . 
computes successors to given instantaneous configurat~ons), 

In some earlier parsers (cfr the predictive analyzer, Kuno and Oettinger (1965) 

and the selective top-to-bottom Algorithm by Griffiths and Petrick (1965) the concept 

of pushdown automata was used with the result that the gramma~ must be in some nor­

mal form. See e.g. Kuno (19671 for a discussion and solution of these problems; 

There have been alternative ways of parsing natural language on lower levels e.g. 

PROGRAMMAR (Winograd 1972), which is a language to write parsers in, some parsers with 

limited dictionaries and search strategies based on word order to back upthis lack of 

information (df. Thorne (1970)), parsers resulting in distributional analysis (of 

Salkoff (1973)), etc ... We think however that most of them are too much biased by 

the particular grammar or language. Indeed they all have in common that the grammar 

(control structure) is not input to the parser but incorporated into the format of 

the parser. 

It is also our experience that a task-oriented parser is very interesting when 

designing larger systems where different subsystems (i.e. parsers)all interact. 
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APPENDIX A. 

(Solutions to problems) 

1 • 1 • 

(l') Q ' Q 0 Q • Q 0 Q 0 Q 
a. D- 1 ~ 2 - 3- D - 3 

('1D1DD' is not accepted) 

[ '010' is not accepted) 

( ' ODD' is accepted) 

(iil The t.n. is the same 

(iii J 

(ivl 

(vl 

0 

1.2. 

(i) The required grammar is G=(Vn, Vt, P, A ) ' a regular grammar,and Vn 

{A,B,C~ ' Vt = (a, b, c}and P: 

1. A -> c A 5. c -> a A 

2. A _, a A 6. A -> c 

3. A -> a 8 7. A -> a 

4. B-> b c 8. c -;. a 
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be a regular grammar parser and ~ is the same as in 

example 1.13. except for F. 

Let e < 

symbol. 

= ( P • 
1

, ~-
2 

) and 
~.. l, e

1 
• (A, A) 

p . . 1 ,, is a terminal symbol.:·.and (i . 2 
'· 

is a nonterminal 

Let P be a valid path through T, then we construct as follows: 

For very element j starting from the second last one and going to the first one in 

a path P, we construct 

(i) a= 'c' 

t1 • ( 1, A, 0, 0 ) 

t2 = ( 2, A, 1, 2 ) 

t3 = ( 2, A , 1 , 7 ) 

t4 = ( 2, B, 1 , 3 ) 

t
3 

is a valid end task end 

~:e 1 =<A,A> 

e
2

=<c,A) 

(ii) a = bao 

t
1 

= (1, A, 0, 0 ) 

and P . 
1 

= I ( a . 
1 

- 1), P . 
2 

= a 
l, J· 1, j,2 

a pair ( p ·1'P.2> 1, J., 

p • ( 3, 1 ) 
t13 

(the parser blocks because there is no production as required in the recursive step) 

is not accepted by G. 

(iii) a cabacccabaa 

t1 . ( 1 , A, 0, 0 ) 

t2 . ( 2, A, 1 , 1 ) 

t3 . ( 3, A, 2, 2) 

t4 = ( 3, A , 2, 7) 

t5 = ( 3, B, 2, 3) 

t6 = ( 4, C, 5, 4) 

t7 . ( 5, A, 6, 5 ) 

t8 • ( 6, A, 7, 1) 

tg . ( 7, A, 8, 1 ) 

t1o= < 8, A, 9, 1 ) 

t11 = ( 9, A, 10, 6 > 
t12= ( 9, 8, 10, 3) 

t13= ( 9, A, 10, 7) 

t14" <10, c, 12, 4 ) 

t15·<11, A, 14, 5 ) 

t11i' <11 , A , 14, 8 ) 

t17·<12, A, 15, 2) 

t 18 =<1z, 8, 15, 3) 

t19=(12, A, 15, 7) 
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is a· \1ia1id end task and P is ( 19, 15, 14, 12, 10, 9, B, 7, 6, 5, 2, 1) 
t19 

81 ( . A• A 

82 ( c, A 

83 a, B ) 

8 4 b, c ) 

85 ( a: A 

86 ( c, A 

87 c. A ) 

88 = ( c, A ) 

8g a, B 

8 1 o= b, c 
8 11 = a, A 

8 12= ( 
A a, 

As one can see 8 is in fact a description of the tree which corresponds to the 

generation of the string. 

(ii) The parser is equivalent to the regular grammar parser of example 1.13. 

except that the t.n. is A: 

• 

and the recursion step goes as follows: 

For every rule rk . is equal to rca ) 
,J i,1 

a +1 for y a 
L1 v ,1 

(N(t.JJ CYJ r k,3 for y a 
v,2 

l 

i for y a 
v,3 

k for y a 
v.4 

(iii) The parser is the same as in example 1.13. except for F. 

is a 
i.2 

Let 8= 0 i-f a is ambiguous, else EJ= 1. F: T -> El is such that if there is 

more then one valid end task in T, 8= 0, else 8 = 1 
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2.1. 

(i) if the pda. is deterministic. then j in the recursive step is always equal 

to 1. Henes ws change the condition in 2[a): 

'If (,,,) ws apply for the pair on the left side of the rule ( ... )'. 

(iil The pda is: 

M =((Q
1

, Q2 ~ , ~0,1}, (R,B,G~ ,6 , Q
1

, R, 0 /' 

1. 6 (Q1' 0, Rl =f(Q1, BRl\ 

2. 6 (Q1, 1' Rl =((Q1, GR)j 

3. 6 ( Q1' 0, B) = {(Q1' BBl.{Q
2

,A)} 

4. 6 ( Q1' O,G l = \(Q1, BGl} 

5. 6 (Q1' 1 , Bl =I(Q1, GBJ! 

6. 6 (Q1' 1 ' Gl ={(Q
1

, GG), (Q2,All 

7. 6 (Q2, 0, Bl =((Q2,Al\ 

e. 6 (Q2, 1 ' G) =\(Q2,A)) 

9. 6 (Q1' A, Rl = \(Q2, A l~ 

10.6 (Q2, A, Rl = !(Q2, A0 




