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Abstract

We test the predictions of different computational models of
cross-situational word learning that have been proposed in the
literature by comparing their behavior to that of young children
and adults in the word learning task conducted by Ramscar,
Dye, and Klein (2013). Our experimental results show that a
Hebbian learner and a model that relies on hypothesis testing
fail to account for the behavioral data obtained from both pop-
ulations. Ruling out such accounts might help reducing the
search space and better focus on the most relevant aspects of
the problem, in order to disentangle the mechanisms used dur-
ing language acquisition to map words and referents in a highly
noisy environment.

Keywords: cross-situational learning; word learning; compu-
tational modeling; language acquisition

Ever since the gavagai example provided by Quine (1960)
to describe the huge amount of referential uncertainty that any
language learner has to face while inducing word-object map-
pings, researchers took an interest in which mechanisms can
be exploited to solve this crucial task. In the last twenty years,
computational modeling has proven extremely useful in ex-
ploring what information encoded in the input children re-
ceive might allow them to correctly map referents and words,
and which learning mechanisms might best exploit the rele-
vant information (Frank, Goodman, & Tenenbaum, 2009).

Cross-situational learning posits that children keep track
of co-occurrences of referents in the world and words uttered
to them in several situations to establish unambiguous map-
pings: while the single situation might be ambiguous, the co-
occurrences of words and referents across many different sit-
uations help the learner figure out the correct mappings. Start-
ing from the work of Siskind (1996), many different learning
mechanisms that exploit this basic principle have been pro-
posed that show comparable performances to many behav-
ioral data from both children (Ramscar, Dye, & Klein, 2013;
Smith & Yu, 2008; Suanda, Mugwanya, & Namy, 2014)
and adults (Dautriche & Chemla, 2014; Fazly, Alishahi, &
Stevenson, 2010; Medina, Snedeker, Trueswell, & Gleitman,
2011; Trueswell, Medina, Hafri, & Gleitman, 2013; Yu &
Smith, 2007; Yurovsky & Frank, 2015; Yurovsky, Yu, &
Smith, 2013), using both corpus studies and laboratory exper-
iments, covering many different conditions. Differences and
similarities across models have been explored, with the main
goal of showing how apparently different proposals can yield
comparable results and make similar predictions when cer-
tain components of the learning algorithm are modified (Yu
& Smith, 2012; Kachergis, Yu, & Shiffrin, 2016).

In this paper, we compare behavioral evidence to four dif-
ferent models that exploit cross-situational regularities to in-
fer word-referent mappings from the data, to analyze what
predictions each model makes and whether they fit with what
children and adults do when asked to map a referent to a
word. Our aim is to provide evidence about which learning
mechanisms proposed in the literature can explain behavioral
evidence and which cannot, in order to constrain the search
space of possible models to the learning strategies that ex-
ploit cross-situational information in the same way humans
do. Carefully controlled laboratory settings in which specific
features of the word learning task are manipulated can help
to achieve this goal, by isolating the information from the in-
put that makes learning possible or impossible and providing
valuable data to test computational simulations in a variety
of situations (Ramscar, Dye, & Klein, 2013; Kachergis et al.,
2016).

While many learning mechanisms can mirror certain be-
havioral patterns (Yu & Smith, 2012), some may not be able
to learn the correct word-referent mappings in specific, con-
trolled paradigms in which subjects do learn such mappings
robustly. Identifying these situations and showing why cer-
tain mechanisms fail to account for successful learning will
help the researchers to constrain the hypothesis space and dis-
card mechanisms that make incorrect predictions.

Dataset

In order to evaluate the predictions of different models of
cross-situational learning we make use of the evidence pre-
sented in Ramscar, Dye, and Klein (2013). The experiment
they reported was conducted with a group of children (mean
age 28 months) and two groups of adults, undergraduates and
developmental psychologists.

The setting included three objects, [ObjA, ObjB, ObjC],
and three labels, {Dax,Wug, Pid}; during 18 learning trials,
each subject saw two objects and then heard one label. Of the
three objects, ObjA and ObjC were presented 9 times, never
together; ObjB, however, was present in all trials, occurring
half of the times with ObjA and half of the times with ObjC.
Crucially, ObjA was always presented together with the same
label, e.g. Dax, and ObjC was always presented with the same
label, e.g. Pid. Consequently, ObjB occurred half of the times
with the label Dax and half of the times with the label Pid.
The third label, Wug, never occurred during training.

During testing, the subjects heard one of the three labels
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Figure 1: Children learning patterns on the word-learning ex-
periment from Ramscar, Dye, and Klein (2013). The plot is
taken from the original paper (Figure 2a).

and were asked to point to the object to which they thought
the label referred to. Two labels occurred during training,
one did not - words and objects were counterbalanced and
learning trials were randomized across participants.

Behavioral Evidence

Results of the experiment are provided in Figure 1 for chil-
dren and Figure 2 for undergraduates - the plots show the
case in which Dax was always presented with ObjA, Pid with
ObjC, and Wug was only showed during testing.

Both groups mapped ObjA and ObjC to the labels that only
occurred with each of them. Interestingly, however, under-
graduates showed a mutual exclusivity bias and mapped ObjB
to Wug, which was not presented during training; on the con-
trary, children picked ObjA and ObjC at comparable rates as
referent for the new label. The developmental psychologists
were asked to predict the behavior of children but ended up
predicting that of undergraduates. The authors of the study
conclude that children are more sensitive to the informativity
of cues than to logical principles, which on the contrary play
arole in adults.

Feature-Label-Order Effects In this experiment, and in
many others that address cross-situational word learning, ob-
jects are presented before their labels are uttered. Far from
being irrelevant to the task, evidence from Ramscar, Yarlett,
Dye, Denny, and Thorpe (2010) shows that different learning
outcomes arise in behavioral experiments where this order
is manipulated. This difference is unfortunately not always
considered in cross-situational learning studies: as a conse-
quence, certain models are defined as mapping referents to
words and others do the opposite. Moreover, the behavioral
data we use were obtained using a paradigm in which the sub-
jects first saw an object and then heard a label. Thus, consid-
ering the experimental paradigm and the importance of the
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Figure 2: Undergraduates learning patterns on the word-
learning experiment from Ramscar, Dye, and Klein (2013).
The plot is taken from the original paper (Figure 3a).

order of presentation for learning to take place, when we eval-
uate a model that was designed to map words to referents, we
switch the two layers and make it learn the opposite mapping.

Models of Cross-situational Learning

We compare simple, basic implementations' of four differ-
ent learning mechanisms to highlight what predictions are
made by each of them, and whether they match behavioral
evidence. We introduce each model separately and briefly
discuss its main features; for more detailed explanations, we
refer to the cited publications.

Hebbian Learner This model implements the law of con-
tiguity (Warren, 1921), according to which the association
between two items becomes stronger when they consistently
occur together in the environment. It is usually implemented
as a neural network with no hidden layer that incrementally
establishes associations between an input and an output layer
(Hebb, 1949). An input-to-output association is strengthened
by a constant quantity whenever the two co-occur within a
learning trial. Associations from inputs that occur in a learn-
ing trial and outputs that do not are left unchanged, as are
associations from absent inputs to all output units.

The way associations are updated is summarized in equa-
tion (1), where ¢ represents a learning trial, ¢; indicates an
input item, or cue, o; indicates an output, or outcome, and
AV;; indicates the value of the update from ¢; to o; after ex-
periencing the learning trial 7:

AV — k ifc;etando; et )
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IThe code of our own re-implementations of each model
is available at https://github.com/GiovanniCassani/cross
_situational_learning, commit n. 2a9dbaa



AV;; is then added to the current association from ¢; to o0j;
k is a strictly positive constant which only affects the ab-
solute value of the associations but not the relations among
them, thus changing its value does not affect the learning out-
come. This model was showed to successfully model behav-
ioral data in the study by Yu and Smith (2012) and for this
reason it is evaluated here. However, the risk exists that every
input becomes associated with every output, making it impos-
sible to learn unambiguous input-output mappings (Dawson,
2008).

Naive Discriminative Learning (NDL) In this model,
input-output associations are updated according to the
Rescorla-Wagner equations (Rescorla & Wagner, 1972), de-
veloped in the context of animal learning and condition-
ing. This model is often referred to as Naive Discrimina-
tive Learning (NDL, (Baayen, Hendrix, & Ramscar, 2013))
and its relevance to language has been established in different
aspects of language learning and processing (Baayen, Milin,
Durdevié, Hendrix, & Marelli, 2011; Baayen, Shaoul, Willits,
& Ramscar, 2015; Ramscar, Dye, & McCauley, 2013; Ram-
scar, Hendrix, Shaoul, Milin, & Baayen, 2014).

Its architecture closely resembles the Hebbian learner, as it
is a neural network with no hidden layer that incrementally
establishes associations between cues and outcomes, where
the first constitute the input layer and the latter the output
nodes. As for the Hebbian learner, when a cue co-occurs with
an outcome, the association between them becomes stronger;
moreover, associations from absent cues (in a learning trial)
to all outcomes are left unchanged. However, in the NDL
model, associations from present cues to absent outcomes are
weakened, and can eventually become negative. The model
is naive because every outcome is updated independently of
all other outcomes.

The update in associations is summarized in equation (2),
where ¢ is a learning trial, AV;; is the change in association
involving a cue ¢; and an outcome o;.
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o; is a parameter modifying the salience of an input unit,
or cue: while a different value can be set for each cue, this
parameter is usually kept constant to remain agnostic with re-
spect to cue importance. P; and [, specify the importance
of positive and negative evidence respectively. These two pa-
rameters can again take different values but are usually set
to the same quantity to reduce the initial assumptions. A is
the maximum amount of association that each outcome can
receive from all inputs and operates as a simple linear scal-
ing factor (Evert & Arppe, 2015). Finally, Y .., V. is the total
association supported by the cues present in the current learn-
ing trial: this evidence is used to predict the outcome, and the
prediction error is used to update cue-outcome associations.

AV;; is added to the current association value of cue ¢; for each
outcome o; encountered up to trial #. The same happens for
all ¢; € t. For the reported simulations we selected standard
parameter values that allow to make minimal assumptions,
setting all s = 0.2; By =B =0.1; A= 1.

Probabilistic learner In its original formulation (Fazly et
al., 2010), this model computes a posterior probability distri-
bution over referents for each word, updating the probability
mass allocated to each referent in the light of new evidence.
A referent r that seldom occurs with a word w but often oc-
curs with many other words will get a small probability for w,
while a referent # that often occurs with word w and rarely
with others will have a high probability of being the correct
referent for w. The model incrementally updates associations
between words and referents and uses them to compute the
conditional probability of a referent given a word for all the
referents that occurred with the word up to the present learn-
ing trial.

More generally, this model can be thought of as computing
a posterior distribution over all possible outcomes for each
cue. Associations between cues and outcomes are computed
as specified in equations (3-5), where ¢ is a learning trial, o is
an outcome from the set of outcomes in the learning trial, Oy,
c is a cue, from the set of cues in the learning trial, C;, paired
with Oy, and C is the set of cues encountered up to ¢:
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This model has 3 free parameters. A is a small smooth-
ing factor; B is the upper bound on the expected lexicon;
Di=o(0|c) is the initial value of the probability of an outcome
given a cue, before they are encountered in a learning trial.
In the simulations reported by Fazly et al. (2010), B = 8.500,
A =1073, and p,—o(o|c) = 1/8,500. We kept the same value
for A, set B = 10* and p;—o(o|c) = 1074,

Equation (3) computes the update in association between a
cue and an outcome from the current learning trial: this up-
date is proportional to p(o|c) at the previous learning trial and
depends on the number of cues in the current trial: more cues
cause a lower change, due to higher noise and uncertainty in
the current trial. The update computed in (3) is added to the
corresponding cue-outcome association, as specified in (4).
Associations are not exploited directly but rather used to up-
date a probability distribution over outcomes for each cue.
More evidence makes the learner allocate a higher posterior
probability to a specific outcome. In (5), the denominator acts
as a scaling factor that implements within-trial competition:
if a cue c is already associated to one of the previously en-
countered outcomes, the probability that ¢ maps to another
outcome does not receive strong support.



In the original formulation, words were cues and referents
were outcomes; however, considering what we discussed in
the section about Feature-Label-Order effects (Ramscar et al.,
2010), we flipped the encoding so that this algorithm learns
a probability distribution for words over referents, coding

words as outcomes and referents as cues?.

Hypothesis-Testing Model (HTM) The HTM model se-
lects, stores and updates a single hypothesis for each learn-
ing trial. Initially, it randomly picks a word-referent map-
ping from the possible ones in the learning trial. When an al-
ready encountered word is presented in a subsequent trial, the
model looks in memory to retrieve the hypothesized referent
for the word and may retrieve it or not. If it does, the hy-
pothesis is strengthened when confirming evidence is found
in the current trial and discarded otherwise, in which case a
new referent is hypothesized at random for the word being
considered. If no hypothesis is recalled, a new referent is hy-
pothesized at random for the word being considered and the
old one fades away. As is specified in Medina et al. (2011)
and Trueswell et al. (2013), the model depends on one main
parameter, o, which models the probability that a formed hy-
pothesis is retrieved from memory. However, Trueswell et al.
(2013) argue that the value of this parameter changes when
a hypothesis is recalled: the next time the label appears, the
hypothesized referent should be retrieved with a higher prob-
ability if it was already retrieved. Unfortunately, however, no
function was specified to model the change of o after suc-
cessful retrievals. Therefore, we set the initial and second
values for o at 0.6 and 0.81, following the third experiment
in Trueswell et al. (2013), were this model was shown to
fit behavioral results. Accordingly, the first time a hypoth-
esis can be retrieved with probability equal to 0.6; if it gets
confirmed, the next time it will be retrieved with probability
equal to 0.81. Since we have many more trials, we set fur-
ther values, 0.9, 0.95, and 0.99, to model the probability that
a hypothesis is retrieved after the third, fourth or fifth time it
was retrieved and confirmed. After the fifth time o does not
change anymore: we stopped at 0.99 to exclude certainty of
recall.

Computational Simulations

In order to closely mimic the learning task that was faced by
children in the study by Ramscar, Dye, and Klein (2013), we
implemented incremental learners: the connection between a
referent and a word is only updated when both have been en-
countered in a learning trial. This is crucially different from
the simulations implemented by Ramscar, Dye, and Klein
(2013), where the equilibrium equations (Danks, 2003) of the
NDL model (Baayen et al., 2011) were used. In this case, the
end state of the model is computed when no more learning tri-
als are available. Equilibrium equations have the advantage
of not depending on any free parameter, but all cues and all
outcomes are simultaneously available to the learner, differ-

ZPersonal communication with one of the authors confirmed that
the learning mechanism is not altered by switching the mapping.

ently from the task faced by the subjects. There was no way
they could expect a third label to be presented during testing
and thus update connections from objects to that label during
training.

Here, we focus on the situation where children and under-
gradutes showed consistent behaviors, i.e. in retrieving an
object when presented with a label they encountered during
training. If a model fails to account for this aspect of the
data, it can be hardly justified as a model of human cross-
situational learning, during acquisition as well as in adult-
hood. Accordingly, we train each simulation using the input
presented to the subjects and evaluate the final state of learn-
ing. However, since different models learn different things
(associations, probabilities, hypotheses), it is hard to directly
compare them. We do not assume any linking mechanism
that converts internal representations to behavior; we simply
look at the learned representations and evaluate whether un-
ambiguous mappings were learned, that could allow subjects
to retrieve an object, consistently with learning displayed by
human subjects.

In each learning trial, simulated learners were given a set of
objects and a word: beside ObjA, ObjB, and ObjC, the set of
cues also contained other cues that account for the whole ex-
perimental context,’ for consistency with the original simula-
tion in Ramscar, Dye, and Klein (2013). Table 1 summarizes
the input to the computational models.

Table 1: Training trials, as described in Ramscar, Dye, and
Klein (2013)

Cues Outcomes Freq
ObjA_ObjB_Context1_ExptContext Dax 9
ObjB_ObjC_Context2_ExptContext Pid 9

For all models, we ran 200 simulations randomizing the
order of presentation of the learning trials: since no model
depends on initial random values, the order of the trials is the
only potential source of bias. We report referent-word asso-
ciations at the end of training for the four models in Table 2*.

Successful learning happens when, for each label, the value
corresponding to an object is consistently higher than the val-
ues of the other two objects, given that the test procedure
consisted of presenting a label and asking for the matching
object. In this setting, the Hebbian learner would choose ran-
domly and is not learning much, since, in both the Dax and
Pid columns, two objects have the same association to each
label. On the contrary, the NDL model would retrieve the
correct object given the two words provided during training,
since the ObjA-Dax and ObjC-Pid associations are higher
than any other. Another interesting feature is that it learns
that ObjA does not come with the label Pid, forming a neg-

3This was not the case for the HTM model, in which only ObjA,
Ob;B, and ObjC were provided as input.

4For explanatory purposes we will focus on the three objects,
leaving the other cues out.



Table 2: Referent-word associations after 18 training trials
(200 simulated learners). For the Probabilistic Learner, con-
ditional probabilities of label given object are showed; for the
Hypothesis Testing Model, the proportion of learners that se-
lected each hypothesis is showed.

Model Cue Dax Pid
. ObjA 9 .
read R S
ObjC . 9
ObjA 134 £.001 -.021 .005
NDL ObjB  .1134.005  .113 +.005
ObjC  -.021 +£.005  .134 +.001
. ObjA 967 +.003 .
i:;'iﬁ‘e’;hsuc ObjB 484 +.085 485 :+.085
ObjC . 967 +.003
ObjA 465 .
HTM ObjB 535 53
ObjC : 47

ative association. The Probabilistic Learner makes similar
predictions to the NDL model, except for the negative asso-
ciations. Finally, the HTM performs close to chance, with as
many simulated learners mapping Dax to ObjA as to ObjB,
and Pid to ObjB and ObjC, again showing no sign of learning,
inconsistently with the behavioral evidence we considered.

Discussion

Our results show that some of the proposed learning mech-
anisms fail to account for the behavioral data obtained by
Ramscar, Dye, and Klein (2013), for both children and adults:
specifically, a Hebbian learner (Hebb, 1949) and the HTM
(Trueswell et al., 2013) fail to learn robust object-label map-
pings. Two other models, the Probabilistic Learner (Fazly et
al., 2010) and the NDL model (Baayen et al., 2011), show
remarkably similar patterns to the behavioral data from both
children and adults. The behavioral evidence also makes it
clear that it is not necessary for successful cross-situational
learning that true word-referent associations are more fre-
quent than spurious associations. As a matter of fact, in
the dataset each word-referent pair occurs with the same fre-
quency, defying the very notion of a spurious pairing: ObjA
could be paired to Dax just as ObjB could, if we only consider
frequency of co-occurrence of objects and words. Nonethe-
less, humans learned consistent mappings, suggesting that
simply tracking co-occurrence frequencies is a poor candi-
date mechanism to explain cross-situational word learning.
As is often the case in attempts to compare models, many
decisions need to be taken and different choices can result
in different outcomes. For example, we did not equip the
HTM with a mutual exclusivity bias, mainly because it is
not specified in the paper where the model was proposed and
also because we wanted to evaluate basic versions of each
model to focus on the proposed learning mechanisms rather

than specific features. However, even with such a bias, the
HTM would fail to match the behavioral data. Consider the
situation in which the model first sees a Dax trial and it ran-
domly picks ObjB as a referent. When a Pid trial is presented,
the learner searches in memory, finds a Dax-ObjB hypothe-
sis, decides that Pid-ObjB is not legitimate, and maps Pid
to ObjC. If the HTM starts with a wrong mapping for Dax,
it will only find the correct mapping for Pid, but will keep
failing at relating ObjA to Dax. The problem lies in the sin-
gle hypothesis assumption, not in the absence of the mutual
exclusivity bias. In order to account for this behavioral evi-
dence, a model should hold in memory the two possible hy-
potheses. Only then could it appreciate the fact that ObjB
occurs with both labels while ObjA and ObjC consistently
occur with one. The same problem of failing to appreciate
the different background rates of the three objects affects the
Hebbian learner, but results from an entirely different archi-
tecture, since it only focuses on co-occurrences to update as-
sociations. However, the behavioral evidence suggests that
subjects do assign importance to missing co-occurrences too,
and our simulations show that successful learning is only pos-
sible when a model is sensitive to both positive and negative
co-occurrences. Taken together, the failures of the HTM and
the Hebbian learner point to the importance of storing multi-
ple mappings and being sensitive to both things that co-occur
and things that fail to co-occur in the environment (Ramscar,
Dye, & McCauley, 2013).

Unlike Trueswell et al. (2013) and Dautriche and Chemla
(2014), we only evaluated the end-state of learning and did
not consider trial-to-trial patterns, due to the behavioral data
we used for comparison. This analysis would have certainly
been useful because it allows to follow the learning trajec-
tory. However, if a model does not account for the end state
of learning it can hardly explain the mid-states, while a model
that fits the final picture might have done so in different ways
than the subjects. Thus, the reported evidence appears to be
strong enough to make a case against the psychological plau-
sibility of a model, while more evidence is needed about mod-
els that fit the behavioral data.

Finally, we did not evaluate any specification of which
mechanism can make use of the associations learned during
training to actually decide which object to retrieve when pre-
sented with a new label. While this is an interesting com-
ponent of the paradigm in Ramscar, Dye, and Klein (2013)
and it is crucial to investigate how learning mechanisms dif-
fer between young children and adults, we provided evidence
that some learning mechanisms fail to account for behavioral
data from both groups even when the much simpler condition
of retrieving a referent when presented with a known word
is considered. Further analyses are required to identify those
mechanisms that can both i) form the correct associations dur-
ing training and ii) use such associations to retrieve a known
referent for an unknown word, in the same way children and
adults do, to highlight where their learning mechanisms differ
and where they are comparable.



Conclusion

The evidence we provided in this paper complements the
study by Yu and Smith (2012) by showing that not every
learning mechanism can be instantiated in an algorithm that
accounts for behavioral data in cross-situational word learn-
ing. A single-hypothesis learning strategy (Medina et al.,
2011; Trueswell et al., 2013) and an associative model that
only relies on Hebbian learning (Hebb, 1949) fail to fit be-
havioral data. The jury is still out about the Probabilistic
Learner (Fazly et al.,, 2010) and the Naive Discriminative
Learner (NDL, (Baayen et al., 2011)): both models fit the
results by Ramscar, Dye, and Klein (2013), but they behave
differently, prompting for further research on which mecha-
nisms underpin cross-situational learning in humans.
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