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SAMENVATTING

Het menselijke taalgedrag kan worden opgevat als een op kennis gebaseerde
probleemoplossende activiteit. Wanneer een mens de relatie legt tussen betekenis en
klank en vice versa, dan voert hij een aantal, meestal onbewuste, redeneerprocessen
op een aantal kennisbronnen uit. We kunnen deze vaardigheid simuleren (of imiteren)
door computermodellen te bouwen waarbij de nodige kennis door datastructuren
wordt gerepresenteerd, en processen door programma’s die van deze datastructuren
gebruik maken. Voordelen van deze aanpak zijn aan de ene kant consistentie en
volledigheid (voor de theoretische taalkunde), en aan de andere kant nuttige
applicaties (voor de toegepaste taalkunde). In deze dissertatie proberen we enkele
aspecten van het menselijke taalgedrag op deze computationele manier te benaderen.

We gaan uit van een kort overzicht van verschillende disciplines die op een of andere
manier een relatie leggen tussen de studie van de taal en de computerwetenschap. We
richten ons daarbij vooral op de doelstellingen en de methodologie van de
taaltechnologie, het deel van de computerlinguistick dat zich bezig houdt met
toepassingen. We proberen aan te tonen dat het paradigma van het objectgericht
programmeren uitsteckend geschikt is om linguistische kennis en processen te
representeren. Alle programmeerparadigma’s zijn equivalent omdat de programma’s
die zij genereren uiteindelijk allemaal Turing-machine berekenbaar zijn, maar voor de
programmeur (en dus ook voor de programmerende taalkundige) zijn ze
verschillend omdat ze verschillende metaforen suggereren om het probleemdomein te
conceptualiseren. In een objectgerichte programmeerstijl worden alle concepten,
entiteiten en gebeurtenissen in een domein als computationele objecten voorgesteld.
Alle kennis, zowel declaratief als procedureel wordt opgeslagen in het object waar ze
betrekking op heeft, en is uitsluitend via dat object bereikbaar. We geven een aantal
computationele en linguistische argumenten ten voordele van objectgericht
programmeren, en stellen een geavanceerd objectgericht kennisrepresentatiesysteem
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We passen de objectgerichte filosofie toe op enkele aspecten van de Nederlandse
fonologie en morfologie. We hebben onze aandacht beperkt tot de synthese van
werkwoordsvormen, de analyse van samenstellingen, de detectic van interne
woordgrenzen en lettergreepgrenzen, en fonematiseringsalgoritmen. De nadruk in
deze beschrijving ligt vooral op de interactie tussen morfologische, fonologische en
lexicale representaties en op de mogelijkheid tot uitbreiding van de ontwikkelde
kennisbank. We geven ook een aantal beschouwingen weer over het ontwerp van
een lexicale databank voor taaltechnologische toepassingen.

De resulterende morfo-fonologische kennisbank kan op veel manieren gebruikt
worden in toepassingen. We bespreken het concept van een auteursomgeving
waarmee we een verzameling interagerende programma’s bedoelen die het leven van
de gebruiker van tekstverwerkers aangenamer maken. Twee van de modules in zo'n
auteursomgeving: automatische woordafbreking en automatische detectie en correctie
van spel- en typefouten worden in detail behandeld. We stellen programma’s voor die
een oplossing bieden voor de problemen die voortkomen uit de manier waarop in het
Nederlands samenstellingen worden gevormd. Wanneer onvolledigheden in de
kennisbank een volledige oplossing voor sommige sub-problemen onmogelijk maken
suggereren we heuristicken. Heuristieken worden trouwens ook gebruikt om de
efficiéntie van de ontwikkelde programma’s te verhogen.

Een domein in de Kunstmatige Intelligentie dat vlug aan belang wint is het intelligent
computergesteund onderwijs. Een intelligent systeem voor computergesteund
onderwijs bevat naast kennis over de leerstof die moet worden onderwezen ook een
model van de leerling, heuristiecken voor de diagnose van de fouten van de leerling,
een module die gemaakte fouten uitlegt, en educatieve strategieén. We hebben een
prototype van zo een systeem gebouwd voor het aanleren van een bepaald aspect van
de Nederlandse spelling (de spelling van de werkwoordsvormen).

Systemen om regels te testen bieden een fundamenteel nieuwe manier om taalkunde te
bedrijven. Ze versnellen de ontwikkeling van regelsystemen en theorie€n en voorzien
de taalkundige van krachtige methodes om complexe interacties en neveneffecten van
regels te controleren. We beschrijven het prototype van een dergelijk systeem voor
het testen van fonologische regels. We geven eveneens een voorbeeld van hoe de
linguistische algoritmen die we hebben ontwikkeld toegepast kunnen worden in de
lexicografie. We schetsen een experimentele omgeving waarin de lexicograaf op een
gemakkelijke manier lexicale databanken kan cre€ren, uitbreiden en veranderen. We




schenken ook aandacht aan de manieren waarop ons morfo-fonologisch model zou
kunnen worden gebruikt als module in meer uitgebreide systemen. Een morfologische
component is onontbeerlijk in systemen voor automatische vertaling en in
dialoogsystemen als deel van de syntactische analyse- en syntheseprogramma’s. Een
fonologische module is essentieel in elk systeem dat taal wil verwerken met
spraaksignalen als input of output. De transportabiliteit en de modulariteit van
objectgericht geprogrammeerde systemen maakt hen uiterst geschikt voor integratie in
grotere systemen. We bespreken meer bepaald de mogelijke rol van ons
fonematiseringsalgoritme in een spraaksynthesesysteem.




ABSTRACT

This dissertation presents a computer model of aspects of Dutch morphology and
phonology. After a concise introduction to language technology as a part of Artificial
Intelligence, it is argued that the object-oriented programming paradigm is ideally
suited to represent linguistic knowledge and processes. An object-oriented implemen-
tation of aspects of Dutch morphology (word form synthesis and recognition) and
phonology (syllabification, phonemisation, phonological rules) is presented to support
this opinion. It is shown how this morphophonological module can be used to pro-
vide a principled solution to some problems in word level language technology (not-
ably automatic hyphenation and spelling/typing error correction) for which only a
defective solution can be given using traditional (engineering) approaches. The utility
of the module in the development of other applications is discussed. Among those,
prototypes of the following were implemented: an Intelligent Tutoring System for
some aspects of Dutch spelling, an environment for the creation and testing of com-
plex systems of linguistic rules and a lexicographic tool for the creation, updating and
extending of lexical databases.
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PREFACE

Language technology can be situated at the intersection of linguistics, psychology and
computer science. It concerns itself with the development of computer programs
which produce, understand and manipulate natural language. As a technology, it
should produce artificial translators, artificial dialogue partners, artificial editors and
artificial language teachers. As a science, it should provide an instrument to construct
and evaluate linguistic and psycholinguistic theories about language structure and
language use. Figure 1 shows the different modules which play a role in a natural
language processing system.

Input to a language processing system can be either spoken or written text. In
the first case, acoustic signals must be transformed into a computer-readable
representation. This process needs the concerted action of several linguistic com-
ponents (putting it in a single box as in the figure is a simplification). Input text is
analysed at the word-level by a word parsing algorithm computing the internal struc-
ture of words, and at the sentence-level by a sentence parsing algorithm computing
the syntactic structure of sentences. The semantic representation of an input text is
computed using the syntactic and morphological representations, the lexical meaning
of individual morphemes and additional information from domain knowledge and con-
textual knowledge. Advanced systems would also include a level of discourse
analysis. In generating language from a semantic representation, syntactic and mor-
phological generation modules are used to produce written text. Additional intona-
tion, phonemisation (grapheme-to-phoneme transliteration), syllabification (computing
syllable boundaries), and phonological rule components (summarised in a single box
in the figure) are necessary to compute a phonetic representation detailed enough to
be used by a speech synthesiser to produce natural-sounding speech. All analysis and
generation components make extensive use of the lexical database containing the
inventory of the morphemes of a language and their associated phonological, morpho-
logical, syntactic and semantic information.

In this dissertation, I will be concerned only with those modules which are
shaded in Figure 1: the linguistic levels at and beneath the word level. The text is
divided into three parts and eight chapters. Part I is devoted to methodological
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Figure 1. Modules in a language processing system.

considerations. In Chapter 1, a concise introduction to the field of language technol-
ogy is given. It is argued that language technology should adopt the methodological
principles of computational linguistics proper, and not content itself with pure
engineering, as is often the case. Solutions to problems should be theoretically
motivated. This point of view was not dictated by a love of theoretical purity, but
by a cool observation of the failure of an engineering approach. Chapter 2 describes
the object-oriented programming paradigm and its benefits for programming in gen-
eral and for programming linguistic knowledge and processes in particular. The
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central claim in this chapter is that, although all programming paradigms are ulti-
mately equal in terms of Turing computability, they are very different in their ade-
quacy as notations for describing information and action in a particular domain. Part
II is a description of our morphophonological module for Dutch. Different
knowledge sources and processes in this domain are described in an object-oriented
way. Algorithms to compute internal morphological boundaries, inflected forms of
verbs, syllable boundaries, and a phoneme representation of spelling are described in
Chapters 3 and 4. Part I describes a number of applications of the model in Part II:
Automatic hyphenation, automatic spelling and typing error detection and correction,
intelligent computer-assisted instruction, lexicographic tools, text-to-speech systems,
linguistic rule-testing devices etc.

The sequence in which the chapters of this dissertation are ordered is slightly
misleading. It may suggest to the reader that I started from some methodological
premises, selected a domain, constructed a computational model to account for some
phenomena in this domain, and finally developed applications to investigate the use-
fulness of the model. In fact, the reported research started from two practical prob-
lems in the framework of word processing: automatic spelling error detection and
automatic hyphenation for Dutch. It soon became clear that the solutions provided in
the literature were adequate for English, but not for Dutch, due to the peculiar com-
pounding behaviour of Dutch morphemes. This led to the insight that a principled
solution to the hyphenation and detection problem would involve a level of morpho-
logical analysis. However, the slowness of existing morphological analysis programs
made them useless in practical word processing applications. One solution was to
place part of the burden of analysis on the lexical database, which should contain
wordforms, and not only morphemes. We could suffice then with a fast wordform
parser to analyse compounds, provided we developed a morphological synthesis pro-
gram to construct and update the wordform dictionary automatically. From these con-
siderations, the usefulness of a modular, portable and complete model of at least
parts of Dutch morphology became obvious. Interaction between morphology and
phonology introduced new problems and new requirements for the model, for
instance the fact that it should include a phonological level as well. After implement-
ing this level, more applications (such as grapheme-to-phoneme transliteration)
became feasible, and so on. A lot of work remains to be done to obtain a complete
model of all aspects of Dutch morphology and phonology, but we believe that the
approach taken here, and the programs developed, make completion of such a model
a matter of time rather than of invention.
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Implementation Note. Development of the programs began early 1984. Various ver-
sions exist, written in different languages and dialects (Franz Lisp, ZetaLisp, NIL
Lisp, Orbit, Flavors and KRS) and running on different machines (Vax, Sun and
Symbolics Lisp Machine). I am presently working on the integration' of all relevant
software into a single package written in Common Lisp and KRS and running on a
Symbolics Lisp Machine. Source code listings are available for research purposes
upon request.

Production Note. The text was produced using the UNIX Troff formatting system.
The more elaborated pictures were drawn using the Symbolics Lisp Machine picture
editor.
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PARTI
METHODOLOGY

Human verbal behaviour can be viewed as a knowledge-based problem-solving
activity. In mapping sound to meaning and vice versa, a person applies (unconscious)
reasoning processes to a variety of knowledge sources (collections of highly struc-
tured information). This capacity can be simulated (or imitated) by constructing com-
puter models in which knowledge is represented by data structures, and processes by
programs driven by these data. Advantages of this approach are consistency and com-
pleteness of description for theoretical linguistics, and useful applications for applied
linguistics. Different disciplines relating language studies and computer science will be
reviewed in Chapter 1, and the goals and methodology of language technology in
particular will be studied. |

In Chapter 2, it will be argued that the object-oriented programming paradigm is
ideally suited to represent linguistic knowledge and processes. All programming
paradigms may be equivalent in that the programs they generate are ultimately
Turing-machine equivalent, but to the programmer they are different in the metaphors
they provide to conceptualise the problem domain. When using an object-oriented
programming style, concepts, entities and events in the problem domain are
represented as computational objects. All knowledge, procedural as well as declara-
tive, is stored in and accessible through the object. The computer appears to the pro-
grammer as a set of autonomous processors which can be addressed independently.
A number of computational and linguistic arguments in favour of object-oriented pro-
gramming will be provided, and an advanced object-oriented knowledge representa-
tion system will be described.




CHAPTER 1

Language Technology

Several disciplines attempt to establish a relationship between natural language study
and computer science. This general effort has become known under the name natural
language processing. We will not be concerned here with the classification and count-
ing of large quantities of linguistic data (statistical or quantitative linguistics), nor
with the theory of formal languages and automata (mathematical or algebraic linguis-
tics). The remaining disciplines are captured under the name computational linguis-
tics. Computational linguistics, especially when dealing with the development of prac-
tical applications, is called language technology.

In the following section, we will describe the Artificial Intelligence approach to
computational linguistics (section 1.1). Characteristic of this approach is that it inter-
prets the study of language as part of cognitive science. Viewed from this perspec-
tive, computational linguistics includes computational psycholinguistics (the testing and
implementation of psychological models of language processing), which we conse-
quently do not grant the status of an autonomous discipline. In section 1.2, it will be
argued that language technology needs no separate methodology in which the metho-
dological constraints of theoretical computational linguistics are relaxed. This separate
methodology is present explicitly or implicitly, however, in a lot of work in language
technology.

1.1 The Artificial Intelligence Approach

The first twenty obvious ideas about how
intelligence might work are too simple or

wrong.
David Marr




LANGUAGE TECHNOLOGY The Al-Approach

In our opinion, the most fruitful approach to natural language processing is the one
adopted in Artificial Intelligence research. Al can be defined as the science and tech-
nology of knowledge (see e.g. Steels, 1985). Knowledge is defined as information
representing collections of highly structured objects (Kempen, 1983). More detailed
definitions of AI can be found in any textbook on the subject (e.g. Winston, 1984;
Charniak and McDermott, 1985).

In an Al-perspective, language is viewed as a knowledge-based process (e.g.
Winograd, 1983); a cognitive ability which allows people to apply (unconscious) rea-
soning processes to stored linguistic, world and situational knowledge. This cognitive
system is described in a computer model in which knowledge is represented by data
structures, and mental processes are represented by programs using or manipulating
these data structures. As regards knowledge representation and manipulation, no a
priori distinction is made between the linguistic and other cognitive systems. This
position is not necessarily conflicting with some form of the autonomy or modularity
thesis (e.g. Fodor, 1983) which views language as a computational cognitive module
exhibiting only constrained information exchanges with other modules. We can envi-
sion an autonomous module making use of general knowledge representation, prob-
lem solving and learning techniques, yet at the same time having its own structure
and interacting in restricted ways with other modules.

The Al-approach makes use of a predominant axiom (or metaphor) from cogni-
tive science: the mind as an information processing system. This metaphor states that
human and machine intelligence can be described at an appropriate level of abstrac-
tion as the result of symbol-manipulating processes; i.e. both people and (intelligent)
machines are instances of the same informavore species (Miller, 1984). Cognitive
science is a multidisciplinary science bringing together psychology, philosophy,
linguistics, neunroscience, educational science and artificial intelligence in an effort to
build programs or programmable theories which simulate or describe a cognitive
behaviour, taking into account empirical phenomena (see e.g. Adriaens, 1986 for a
linguistic theory developed within this framework).

The basic relationships between cognitive system, computer model, algorithm
and computational theory are sketched in Figure 1. The levels and interrelations were
inspired by Marr (1977, 1982) and Kempen (1983).

A computer model is a program running on some machine and exhibiting the
same behaviour as the human cognitive system described by it. If this is the case,
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Computational Theory Computaiional
Level!
Y
-
Intensional Algorithms Algorithmic
Adequacy Level
A A
Human Cognitive Computer Model .
Impiementational
System Level
Extensional
Adequacy
v
> Behaviour —4¢

Figure 1: Relation between theory, algorithm, computer model and cognitive
system.

we say the model is extensionally adequate. Computer model and biological system
together form the implementational level, the level in which an abstract cognitive sys-
tem is physically realised. The concept of a model always implies a hypothetical iso-
morphic (or homomorphic) relation between simulated system and simulating system.
It is theoretically possible to posit this relation at the level of hardware: vetween cen-
tral nervous system and computer architecture, respectively. Recent efforts at con-
nectionist models of cognition (e.g. Ballard, 1986) may be an example of this,
although some workers in this field locate their research at the algorithmic level
which we will outline shortly (e.g. Rumelhart and McClelland, 1986). But most
often, the isomorphic relation is postulated at the level of computational theory.

At that level we are concerned with an abstract and formal analysis of the prob-
lem (e.g. transforming sound into meaning in the case of language), and with the
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computational functions necessary to solve it. According to Marr, Chomsky’s com-
petence theory is a computational theory in this sense. The computational level consti-
tutes a fertium comparationis between human cognitive system and computer model.
The computer model is intensionally adequate if it implements an intémally coherent
and complete theory at the computational level.

The algorithmic level is concerned with how the computational theory can be
implemented. At this level, representations and processes transforming representa-
tions are basic building blocks. Efficiency considerations (in both processing time and
storage requirements) and psychological data are especially relevant here. Perfor-
mance theories are usually algorithmic in nature.

According to Marr (1977), Al-research should proceed in a three-step top-down
manner. First, an interesting information processing problem is isolated. Next, a
computational theory is developed describing and explaining the properties of the
problem, and its basis in the physical world. Finally, algorithms are devised which
implement a solution to the information processing problem in a computer model.
This approach was applied by his group to low-level vision. Nevertheless, he also
noted that there may be information processing problems for which no theory of
computation could (yet) be developed. Hence his methodological preference for low-
level vision problems like stereo-vision, as opposed to e.g. object-recognition. He
suggested that most work in the field of Al has tended to be concerned with perfor-
mance and with the construction of algorithms rather than with the development of
computational theories!. In his view, however, information processing problems are
more important than implementation mechanisms, and the theory of computation
should precede the construction of algorithms.

We do not share this view. Language processing may be a problem for which
no computational theory exists yet, as it lacks a clear basis in physiology and psycho-
physics. But this need not keep us from trying to construct one. We can use the
evaluation measures? of linguistics and the experimental data of psychology to

I Marr (1977) gives a ‘sociological’ reason for this: external pressures for early results
made researchers jump from the problem to an algorithm implementing the solution without
an intermediate stage of theorising. Chomsky (1983) has added a ‘psychoanalytic’ interpreta-
tion: many researchers do not want to get into areas where there may be far-reaching and
abstract principles (computational theory of intelligence) because they would like to believe
that explanations are close to the surface.

2 Evaluation measures are used to make a choice between different linguistic theories.
They are based on such (vague) criteria as simplicity, adequacy, significance, learnability etc.

- 10 -




LANGUAGE TECHNOLOGY The Al-Approach

constrain our computer model. We can even use computational criteria like efficiency,
speed, resource usage, etc., to restrict the model. This means that we see the algo-
rithmic level as an equally useful inspiration to computer model building as the com-
putational theory level. We will argue in Chapter 2 that some notations and formal-
isms (algorithmic level entities) are better suited to represent concepts in a problem
domain than others, and that they may even have a definite influence on the charac-
teristics of the theory developed. We will therefore regard the computational and the
algorithmic levels as one level (the computational level) in the remainder of this
dissertation.

At this (generalised) computational level, it is possible to theorise about language
processing in the abstract (cp. Thompson, 1983, theory of linguistic computation).
Moreover, design restrictions such as modularity can be postulated at this level.
Modularity is a concept which is interpreted somewhat differently in various scientific
disciplines. In computer science, a computer program is called modular if chunks of
computer program can be added, modified or deleted, independently of the remainder
of the database. A modular system or program is easier to understand and to main-
tain. In linguistics, modular theories are used to dissect a complex process into a
system of simpler processes (e.g. the modularity of formal grammar in recent
accounts of transformational generative grammar; Chomsky 1981). A complex system
can be better understood as a set of modules interacting in clearly defined ways.
Modularity has also proved to be a psychologically relevant property of low-level
vision (e.g. Marr, 1982), and has been claimed for other cognitive systems as well
(we have already mentioned Fodor, 1983). Thus, we can distinguish two aspects of
modularity in computational theory: as a methodological principle to gain insight
(even at the loss of efficiency or plausibility), and as a design property of biological
cognitive systems. This constitutes a double incentive to develop computational
theories and models which are modular.

The lack of a physical basis for the devising of representations and processes
implies that we cannot be sure that the representations hypothesised are ‘real’ (i.e.
that human beings possess and use them). But at least we have the advantage of
extensional and intensional validity.

(Chomsky, 1965; Botha, 1978).
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Notice that the relation between psychology and linguistics on the one hand, and
the computational model on the other hand is not one of uni-directional influence.
Just as psychological (e.g. Johnson-Laird, 1980) and linguistic theories provide a
source of inspiration for the development of a computer model does the latter have a
beneficial effect on the former as well. A computer model can bring more insight
into the representations and processes used by people when communicating. It has
even been claimed that much psychological research has been guided by Al research
rather than vice versa (e.g. Winograd, 1980). Computer models can also be used as
a tool in linguistic research. In section 1.2.2 we will return to the advantages for
linguistics, Finally, the preoccupation with knowledge representation and processing
in AI has led to new programming languages and computing paradigms (Prolog,
object-oriented programming) in mainstream computer science.

Computational linguistics in the Dutch language area is divided between two
unreconcilable interpretations of the discipline. The cognitive artificial intelligence
approach has been adopted by a.o. Hoenkamp (1983, 1985), Kempen (1983), and
Adriaens (1986). Other workers in the field of computational linguistics interpret
natural language processing as the construction of algorithmic models of linguistic
grammars and theories. This means that they see computational linguistics as a tool
in the development of descriptive theories of language (a.o. Van Bakel, 1983; Brandt
Corstius, 1974) and not as an effort to construct cognitive theories of verbal
behaviour. Opposition to the Al-approach is often quite strong (e.g. Brandt Corstius,
1981).

1.2 Applications

The linguist should be grateful that even if he
is not interested in ‘practical’ results, the
requirements, say, of computer programming
may be a healthy incentive for explicit and
rigorous formulation.

G.C. Lepschy.

Language technology (linguistic engineering) can be defined as the part of computa-
tional linguistics which concerns itself with the development of (commercial) applica-
tions. Examples are advanced word processors, natural language interfaces to data-
bases, automatic translation systems, etc.

12
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The linguistic and psychological relevance of these applications is often small, as
they are mostly developed by programmers whose main concern is short-term compu-
tational efficiency. They try to combine the highest possible accuracy with the
highest possible processing speed and the smallest possible storage prerequisites.
Their systems contain ad hoc rules and feature a predominant use of heuristics?
instead of algorithms. This need not be a bad thing, since commercial applications
should be efficient rather than theoretically adequate. It could be argued that in
language technology, intensional validity or an isomorphic relation with human infor-
mation processing are no prerequisites for the model as long as it is extensionally
valid (i.e. if the program exhibits the desired behaviour).

However, we believe that this engineering approach often leads to systems
which cannot properly do what they are supposed to do. The ‘highest possible accu-
racy’ (e.g. 75% sentences correctly translated, 95% correct hyphenations) may often
be increased even further if the desired behaviour is viewed from the perspective of a
computational theory (cp. Droste, 1969). One of the central claims in this disserta-
tion is that algorithms and heuristics used in language technology should also be
based on a computational theory which is founded in linguistics and psychology.* An
important shortcoming of most technological approaches to language processing is
their complete lack of theoretical foundation, resulting in inaccurate systems.

We will exemplify the unfruitfulness of the latter approach in Chapter S, where
we will show the inadequacy of a heuristic approach to hyphenation (Boot, 1984),
and suggest an alternative approach, based on a computational theory of
syllabification outlined in Chapter 4.

Boot adheres to what he calls a (result-oriented) expert system approach to com-
putational linguistics. He interprets expert systems as systems of heuristic rules solv-
ing some specific problem, and claims that it is not necessary to have complete
knowledge about human language competence in order to build natural language

3 Heuristics are implemented as algorithms as well. However, the meaning we assign here
to heuristics is the one traditionally used in Al: heuristics are informal judgemental rules
drawing on regularity and continuity in the domain modeled (cf. Lepat, 1982). The
knowledge they embody is therefore incomplete. An algorithm on the other hand embodies
complete knowledge about how a problem is to be solved in principle. The algorithm may be
deficient, but that is an entirely different matter.

4 The call for a theory of translation in machine translation research (E.g. Van Eynde,
1985) may be a manifestation of the same concern.
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processing systems. In our radically different view, a computational model, based on
a 'computational theory and easily adaptable to different applications, is theoretically
as well as practically superior to an approach in which each application has its own,
independent, ad hoc ‘expert system’>. Language technology in our opihion is the con-
struction of computational models incorporating computational theories (as in Al), and
the study of how these can be efficiently exploited in applications. Apart from the
fact that applications are useful in their own right, they can also function as a test
case for computational theories, suggesting extensions or modifications.

1.2.1 An Overview of Application Types

Five main branches of language technological applications may be distinguished:

(1) The computer as a dialogue partner. Natural Language front ends (accepting
spoken or written language) make data processing systems more user-friendly
and easy to use. The slogan here is let the computer speak our language instead
of vice versa. Natural language interfaces have been or are being developed to
databases (question answering systems) and expert systems (explanation
modules). A ‘talking computer’ fits more naturally into people’s lives and lowers
the threshold to computer use. This is demonstrated in Figure 2 (adapted from
Zoeppritz, 1983), which contrasts a database request in SQL (a database query
language) with its natural language counterpart.

select all x member
from emp x
where x.member not in
(select unique y.member
from emp
where y.city=z’antwerp’)

Which members do not live in Antwerp?

Figure 2. A database request in SQL as opposed to natural language.

(i) The computer as a translator. After a rude awakening from the dream of unres-
tricted full-automatic translation in the late sixties, more reasonable efforts at
restricted computer-aided translation are being conducted, especially in Japan
(Fifth Generation Computers program), and Europe (EC-Eurotra, Siemens-

5 The structure of the expert system may not be ad hoc, but the rules used are.
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Metal, BSO, Philips-Rosetta ...).

(iii) The computer as a teacher. An effective system for Computer Assisted Instruc-
tion will have to contain some kind of natural language interface to respond sen-
sibly to the input from the user (cp. i). Furthermore, in CAI systems for the
subject domain of first or foreign language learning, the system should have
enough linguistic and meta-linguistic knowledge to correct the answers of the
student, and to diagnose and explain his or her errors.

(iv) The computer as an author and editor. Intelligent word processors (author sys-
tems, author environments) will differ from present-day text editors by the inclu-
sion of linguistic knowledge. This knowledge may be applied in functions like
spelling and style checking and advice, on-line dictionaries, and in various addi-
tional text preparation aids.

(v) The computer as a linguistic research assistant. Rule testing devices can be built
to test the adequacy of existing linguistic theories or to help in the construction
of such theories. As we see this as one of the most important contributions of
language technology, we will go into it in somewhat more detail in the next sec-
tion.

Many of these applications will be treated more extensively in the remainder of
this dissertation: rule testing devices in the next section and in Chapter 8, CAI in
Chapter 7, intelligent word processing in Chapters 5 and 6, and speech interfaces in
Chapter 8.

1.2.2. Linguistic Research Tools

An important achievement of language technology is the development of programs to
test the adequacy of existing linguistic theories. During the design and the implemen-
tation of the program, inconsistencies, shortcomings, redundancies and vagueness
(intensional inadequacy) inevitably come to light. An analysis of the nature of these
shortcomings (they may be reparable or not) may lead to a modification of the origi-
nal theory, or even to its rejection. Furthermore, once a theory has been imple-
mented, it can be quickly and easily tested on a large corpus of ‘real-life’ natural
language data as opposed to the selected example sentences common in theoretical
linguistics.

The amount of work done in this direction is not very large, although its
beneficial influence has often been attested (a.o. Brandt Corstius, 19785, Van Bakel,
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1983, Hoenkamp, 1985). Computer programs have been used to evaluate transfor-
mational grammars (Friedman, 1971), Montague grammar (Janssen, 1976) and Dik’s
functional grammar (Kwee, 1986).

If computer models can be used profitably to test existing linguistic theories,
they can also be used to develop new linguistic theories (e.g. Gazdar, 1985; Thomp-
son, 1983). Computer models have a distinct heuristic function, i.e. they can suggest
ideas to the researcher through trial and error (Kempen, 1983), and they can help in
overcoming the complexity barrier resulting from the application of large sets of
interacting rules. Functional Unification Grammar (Kay, 1985) and GPSG (Gazdar,
1983) are examples of theories whose development was guided to a large extent by
computer modeling. In Chapter 7, a tool for phonological research will be presented
which illustrates the advantages of a computational model for linguistic research.

The use of computer programs in the testing and development of linguistic
theories leads to a reflection on the relation between program and theory. Although
programs may be developed which implement theories, the two should not be
equated. Theories are sets of propositions while programs are sets of instructions (cf.
Kempen, 1983). We interpret programs as notations for theories, much like the rule
formalism in generative linguistics. We can prove that a program is a correct nota-
tion for a theory (if it comes up to the specifications of the theory when it is run),
but this does not prove that the theory is correct. A program becomes a theory only
when it is assigned an interpretation. E.g., we can construct a program which defines
a set of linguistic rules. The program obtains a theoretical status only when
(psycho-)linguistic relevance is claimed for these rules. Similarly, a program can use
a number of levels of representation, but only when these are interpreted in some
linguistic or psychological sense, they have theoretical status.

In a sense, there is no difference between using a paper-and-pencil notation to
formulate a theory or using a computer program. However, programs have some
unique properties: (1) they are formal and explicit to the extreme, (2) they are exe-
cutable; i.e. they can give a physical interpretation to the concepts of a theory (it is
precisely this property which makes them ideally suited to test the coherence of
theories), and (3) they can be put to practical use, which gives them an economical
mﬁus even devoted one of his three laws of computational linguistics to it:

Every linguistic description, however exact, but not a program itself, turns out to contain an
error if one tries to make a program of it (translation, WD).
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value.

1.3 Conclusion

Language technology is the part of computational linguistics which is concerned with
the construction of computational models and their adaptation for practical applica-
tions. Computational models should be based on a computational theory, i.e. an
abstract theory of natural language processing. Such a theory can be founded in
psychology, linguistics and possibly neurology. The construction and testing of appli-
cations can provide valuable feedback for the organisation of such a theory, and
through it for the psychological and linguistic theories on which it was based.vFigure
3 pictures this view.

LINGUISTICS PSYCHOLOGY NEUROLOGY

Ak a5

COMPUTATIONAL THEORY
tIncluding Algorithmic Level)

4
APPLICATIONS

-~

TESTS

Figure 3. Language Technology. The downward arrows indicate the
relation of determination, the upward arrows denote feedback relations.
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CHAPTER 2

The Object-Oriented Programming Paradigm

Recently, computer science has seen the advent of a large number of new program-
ming paradigms. The traditional imperative and procedure-oriented programming style
is now being challenged by logic-based, access-oriented, rule-based and constraint-
based programming. Another new development is object-oriented programming. After
introducing the basic philosophy of this programming paradigm, its advantages and
some variations between different object-oriented languages in sections 2.1 and 2.2,
we will go into the syntax and semantics of the knowledge representation system
KRS (Steels, 1985) in section 2.3. Finally, the usefulness of the object-oriented
paradigm in linguistic knowledge representation and linguistic processing will be dis-
cussed in section 2.4.

2.1 Principles of Object-Oriented Programming’

Designing a good representation is often the
key to turning hard problems into simple
ones.

P.H. Winston

Objects are computational entities representing a concept in a domain of discourse.
Objects in the domain of natural language processing could be NP, direct object, syll-
able, focus. Objects in the domain of office automation could be Ietter,

7 A recent overview of the object-oriented paradigm can be found in Stefik and Bobrow
(1986). The August, 1986 issue of Byte features a number of introductory articles on object-

oriented programming, which seems to indicate that the paradigm is rapidly becoming popu-
lar.
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communication-medium, invoice, employee. An object has an internal representation
of the information associated with it, i.e. of its properties and behaviour. Declarative
knowledge about an object (data) is represented by features (attribute-value pairs),
and procedural knowledge by attached procedures (parameterised functions which can
change the internal state of the object itself, or of other objects, or have some useful
side-effect). The latter are often called methods.

A predominant metaphor used to describe action in an object-oriented system is
message-passing: objects sending messages to other objects. Messages can set a pro-
perty of an object to some value, retrieve the value of a property of an object or
make an object execute a method (which may have arguments). E.g. an object
ORDER-55 could have an internal structure as in Figure 1.

object ORDER-55

ordered-what: Lisp-Machine
ordered-amount: é
ordered-who: Willy Wortel
ordered-where: Symbolics
communication-channel: Letter

place-order (date):
A procedure with as argument the date on which the order must
be sent. When this specified date is equal to the present
date, a message write is sent to an object
letter, with arguments ordered-what, ordered amount
ete..

Figure 1. Example of an object’s internal structure (simplified).

The object ORDER-55 has some declarative information associated with it:
ordered-what, ordered-amount, ordered-who, ordered-where and communication-
channel. A message could be sent to ORDER-55 asking for the current value of one
of these features. There is also one attached procedure,® place-order with one argu-
ment, date. Notice that the execution of this procedure causes ORDER-55 to send
another message to another object (LETTER) with some arguments. In order to pro-
vide arguments for this message, the object has to examine its own internal state.
We imagine the LETTER object to have an attached procedure write which fills out

8 Procedures in most object-oriented languages are written in the programming language
on top of which the object-oriented language was built, e.g. Lisp or Pascal. In this text, we

shall use either a verbal description of what the procedure is supposed to do or an algorithm-
ic description in ‘formal English’.
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the template of a standard order letter with the arguments provided whenever it is
called.

The way information is computed depends on the object to which the message is
sent. Another object ORDER-56 could have its own place-order method attached to
it, resulting in different behaviour if the same message is sent. This is sometimes
called polymorphism. In this respect, object-oriented languages differ radically from
procedure-oriented languages (also called action-oriented or function-oriented
languages), which take a procedure as central. E.g. a generic® function + would be
implemented as shown in Figure 2(i) in a procedure-oriented and as in Figure 2(ii) in
an object-oriented language.

define function +, with arguments n and m

if n or m is real
then execute procedure real-plus

if n and m are integers
then execute procedure integer-plus

if n and m are strings
then execute procedure string-concatenate

else signal argument error

Figure 2(i). Function-oriented implementation of function +.

object REAL
method: + (arg)
procedure real-plus

object INTEGER
method: + (arg)
procedure integer-plus

object STRING
method: + (arg)
procedure string-concatenate

Figure 2(ii). Object-oriented implementation of function +.

In a function-oriented approach, a generic function is accessed through its name,
and a type-check on the arguments is performed to determine which sub-procedure is

9 Generic functions are functions that apply to more than one data type.
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to be used. In an object-oriented approach, the different sub-procedures are associated
directly with the different data-types, which are implemented as objects.

Different objects are related to each other through hierarchical links. Mostly,
more specific objects are defined as sub-types of more general types, but it is prefer-
able to understand type hierarchies in a purely technical sense, without confusing
types with categories (classes) or species (cp. Steels, 1985), as this may lead to mis-
takes!®. Part of a type-hierarchy in the domain of office systems could be the one in

Figure 3.
COMMUNICATION-MEANS
WRITTEN-COMM SPOKEN-COMM
LETTER TELEX E-MaAIL TELEPHONE FACE-TO-FACE

!
| |

SURFACE-MAIL AIR-MAIL

Figure 3. Part of a hypothetical hierarchy in an office system.

10 Consider for example a hierarchical link between Clarence and lion: Clarence is a lion.
And lion has the attribute-value pair (extinct false) associated with it. Clarence would inherit
this feature although only species can be extinct, and not individuals (except in a metaphori-
cal sense).
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Information present in types is available to sub-types through a process called
inheritance. The object SURFACE-MAIL can inherit information from the types it
belongs to (LETTER, WRITTEN-COMMUNICATION, COMMUNICATION-
MEANS). Inheritance reduces redundancy: if two objects are almost alike, one can
be made a sub-type of the other, or both can be made sub-types of a third. Only
those portions of the knowledge associated with an object which are different from its
parent objects need be stored. Inherited information is overruled (substituted) if the
information is provided in the object itself (Figure 4).

object PERSON
number-of-legs: 2
number-of-arms: 2
is-rational: yes

object JOHN
type: PERSON

object IRRATIONAL-PERSON
type: PERSON
is-rational: no

Figure 4. Example objects for PERSON, JOHN and IRRATIONAL-PERSON.

The object JOHN inherits all information associated with PERSON, without a need to
store it in John. IRRATIONAL-PERSON inherits all information associated with
PERSON except the property is-rational which is overridden by the information asso-
ciated with IRRATIONAL-PERSON.

Family relationship terminology is used to describe the relations among objects:
the types an object inherits from are the parents of that object, inheriting objects are
children or inheritors, parents of parents of an object are ancestors.

When an object inherits from more than one type (multiple inheritance), the
inherited properties are combined in some pre-defined way (e.g. union, with elimina-
tion of duplicate features). If different parents of an object have the same features or
methods, it is a search algorithm (breadth-first or depth-first, left-to-right or right-to-
left) which determines which version is kept, and which one is destroyed as a dupli-
cate. Thus, in the following (tangled) hierarchy (Figure 5), the search algorithm
determines which version of the life-expectancy property is inherited by BERT. In a
breadth-first search, BERT inherits a low life expectancy, in a depth-first search a
high one. Through multiple inheritance, existing pieces of knowledge can be com-
bined into more complex wholes (object-composition). In our example, BERT is

-
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ACADEMIC
#\ Life-expectancy: 30

PROFESSOR ALCOHOLIC
A Life-expectancy: 50

BERT

Figure 5. A tangled hierarchy.
composed as an alcoholic professor.

Apart from the way the inheritance hierarchy is searched, decisions must be
made about the way the inherited material is combined. Often, a procedure is inher-
ited as a monolithic whole. Some languages, however, provide utilities for the inheri-
tor to modify the code of the procedure before executing it. This can be done either
by directly grabbing the definition of the procedure through an operator, change it,
and evaluate the result (as in the language CommonORBIT, De Smedt 1987); or by
providing demons which add pieces of code before and after the main code of a
method at compile time, plus a declarative language which can be used to change the
default behaviour- of these demons (as in FLAVORS, Weinreb and Moon, 1981).
Both approaches result in an ability to combine different methods. It would be possi-
ble, for example, in the example of Figure S to return the average of the life expec-
tancies for academics and alcoholics as the life expectancy of Bert.

To what extent are object-oriented languages better than traditional programming
languages? For now we will concentrate on general advantages. Later we will point
out their relevance to linguistics.

(i) Modularity (encapsulation): No knowledge about the internal details of an object
type (data type) is needed. The actual implementation of an object can be
changed radically (e.g. from a property list to an array), without any difference
to the user. Furthermore, when adding new types, existing objects need not be
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(ii)

(iii)

redefined. Internal details can be changed without affecting other objects. An
object may be imagined as a black box which accepts a number of inputs and
produces a number of outputs, or as an expert who can answer a number of
questions (stored in its properties), and who can solve some problems (by apply-
ing his methods).

Due to inheritance, information can be changed in one place, and inheritors
inherit this change automatically (if provision is made for this). As real-life
applications typically involve thousands of objects, the time saved by this cannot
be overestimated. Thus, extensibility and easy modification ensure the modular-
ity needed in the development and maintenance of large programs. A term
currently in vogue for describing re-usable software modules which are largely
independent from a particular application is Software ICs (Ledbetter and Cox,
1985).

Style: Object-oriented systems are conceptually simple to work with. Most of us
think and reason about a problem in terms of entities, properties of entities,
relations between entities and actions which are natural for these entities. An
almost one-to-one mapping of these conceptual units is possible with the compu-
tational units of an object-oriented language. Thinking about an algorithm in
terms of objects makes it easier to understand. This close relation between the
way we think and the way the program is structured, makes the translation of
the abstract solution to a problem into program code easier, and consequently
less error-prone. Furthermore, all information about an object is collected in
one place. Due to modularity and the simplicity of syntax and semantics of most
object-oriented languages, programs are well-structured and easy to read.

Efficiency: Efficiency of an object-oriented system depends on the number of
objects and generic procedures in a particular application, and on a number of
design features. Object-oriented systems are efficient when lots of objects are
needed. Inheritance by search (in which information is looked for in the type
hierarchy every time it is needed) prevents that copies of the same function have
to be stored in too many objects, thereby keeping access times relatively low
and storage requisites reasonable. Inheritance by copying (in which information
associated with the parent is copied to the children when they are created)
reduces search time in the hierarchy, but increases storage overhead, and an
explicit recomputation in all inheritors is needed whenever changes are made in

a type (consistency maintenance).
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Disadvantages of object-oriented systems sometimes pointed at are, first of all,
that when adding a new function, it (or a variant) must be added to all relevant
types, which may require a restructuring of the object network. Second, information
about one function is scattered over different objects (whereas in a function-oriented
approach, information about one object is scattered over different functions). And
finally, careful thinking is required about which information should be represented as
objects, and which as properties, and how to structure the inheritance network.
Often, different options are open to the programmer, one of which turns out to be
preferable, but not necessarily before programming has begun. Object-oriented pro-
gramming mechanisms may be too powerful in some cases.

Summing up, an object-oriented approach is ideal for systems in which it is
necessary to represent large quantities of interacting entities. The approach has been
successfully applied to graphics (window systems), natural language semantics,
VLSI-design, expert system development, etc.

2.2 An Overview of Object-Oriented Systems

Message-passing between computational entities as a programming paradigm has been
developed at M.I.T. and XEROX in the early seventies. Carl Hewitt and collabora-
tors (1973) developed an actor formalism based on message passing, later imple-
mented as the ACT1 language (Lieberman, 1981). Alan Kay (1974) initiated work on
SMALLTALK, which incorporates a similar philosophy. Inheritance derives from
the work in semantic network theory which was started by Ross Quillian (1968).
Attempts to connect related nodes of a network into a more coherent whole (parti-
tioned networks, Hendrix, 1979) are more or less equivalent with the computational
object idea. Frame theory (Minsky, 1975; Kuipers, 1975; Winograd, 1975; Metzing,
-1979) has certainly influenced a lot of object-oriented concepts and languages (Steels,
1981b). Frame theory is a psychological theory about the organisation of human
memory. Frames are complex, partially declarative, partially procedural representa-
tional structures which hold all information about a limited subject matter. They can
be interpreted as experts in a small domain, or as structures representing a stereo-
typed chunk of knowledge (a prototype). The internal structure of a frame is a set of
named slots which are filled by other frames or by identifiers. Fillers can have res-
trictions (type checking), defaults (values to be used if no explicit value is provided),
demons (actions to be performed before or after a slot is filled) and meta-knowledge
attached to them. Larger frames, specifically designed for representing sequences of
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events, are scripts (Schank and Abelson, 1977). Frames and scripts can be easily
implemented in most object-oriented languages. The language KRL (Bobrow and
Winograd, 1977) and the first versions of ORBIT (Steels, 1981b) are examples of
implementations of the frame idea. '

Differences and variations in the way programming languages implement the
object-oriented philosophy described above abound. Most object-oriented languages
are written on top of existing programming languages (Lisp: CommonORBIT, FLA-
VORS, KRS, ExperCommonLISP; Pascal: OBJECT PASCAL, CLASCAL; Algol:
SIMULA; Forth: NEON), others are not parasitic upon an existing language
(SMALLTALK). Some have a specific syntax for message-passing (FLAVORS,
KRS), others represent function application and message-passing in a uniform way
(CommonORBIT). Often a distinction is made between object-types and object-
instances. E.g. in FLAVORS, types (called Flavors) cannot receive messages, and
instances can have properties (instance variables), but no associated methods; the
flavors act as a mould to the instances. Other languages do not make this difference
(KRS, CommonORBIT). An object can be implemented in a variety of ways: as a
dynamic record, as a property-list, or as a function.

Some object-oriented languages support inheritance in tangled networks (Com-
monORBIT, FLAVORS), others do not (KRS, at least not by default). We have
already mentioned the difference in the way the inheritance hierarchy is searched if
muitiple inheritance is supported (depth-first in FLAVORS, breadth-first in Com-
monORBIT). Also, the way inheritance is implemented may vary: by copying the
information of a parent to its children, or by searching it each time it is needed.
Related to this choice is the presence or absence of a mechanism to propagate
changes in a parent to its children. This propagation (dynamic inheritance or delega-
tion) is essential for modularity. Some object-oriented languages provide back-
pointers or bi-directionality (e.g. in CommonORBIT, if an object x has a property p,
inherited or otherwise, then x can be retrieved through p), others do not (e.g., KRS,
FLAVORS).

SMALLTALK, the object-oriented language most widely used is described in
Goldberg and Robson (1983). FLAVORS is documented in Weinreb and Moon
(1981) and Cannon (1982), ORBIT and CommonORBIT in Steels (1981a, 1981b,
1982) and De Smedt (1984, 1987) and KRS in Steels (1985) and Van Marcke
(1987).
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2.3 Syntax and Semantics of the KRS Concept System

A new language brings with it a new model
of the machine.
Lawrence G. Tesler

KRS (Steels, 1985; Van Marcke, 1987) was designed to be able to incorporate and
integrate different formalisms (functional, network, rules, frames, predicate logic etc.)
into a single system. It is also possible to implement new formalisms on top of KRS.
However, in the context of this dissertation, we will interpret it as a frame-based
object-oriented language for knowledge representation. In the course of implementing
the linguistic knowledge described in Part II, we experimented with several object-
oriented programming languages (ORBIT, FLAVORS and KRS). KRS seemed to us
the most versatile and powerful implementation medium. All examples in following
chapters will be written in a kind of ‘stylised KRS’ (with a simplification of syntax
for readability). At this point we will give only a short introduction to part of the
KRS concept system. More detailed information will be given in the following
chapters whenever it is relevant.

Knowledge is represented by means of descriptions (something which stands for
something else). E.g. Human(Socrates) is a description (in this case in predicate cal-
culus) describing a state of affairs in a world. Note that with this definition, natural
language, too, is a knowledge representation system. Phrases and sentences are
descriptions of (real or imaginary) states of affairs in a possible world (cp. Droste,
1985).

In KRS, descriptions are called concepts. Concepts in KRS are the same as
objects in other object-oriented languages (see section 2.1). This may cause some
confusion. In the remainder of this text, we shall use both to mean the same thing.
A concept has a name and a concept structure. A concept structure is a list of sub-
jects (slots), used to associate declarative and procedural knowledge with a concept.
A concept name is only a mnemonic label, meaningless to the system. Subjects are
also implemented as concepts, which leads to a uniform representation of objects and
their associated information. The filler of a slot is called the referent. Concepts can
be defined with a function defconcept and subjects with a function defsubject. Infor-
mation is retrieved from concepts by means of definite descriptions. In Figure 6 a
few examples are given.
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(DEFCONCEPT CHARLOTTE
(HUSBAND HUYBERT)
(CHILD CASPER)}
(LIVES-IN NIJDMEGEN))

A concept Charlotte is defined with a concept structure (husband Huybert)
(child Casper)(lives-in Nijmegen). Each of these lists is a subject with an
access (e.g., child) and a referent (e.g. Casper). Note that a concept
description is not a definition of the concept in some theoretical sense;
the concept structure of Charlotte is not a definition of Charlotte, but
some information associated with this concept in a particular context.

(DEFSUBJECT HOME OF CHARLOTTE CITY-HALL)

This adds a subject home with referent City-hall to the concept structure
of the concept Charlotte.

(>> CHILD OF CHARLOTTE) --> <CASPER>
This is an example of a definite expression, it returns the referent concept
of the subject with the access child associated with the concept
identified by Charloie. It is roughly comparable with message-passing
in other languages.
(DEFCONCEPT CASPER

(MOTHER CHARLOTTE)
(HAIR-COLOUR WHITE))

(>> HAIR-COLOUR CHILD OF CHARLOTTE) --> <WHITED>

As the referent of a subject is itself a concept, accesses via paths are
possible as well. The definite description is equivalent to

(>> HAIR-COLOUR OF
(>> CHILD OF CHARLOTTE))

which is equal to

{>> HAIR-COLOUR OF CASPER) --> <WHITE>

Figure 6. KRS Examples.

Inheritance — the process of looking up information in the parents of a concept
if it is not defined in the concept itself — is single by default in KRS, i.e. each con-
cept can have only one type or parent (but a type can have many instances or speci-
alisations). This default inheritance system can be changed by the user, however, for
example into a multiple inheritance scheme. A concept is made an inheritor of a
type by means of an indefinite description. Due to the fact that referents of subjects
are concepts, inheritance works through subjects as well. Some inheritance examples
are listed in Figure 7.

The traditional language philosophical distinction between extension and intension
is adopted in KRS. In linguistic semantics, proper names refer to entities (Fido ->
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(DEFCONCEPT PERSON
(NUMBER-OF -LEGS TWO)
(RATIONAL YES))

(DEFCONCEPT IRRATIONAL-PERSON
(A PERSON
(RATIONAL NO)))

(DEFCONCEPT JOHN
(AN IRRATIONAL-PERSON))

This KRS code defines a type relation between PERSON, IRRATIONAL-PERSON,
and JOHN by means of indefinite descriptions: (a(n) <concept-description))

(>> NUMBER-OF-LEGS OF JOHN) --> <TwWO>

This definite description looks for the subject NUMBER-OF-LEGS, first in
JOHN, then in IRRATIONAL-PERSON, and finally in PERSON, where the subject is
found.

(DEFCONCEPT JOHN
(A PERSON
(AGE (A NUMBER))
(FATHER (A PERSON))))
(>> NUMBER-OF -LEGS FATHER OF JOHN) --> <Two>

This example illustrates inheritance through subjects.

Figure 7. More KRS Examples.

FIDO), predicates refer to sets of entities (dog -> the set of all dogs), and the exten-
sion of a sentence is its truth value. The intension of proper names and predicates is,
depending on the theory, either a conceptual structure or a defining property (the
necessary and sufficient conditions to fall within the extension). The intension of a
sentence is a set of truth conditions (necessary and sufficient conditions for the sen-
tence to be true). Intension is a linguistic notion (defined as a set of relations with
other linguistic expressions) as opposed to extension, which relates language to the
world. Extensions are taken to be contextually determined, intensions are considered
constant. It is therefore possible to define the intension as a function which yields the
extension when applied to a particular context.

A KRS concept is linked to its extension by means of a special subject, called
the referent. E.g. the referent (or extension) of a concept two is a Lisp number 2.
The referent of a formula (a program fragment) is a piece of Lisp code. The same
referent can have different descriptions. For example, the concepts <Number-2>,
<two> and <twee> all have as a referent Lisp number 2. A special notation
exists for describing the referent of these data-concepts (a category of concepts
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having Lisp data-types as their referent): e.g. [number 2] is a shorthand for (A
NUMBER (REFERENT 2)). Concepts which are not data-concepts have other con-
cepts or an abstraction as their referent. Only data-concepts have ‘physical’ referents
(as defined by some action or state in the machine through Lisp data structures).
This implies that most reasoning is done at the abstract level of definitions and
descriptions, as most referents of concepts in an application cannot be represented in
the machine (you cannot put a dog into the computer).

Apart from a referent, concepts can have a subject definition (intension). A
definition is a function which computes the referent of a concept in a particular con-
text (a Lisp environment). The referent of a definition must be an executable Lisp
form. A basic feature of KRS is therefore that the referent of a description is the
evaluation (execution) of the referent of the definition of the description (Figure 8).

Definition

DESCRIPTION —> DESCRIPTION
|

|

Referent | Referent

|

{

1% Evaluation A\ 2
REFERENT < FORM

Figure 8. Referent computation in KRS.
In Figure 9, a (simplified) BNF summary of the syntax of KRS is given.

This brief sketch of the object-oriented programming system KRS suffices to fol-
low the representation of linguistic knowledge in Chapters 3 and 4. Although we
will not go into this in the present dissertation, it is clear that KRS can be straight-
forwardly adapted to implement logic grammars such as the one developed by Mon-
tague (1974) due to its explicit representation of extensional and intensional meaning.
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CONCEPT-DESCRIPTION 1= CONCEPT-NAME | DEFINITE-DESCRIPTION | CONCEPT-

STRUCTURE | INDEFINITE-DESCRIPTION

SYMBOL

(>> ACCESS-1 ... ACCESS-n OF CONCEPT-DESCRIPTION)
(A CONCEPT-DESCRIPTION CONCEPT-STRUCTURE)
(DEFCONCEPT CONCEPT-NAME CONCEPT-DESCRIPTION)
(DEFSUBJECT ACCESS OF CONCEPT-DESCRIPTION
CONCEPT-DESCRIPTION)

(ACCESS-1 CONCEPT-DESCRIPTION)

CONCEPT-NAME
DEFINITE-DESCRIPTION
INDEFINITE-DESCRIPTION :
CONCEPT-DEFINITION
SUBJECT-DEFINITION

CONCEPT-STRUCTURE

)

(ACCESS-n CONCEPT-DESCRIPTION)
ACCESS-i := SYMBOL

Figure 9. Simplified KRS summary.
2.4 Object-Oriented Computational Linguistics

Some kinds of notation seem to fit the sort of
facts one encounters in some domain; others,
which may ultimately be equivalent in some
sense to the former kinds, do not.

Gerald Gazdar

In this section we will try to show that an object-oriented language is notationally
adequate for the description of linguistic knowledge and processes. This demonstra-
tion can only be theoretical, and somewhat intuitive. Much of the power of object-
oriented programming becomes obvious only through experience and by programming
the same problem in both object-oriented and alternative ways. By means of exam-
ples, Part II of this dissertation will give more substance to the claims made here.

We are fully aware that all programming paradigms are equivalent in that the
programs they generate are reduced ultimately to machine language (i.e. they are
weakly equivalent to Turing machines). But to the programmer (and to the computa-
tional linguist) they are different in the metaphors they provide to conceptualise the
problem domain, and the image they generate of the machine. In that sense, the par-
ticular programming paradigm used has a distinct effect, not only on the speed and
ease of theory building, but on the theory building itself.

Besides the general computational advantages of the object-oriented paradigm
outlined in section 2.1 (modularity, ease of programming, clarity of style and
efficiency), we see five specific advantages for linguistics.
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()

(i)

(iii)

(iv)

Hierarchies are a powerful mechanism for describing generalisations in an
elegant and effective way, and as briefly as possible. Generalisation can be
achieved by attaching general information (defaults) to concepts from which a
number of other concepts inherit. Afterwards, one only has to specify in what
respects an inheritor differs from a parent. This approach not only assures an
efficient implementation (in terms of storage), it also brings conceptual clarity
about the relations between theoretical concepts.

The dichotomy between rules and exceptions is nicely captured by overruling
inherited defaults. We can state, for example, that all vowels are stressable by
associating this information to the concept vowel. The exceptional status of
schwa can then be shown by letting it inherit from the type vowel, but overrul-
ing the subject stressable. Complexity of a language can be operationalised as a
function of the number and kind of ‘exceptional’ specialisations (instances) of
‘regular’ concepts.

Related to (ii), the fuzziness of linguistic theoretical concepts can be modeled by
multiple inheritance (semi-vowels inherit from both vowels and consonants,
nominalised verbs from both nouns and verbs) or by specialisation (a new con-
cept which inherits all but a few of the subjects of its parent). That way, stereo-
types (prototypes) can be naturally and easily modeled.

All knowledge which plays a role in linguistic processes (world, situational and
linguistic knowledge) and all levels of linguistic description (from the pragmatic
to the phonetic) can be represented in a simple and uniform way (objects, inher-
itance hierarchies, methods and features). Even meta-linguistic knowledge can be
represented!!. Furthermore, it seems natural for most linguistic theories to use a
formalism based on graphs (nodes with features and arcs defining relations
between nodes). Case frames, phrase structure trees, ATNs, scripts, semantic
networks and functional descriptions are some instances of this kind of formal-
ism. They can all be represented straightforwardly in an object-oriented pro-
gramming style. Nodes map to objects, features of nodes to features of objects,
relations between nodes to features of objects or hierarchical relationships. This

11 In a sense, most linguistic knowledge represented in the following chapters is meta-
linguistic knowledge. For instance, KRS concepts exist for morphological boundaries, partic-
ular words, syntactic categories, dictionaries, etc. and for the relations between these con-
cepts. Describing this KRS knowledge base in natural language produces metalinguistic sen-
tences: ‘Table’ is a noun, ‘z’ is a fricative, A phopological rule consists of a condition part
and an action part. (a meta-rule) (cp. Droste, 1983).
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shows that an object-oriented notation ‘is close to the sort of facts one
encounters in the linguistic domain’ (see the citation by Gazdar at the beginning
of this section).

(v) Language processing (generating and interpreting) can be viewed as a problem-
solving task using hierarchies of linguistic knowledge concepts. Complex rule
interactions and sequences of actions can be formulated relatively simply. By
looking for an optimal division of knowledge among concepts, and an optimal
explication of the interrelations between them, complicated actions can be
described in a simple, intuitively plausible way.

However, the expressive power of the object-oriented paradigm can also be
regarded as a disadvantage: there are almost no restrictions on the way knowledge
can be defined, organised and used. Different alternatives can be considered in the
organisation of hierarchies and inheritance, different places in the hierarchy are
equally defendable for the attachment of procedures.

Relative to the methodological criteria which are important to us, however, these
dilemmas can be resolved in different ways. If we want to simulate human verbal
behaviour, our freedom in arranging knowledge and procedures will be restricted by
psycholinguistic experimental data. If it is linguistic adequacy we are after, the sys-
tem would have to be organised so as to adhere most closely to linguistic methodo-
logical criteria such as maximal generalisation. Finally, if we have a commercial
application in mind, the construction process must be guided by considerations of
computational efficiency. In Chapter 1 it was claimed that a computational theory of
verbal behaviour should incorporate all these different constraints into a coherent
whole.

In Part II of this dissertation, a KRS implementation of a computational model
of aspects of Dutch phonology and morphology will be developed. A frame-based or
object-oriented approach has been used extensively in the implementation of world
knowledge for use in semantic interpretation. Similar approaches to phonology and
morphology are less frequent.
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PARTI

LINGUISTIC
KNOWLEDGE REPRESENTATION
AND PROCESSING

In the preceding chapters, language technology was defined as the design of applica-
tions of a computational linguistic model. Object-oriented programming was put for-
ward as an ideal paradigm for the programming of linguistic knowledge and
processes.

In the following chapters, an object-oriented implementation of aspects of Dutch mor-
phology and phonology will be described. The description of a complete model of
Dutch morpho-phonology would involve a text several times the size of the present
one. We will restrict our attention to the synthesis of verbal inflections, the analysis
of compounds and the detection of internal word boundaries (Chapter 3), and
syllabification and phonemisation algorithms (Chapter 4). Special emphasis will be
put on the interaction between morphological and phonological knowledge and
processes, and on the extensibility of the knowledge base developed. Also, a princi-
pled study of the interaction between spelling, phonological and lexical representations
will be made, and some considerations in the design of a lexical database will be put
forward.




CHAPTER 3

Aspects Of Dutch Morphology

In this chapter!, a knowledge base of morphological concepts and morphological
processes operating on this knowledge base will be built up. The resulting model,
which will be further extended with phonological information in the next chapter,
serves two aims: first, it should solve the technological problem; i.e. the model will
have to be useful for the different applications we had in mind for it, and second, it
should be constrained by linguistic and psychological evidence. As such, it comes up
to the methodological requirements put forward in Chapter 1 of this dissertation.

Morphology is a branch of linguistics which studies the internal structure of
existing complex (polymorphematic) words and the rules with which new complex
words can be formed. We will adopt a lexicalist framework? of word formation here,
presupposing the existence cf an independent word formation component, the rules of
which operate before lexical insertion. Our model will not be orthodoxically lexical-
ist, however, as we will allow all complex words to be entered in the word list, and
not only those with at least one idiosyncratic property.

In computational morphology, the morphological capacities people exhibit (pro-
ducing and interpreting morphologically complex words) are simulated. Aspects of
both synthesis (production or generation, section 3.1) and analysis (interpretation or
recognition, section 3.2) will be treated, as well as the role of the lexicon (section
3.3) and word formation rules in both processes.

! This chapter is partly based on Daelemans (1986).
2 See e.g. Chomsky, 1970; Halle, 1973; Jackendoff, 1975; Aronoff, 1976; Booij, 1977
and others. ’
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In our model, morphological synthesis and analysis will be regarded as funda-
mentally different processes. Synthesis (the transformation of a lexical representation
into a phonetic or orthographic representation) is determined uniquely by the proper-
ties of the lexical representation. Analysis on the other hand (assigning a lexical
representation to the spelling or sound representation of a word form), is determined
not only by the input representation, but also by linguistic and extra-linguistic con-
text. The reason for this is that different underlying representations can be realised
as the same sound or spelling image, introducing ambiguity. Furthermore, both
processes access the lexicon in essentially different ways. Synthesis enters the lexicon
with a lexical representation, analysis with a phoneme or grapheme representation.
As far as possible, however, the same knowledge base will be used by both
processes. N

The model developed will be compared to other computational models of mor-
phology, and to results of psycholinguistic research (section 3.4). Only parts of the
complete model, which is still under development, will be treated here, notably the
synthesis of verbal inflections, the analysis of compounds, and the detection of inter-
nal word boundaries. We will not be concerned with the semantic level in the lexi-
con.

Before starting the discussion of our model, it may be useful to define the ter-
minology which we will use in this and subsequent chapters, since much confusion
exists in the literature. Our definitions will be based mainly on Matthews (1974) and
Lyons (1981).

Morphemes are the smallest elements of the language with a semantic or syntac-
tic function (roots, stems and affixes). A word form is a morpheme or a combina-
tion of morphemes. It consists of either a string of letters or a string of phonemes.
Word forms are generated by morphological processes, captured in morphological
rules. Dutch productive morphological processes are affixation, compounding and
compounding affixation. There are also relics of an Ablaut process. A paradigm
(lexeme, lexicon entry) is a set of formally related word forms which have the same
base form (called root if it is unanalysable and stem if it is complex) but different
affixes. In exceptional cases, a paradigm may have more than one base form (this is
called suppletion). E.g., the paradigm of the verb kopen (to buy) has base forms
koop and kocht. One, privileged, word form in a paradigm is the citation form, e.g.
the infinitive of verbs and the singular of nouns. The citation form is used to name




MORPHOLOGY Terminology

the paradigm. We can say e.g. that the paradigm or lexeme Jopen consists of the
word forms Jopen, loop, loopt, lopend, gelopen, liep, liepen, lope with lopen as the
citation form.

It may also be useful to describe the different kinds of word level ambiguity
which are usually distinguished. Class ambiguity exists when a word form can belong
to two different syntactic classes. E.g. loop can be either a noun (barrel), or a verb
(first person singular present indicative of Iopen (to run). Class ambiguity can exist
between paradigms (as in the case of loop) or within a paradigm (subclass ambi-
guity). E.g. lopen can be both infinitive, and plural present indicative. Semantic
ambiguity can be due to either homonymy (unrelated words have the same spelling or
pronunciation e.g. bank as a financial institution and as ground near the river), or
polysemy (related words with different meanings e.g. dry as not wet and as not
sweet, for wine). The distinction between homonymy and polysemy cannot always be
easily made from a synchronic point of view.

3.1 Morphological Synthesis

In this section, part of a synthesis program written in KRS will be described. Syn-
thesis programs can be applied as a module in the generation part of larger natural
language processing systems, and in automatic dictionary construction (Chapter 8).

The task of the program fragment is to compute the inflections of Dutch verbs
on the basis of their infinitive and it is intended to cover all regular and irregular
categories of verbs. The inventory of verbs (the data) was taken from the authorita-
tive ANS (Algemene Nederlandse Spraakkunst, General Grammar of Dutch, 1984).

The levels of description will be mainly the lexical and the spelling levels, but pho-
nological information will be discussed whenever it plays a role in the computation of
the spelling image of word forms. The spelling and phonological levels are carefully
kept apart. An autonomous spelling level provides insight into the structure of the
spelling system, describes the knowledge people must have in order to spell the vari-
ous inflected word forms correctly, and may thus provide a scientific background to
the evaluation of different proposals for spelling change. Similar ideas have been put
forward by Zonneveld (1980), Kerstens (1981) and Wester (1985b). The phonologi-
cal level will be described in Chapter 4. We have tried to exploit this modularity as
far as possible in order to have a clear view on the precise interaction between both
levels. In practice, this approach implies that phonological information is used to
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compute word forms when it is available; but when it is absent, the system can
nevertheless resort to other strategies and heuristics. This was necessary to make the
knowledge base fiexible enough to be useful in different applications. Input to our
programs is mostly a spelling representation. '

The linguistic description model adopted is essentially Item and Process (IP, see
Matthews, 1974 for a discussion of various models). Abstract morphemes are the
basic elements of morphological structure, and their combination in word formation
happens by means of morphological processes which may modify morphemes. These
modifications are reflected in the realisation (in spelling and sound) of the new word
form. The introduction of the possibility of morphological processes modifying mor-
phemes is an essential departure from the Item and Arrangement model (IA), and is
necessary to describe non-sequential effects such as vowel changes. Both IP and IA
are superior to the Word and Paradigm (WP) model in that they capture important
linguistic generalisations instead of simply listing the inflected forms of a lexeme.
However, the notion of paradigms acting as prototypical cases from which the
inflections of other verbs can be induced (e.g. for learning and teaching purposes), is
kept in our description. But our paradigms have a different meaning: they denote
clusters of morphological processes rather than lists of examples. A WP-approach is
also used to describe unsystematic irregularities (e.g. the suppletive verbs discussed
earlier).

3.1.1 Objects in the Domair. of Synthesis

When developing an object-oriented system, a set of concepts in the problem domain
(morphological synthesis) must be defined, and their properties and interrelations
made explicit. Figure 1 shows part of the object-hierarchy necessary to generate ver-
bal inflections. We use normal KRS-syntax, but pieces of Lisp code will be para-
phrased in ‘formal English’. These parts will be set apart within curly brackets.
Recall that in KRS a concept description (i.e. the subjects associated with it) is not
the same as a definition of the described object in a particular theoretical framework.
It is only a description of what is relevant in a particular context. To the concept
description of morpheme, for example, subjects relating to phonological structure will
be added later (Chapter 4). When incorporating a semantic level in the system, still
other subjects will have to be added.
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(DEFCONCEPT BOUNDARY
(LEXICAL-REPRESENTATION (A STRING)))

(DEFCONCEPT WORD-BOUNDARY
(A BOUNDARY
(LEXICAL-REPRESENTATION [STRING "#”])))

(DEFCONCEPT MORPHEME -BOUNDARY
(A BOUNDARY
(LEXICAL-REPRESENTATION [STRING "+"1)))

(DEFCONCEPT MORPHEME
(LEXTCAL-REPRESENTATION (A STRING))
(BOUNDARY (A BOUNDARY)))

(DEFCONCEPT FREE-MORPHEME
(A MORPHEME
(BOUNDARY (A WORD-BOUNDARY))))

(DEFCONCEPT BOUND-MORPHEME
(A MORPHEME))

Figure 1. KRS Implementation of some morphological concepts.

The knowledge expressed in Figure 1 might be paraphrased as follows. All
boundaries have a lexical-representation. There are two sub-classes of the boundary
type: word and morpheme boundaries. All instances of the former have lexical
representation ‘#’, instances of the latter have lexical representation ‘+’. The
difference between both types plays a role in morphological analysis and in phonolog-
ical processes such as syllabification (Chapter 4.1). We will argue in later chapters
(Chapter 5 and 6) that the design of satisfying hyphenation and spelling/typing error
detection algorithms for Dutch relies in large part on this distinction. We expect the
morpheme object to have a lexical representation and a boundary. Whether a boun-
dary follows or precedes a morpheme depends on its type. A sub-class relation with
free and bound morpheme is made. All free morphemes have a word boundary.
Figure 2 continues the description of objects in the morphological synthesis domain
by means of KRS concepts. In Figure 2, prefixes and suffixes are classified as bound
morphemes. They inherit the lexical representation and boundary subjects from their
ancestors. All prefixes have a word-boundary. An affix knows how to append itself to
a morpheme (the context); the procedure to do this is described in its append subject.

As an example, consider how the knowledge base built up so far can be used to
compute the lexical representation of the past participle of the verb werken (to work).
We compute the referent of the concept which results from ‘appending’ the relevant
affixes to a string representing the root of a verb.
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(DEFCONCEPT PREFIX
(A BOUND-MORPHEME

(BOUNDARY (A WORD-BOUNDARY))

((APPEND (?CONTEXT)

(A STRING

{Concatenate the following strings:
(>> REFERENT LEXICAL-REPRESENTATION)
(>> REFERENT LEXICAL-REPRESENTATION BOUNDARY)
(>> REFERENT OF ?CONTEXT)}
NN

(DEFCONCEPT PAST-PARTICIPLE-PREFIX
(A PREFIX
(LEXICAL-REPRESENTATION [STRING ”ga”])
(BOUNDARY (A WORD-BOUNDARY))
((APPEND (?CONTEXT)
(A STRING
{Concatenate the following strings:
(>> REFERENT LEXICAL-REPRESENTATION)
(>> REFERENT LEXICAL-REPRESENTATION BOUNDARY)
(>> REFERENT OF ?CONTEXT)}
))

The part in italics constitutes the information which is accessible in the
concept past-participle-prefix through inheritance. It must not be

specified explicitly. We only provide it here as an example of the effect of
inheritance.

(DEFCONCEPT SUFFIX
(A BOUND-MORPHEME
(BOUNDARY (A MORPHEME -BOUNDARY)) ; This is a default,
; not always true.
((APPEND (?CONTEXT)
(A STRING
{Concatenate the following strings:
{>> REFERENT OF context)
(>> REFERENT LEXICAL-REPRESENTATION BOUNDARY)
(>> REFERENT LEXICAL-REPRESENTATION)}
1))

(DEFCONCEPT PAST-SINGULAR-SUFFIX
(A SUFFIX
(BOUNDARY (A WORD-BDUNDARY)) ; Overrules the default.
(LEXICAL-REPRESENTATION [STRING "Da"])))

(DEFCONCEPT PAST-PARTICIPLE-SUFFIX
(A SUFFIX
(LEXICAL-REPRESENTATION {STRING ”D"])}))

Figure 2. Morphological concepts in KRS (continued).

(>> REFERENT
(APPEND
(>> (APPEND [STRING "werk”])
OF PAST-PARTICIPLE-SUFFIX))
OF PAST-PARTICIPLE-PREFIX))
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This will return gd#werk +D.

First, the embedded definite description is computed: past-participle-suffix inher-
its the append subject from type suffix. The application of this procedure with as
argument a string with referent "werk” results in the concatenation of this string, the
lexical representation of the boundary of the suffix (which is found through the lexi-
cal representation subject of morpheme-boundary to be ”+”), and the lexical
representation of the suffix itself.

The result of the concatenation is a string with referent (werk+D). It is used as
an argument to the append method (which is inherited from prefix) of past-participle-
prefix. Again, a concatenation is effected, this time of the lexical-representation of the
prefix (which is gd), the boundary (a word-boundary, and therefore realised #) and
the context, which is the newly created string with referent werk+D. The final result
is a string with referent ge#werk+D. The example shows that fairly complicated
sequences of actions and decisions can be described very simply if the necessary
knowledge is organised object-orientedly.

Additional concepts have been defined describing present-singular-suffix, plural-
suffix, and present-participle-suffix. The concept-hierarchy described so far is graphi-
cally represented in Figure 3. The inventory of types is by no means complete; for
the morphology of nouns and adjectives, additional types should be created (for
example a type representing distance affixes such as ge...s in gezusters, sisters).

At this point we would like to enlarge upon the lexical representation we use.
As can be noticed from the examples already given, this representation incorporates
graphemes, phonemes, morphophonemes (like D, for t or d in the computation of the
past tenses of regular verbs) and a number of morphological markers (mainly boun-
dary symbols). Both spelling and phonological representations can be derived from it
by means of filters. Its main inspiration is of course the traditional underlying form
in generative phonology, but it may have some psychological validity as well. An
interesting syllable monitoring experiment by Taft and Hambly (1985) yields evidence
for an abstract representation level incorporating morphemic structure and influenced
by orthography. Both pronunciation and orthography could be generated from this
level (see also Jakimik et al., 1985, and Aronoff, 1978 for linguistic arguments). In
our own approach, the particular form of the lexical representation was a natural
result of working with spelling as point of departure and of needing phonological
information to compute word forms, and boundary information to compute both
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BOUNDARY

! 1

WORD-BOUNDARY MORPHEME-BOUNDARY
MORPHEME
l I
FREE~-MORPHEME BOUND-MORHEME
I I
PREFIX SUFFIX

l_*_T r

PAST-PARTICIPLE-PREFIX PLURAL-SUFFIX

PRESENT-SINGULAR-SUFFIX
PRESENT-PARTICIPLE~-SUFFIX

PAST-PARTICIPLE-SUFFIX

PAST-SINGULAR~SUFFIX

Figure 3. Part of the concept hierarchy for morphology.

spelling and phoneme representations.

3.1.2 Regular Inflection

A concept regular-verb-lexeme, specialisation of verb-paradigm, represents the para-
digm of verbs with a regular inflection. When the inflection of a verb unknown to
the system is asked, it is made a specialisation of this type as a first (default)
hypothesis. The regular-verb-lexeme concept contains a number of subjects referring
to procedures to compute the various verb forms belonging to its paradigm (Figure
4). The root of a verb-lexeme is an abstract entity (never realised in spelling or
speech), but is necessary in the computation of actual verb forms. The paradigm sub-
ject of a regular-verb-lexeme lists all inflected forms, computed on the basis of the
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(DEFCONCEPT REGULAR-VERB-LEXEME
(A VERB-PARADIGM
(CITATION-FORM (A STRING))
(PARADIGM
(A CONCEPT-LIST
{List the following verb forms:

(>> PRESENT-SINGULAR-ONE )
(>> PRESENT-SINGULAR-TWD)
(>> PRESENT-SINGULAR-THREE)

(>> PAST-PARTICIPLE)}
))
(ROOT
(A MORPHEME
(LEXICAL-REPRESENTATION
{1f
(>> REFERENT CITATION-FORM)
ends in a consonant + ”ién”, Then chop off last letter,
Else: chop off two last letters}
M)
(PRESENT-SINGULAR-ONE
(A VERB-FORM
(LEXICAL-REPRESENTATION
{Apply present-singular-one-rule to the citation form}
(PRESENT-SINGULAR-TWOD ...

)

Figure 4. Part of the concept regular-verb-lexeme.

root or other inflected forms.3 In each subject referring to a morphological process, a
concept is created which is a specialisation of the concept verb-form. In this object,
slots are defined relating to appearance (spelling, lexical-representation), origin (its
lexeme) and morphological features (finiteness, tense, number, person) of the verb
form (Figure S). The latter features are concepts in their own right.

The subjects of verb-forms are filled when their lexical representation is com-
puted. A linear version of these created word forms can be stored in the lexical
database as a dictionary entry (see sections 3.3 and 8.2). The lexical-representation
subject of a verb-form is computed by applying a morphological rule to the root of
the regular-verb-lexeme. An example of the internal structure of the subject present-
singular-three of regular-verb-lexeme and a description of the relevant morphological
rule are given in Figure 6. This figure also lists the description of the concepts
linguistic-rule and morphological-rule of which present-singular-three-rule is a

3 A KRS-expression like (>> PRESENT-SINGULAR-TWO) when used within the scope
of a concept x is equivalent to (>> PRESENT-SINGULAR-TWO OF X). Within the sub-

jects of a particular concept, the concept itself can be referred to by using the expression
(>>). This is analogous to the self symbol in other object-oriented languages.
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(DEFCONCEPT WORD-FORM
(A FREE-MORPHEME))

(DEFCONCEPT VERB-FORM
(A WORD-FORM

(SPELLING ... )

(LEXEME ... ) ; Pointer to the citation form
; of which it is derived.

(FINITENESS ... ) ; One of finite, infinite.

(TENSE ... ) s One of past, present.

(NUMBER ... ) ; One of singular, plural.

(PERSON ... ) ; One of first, second, third.

Figure 5. Part of the verb-form concept.

specialisation. The concepts shown here are simplifications of the ones actually used.
We will come back to the rule concepts in Chapter 4.

In the same vein, subjects and rules were written to compute other inflected
forms of verbs (present-singular-1, present-singular-2, present-plural, present-
participle, past-singular, past-plural and past-participle). It can be inferred from these
procedures that forms are computed by passing the root of the verb or other forms to
the application subject of the morphological rule in question. This rule then makes
use of the boundary and affix concepts described earlier to compute the lexical-
representation.

The caching and lazy evaluation present in KRS are useful here because pro-
cedures sometimes make use of the result of other procedures. Caching means that
fillers for subjects are computed only once, after which the result is stored. The con-
sistency maintenance system built in provides the automatic un-doing of these stored
results when changes which have an effect on them are made. Without these mechan-
isms, some procedures would have to be computed several times. E.g., the past
plural procedure gives rise to a cascade of procedure applications: past-plural uses
past-singular, past-singular uses root. Furthermore, some verb forms, which are not
described here because they are identical to other forms or because their computation
is trivial (imperative and conjunctive forms are a case in point) can be defined in
terms of the procedures described above, without need for re-computation. Lazy
evaluation means that the concept filling a subject is only computed when it is asked
for. That way, many concepts can be defined without computational overhead, since
computation of the referent of a concept is postponed until it is needed.
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(DEFCONCEPT REGULAR-VERB-LEXEME

(PRESENT-SINGULAR-THREE
(A VERB-FORM
(FINITENESS FINITE)
(TENSE PRESENT)
(NUMBER SINGULAR)
(PERSON THIRD)
(LEXICAL-REPRESENTATION
(A STRING
(DEFINITION
[FORM
(>> REFERENT APPLICATION OF
(A PRESENT-SINGULAR-THREE-RULE
(DOMAIN (>IN ; The rule is accessed
; with the particular regular-verb-lexeme as its domain.

o))

(DEFCONCEPT LINGUISTIC-RULE
(ACTIVE-P (A BOOLEAN)) ; With this predicate a rule can be
; turned on and off.
(CONDITIONS (A FORM)) H
(ACTIONS (A FORM)) H
(APPLICATION (DEFINITION
[FORM (IF (EVAL (>> REFERENT CONDITIONS))
(EVAL (>> REFERENT ACTIONS))
FALSE)1))))

; If-part of the rule.
Then-part of the rule.

(DEFCONCEPT MORPHOLOGICAL-RULE
(A LINGUISTIC-RULE
(DOMAIN) ; This domain is the context in which
; conditions are checked and actions performed.
(CONDITIONS TRUE))) ; A morphological rule always applies
; when it is used.

(DEFCONCEPT PRESENT-SINGULAR-THREE-RULE
(A MORPHOLOGICAL-RULE
(ACTIONS ; The root of the domain is appended to
; the present-singular-suffix.
[FORM (>> REFERENT APPEND
(>> LEXICAL-REPRESENTATION ROOT DOMAIN))
OF PRESENT-SINGULAR-SUFFIX)1)))

Figure 6. Apparatus to compute third person singular of verbs.
3.1.3 The Spelling Filter

So far, we have been computing lexical representations of word forms. As has
already been explained, this level of description contains boundary symbols and mor-
phophonemes, like D, which are not realised as such in spelling and sound. Spelling
is derived from this lexical represention by means of a number of spelling rules,
pronunciation by means of a number of phonological rules. Instead of including the
necessary modifications in the different verb-form computation procedures or instead
of introducing spelling subjects to the different affixes — thereby complicating them
— we have adopted an approach in which a spelling filter, attached to the spelling
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slot of the verb-form concept combines all spelling modifications. That way, more
generalisations can be made.

Generalisation in an object-oriented system is represented by the attachment of
subjects to concepts from which several other concepts inherit. Even more generalisa-
tions are possible if the system is extended with the inflections of adjectives and
nouns as well. The (extended) spelling filter can then be moved up in the hierarchy
from verb-form to word form or even free-morpheme.

The spelling filter consists of six spelling rules, specialisations of the type
spelling-rule (Figure 7). |
(1) Consonant-degemination is a rule which can be used to account for phenomena
like the three following ones.

(i) Degemination of the final root consonant as in legg, legg+t etc. (realised as
leg, legt).

(i) Assimilation of suffix in past participle as in ge#praat+t and ge#dood+d
(realised gepraat, gedood).

(iii) Assimilation of suffix in present singular as in praat+t (realised praat).

Note that we have to take into account the morphological boundaries (the rule

must be blocked in cases like praat#te, past singular of praten, and realised

praatte). More realistically, the scope of this rule is the syllable, which is not yet

represented in the system (but will be in Chapter 4). Word-boundaries always

coincide with syllable-boundaries while morpheme-boundaries are ‘invisible’ to

syllabification rules. This explains the difference between ‘praat+t’ (degemination)

and ‘praat#te’ (no degemination). In Chapter 4, phonological data and processes

will be added to the spelling system, making reformulations of existing rules possi-

ble, without making them superfluous.

(2) Zv-devoicing as a spelling rule has a phonological correlate in final devoicing, a
rule which states that all voiced obstruents are pronounced voiceless in syliable-
final position. In spelling, this rule is restricted to z and v in root-final position.
Examples are blijv (root of to stay) becoming blijf, and huiz (root of to house)
becoming huis. There is one exception to this rule; the loan word fez.

(3) An example of vowel-doubling is the fact that Jat (root of laten, to let) becomes
laat. The conditions in the rule avoid the generation of the following ungram-
matical verb forms: *aankondiig, *duuw, *waaai, *houud etc. Forms like
appreciéren (to appreciate) which seem to be wrongly adapted by this rule at
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(DEFCONCEPT SPELLING-RULE
(A LINGUISTIC-RULE
(DOMAIN)
(CONDITIONS TRUE)))

(DEFCONCEPT CONSONANT-DEGEMINATION-RULE
(A SPELLING-RULE
(ACTIONS
{If lexical representation contains s word-final
geminate C.Ci or C.+C;, then
replace citi by Ci}))
(DEFCONCEPT ZV-DEVOICING-RULE
(A SPELLING-RULE
(ACTIONS
{If lexical representation contains z or v followed by
nothing or by a morpheme boundary not followed by a
vowel, then replace z by s or v by f})))

(DEFCONCEPT VOWEL-DOUBLING-RULE
(A SPELLING-RULE

(ACTIONS
{If a vowel V, equal to a, e, o or u is preceded by
a segment which is not equal i, a, e, or o, and followed
by a segment which is not equal to w or i, and the
latter is followed either by nothing or by a morpheme
boundary, which in its turn is not followed by a vowel,
then replace V by VV in the lexical representation}

(DEFCONCEPT SPELLING-ASSIMILATION-RULE
(A SPELLING-RULE
(ACTIDNS
{If morphophoneme D is preceded either by t followed by
a word boundary or by one of p, s, k, f, h followed by
a morpheme boundary, then replace D by t. If D is
preceded by t or d followed by a morpheme boundary, then
replace D by ”” (empty-string). Else, replace D by
d. D)

(DEFCONCEPT SCHWA-REDUCTION-RULE
(A SPELLING-RULE
(ACTIONS
{If a schwa is followed by a morpheme boundary followed
by a schwa, then delete the second schwa}l)))

(DEFCONCEPT GE-DELETION-RULE
(A SPELLING-RULE
(ACTIONS
{If go# is followed by one of ont, her, var,
bd or ga, then delete gda#})))

Figure 7: Spelling Rules.

first sight (apprecier instead of apprecieer), are nevertheless correctly formed
because the diaeresis is kept in the lexical representation of a word; it is
represented as a special symbol which precedes the character to which it applies.
The presence of this code ‘prevents the preventing’ of the application of this
rule.
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Spelling assimilation is a rule which states that the voicedness of the first con-
sonant of past-participle and past-singular suffixes (represented at the lexical
level by "D”) depends on the voicedness of the final segment of the morpheme
to which they are appended. It is clearly a sandhi-process, but a marked one,
since the direction of assimilation is opposed to the normal (phonological) case.
It is therefore treated as a spelling rule.

Another rule, ge-deletion states that the realisation in spelling of the past-
participle prefix is either ge or an empty string, depending on the presence of
certain affixes in the morpheme to which it is appended. E.g. compare
ge#werk+t (worked) of werken to be#werk+t (adapted) of bewerken. In the
latter case, the prefix is not realised. A category of problematic verbs exists
(e.g. vernissen, to varnish, past participle vernist and in some dialects gever-
nist). We evaded the problem by storing these verbs without an internal word
boundary between the prefix and the root.

Finally, schwa-reduction removes a suffix-initial schwa (d) when it is preceded
by one. E.g. maak#1d +dn becomes maak#13 +n (they, made),

Apart from these spelling rules, the spelling slot in verb-form contains pro-

cedures which remove boundary symbols, insert a dieresis if necessary (to separate

vowels if mispronunciation is likely, see Chapter 4), and transform remaining lexical

representation symbols into their spelling correlates. For example, 8 becomes e etc.

Notice that the order in which spelling rules are applied is important; vowel

doubling can occur after zv-devoicing, as in

blaz -(zv-devoicing)-> blas -(vowel-doubling)-> blaas,

but not after consonant degemination:

legg -(degemination)-> leg -(vowel-doubling)-> *lecg

Generally, the rules are disjunctively ordered®. They interact only in two places:

spelling-assimilation should precede zv-devoicing, and vowel doubling may apply

after consonant degemination. In our program, the ordering of the rules guarantees

the correct rule interactions. Provision must also be made for a recursive application

of consonant degemination; e.g. in putt+t (he draws), realised as put.

4 This means that they are mutually independent and can be applied in parallel.
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3.1.4 Interaction with Phonology and Error Diagnosis

We have already mentioned syllabification as a phonological process which has an
effect on word formation (the syllable is a domain in spelling rules). In some other
cases, too, the processes described so far cannot operate properly on the basis of the
spelling image of the morphemes alone. This is due to an ambiguity in Dutch spel-
ling, where grapheme <e> does not distinguish between phonemes /e/, /e/ and /9/
(unstressable vowel). This interferes with verb form computation in two spelling
rules: ge-deletion and vowel doubling.

Some of the prefixes blocking the realisation of the past-participle prefix (notably
ge, ver and be) cannot be reliably identified on the basis of their spelling. E.g. ver-
ven /vervon/ (to paint) has past participle gd#verf+d while verbeteren /vorbetdrdn/
(to correct) has ver#beter+d. In the latter case the prefix is not realised.

The vowel doubling rule is blocked when the vowel to be doubled is a /d/.
E.g. vervelen /varveldn/ (to bore), ik verveel (I bore) versus wervelen /wervélon/ (to
whirl), ik wervel (I whirl). In some cases, the difference can only be made on
semantic grounds, e.g. bedelen /bddeldn/ (to endow) or /beddlon/ (to beg). But
often only one phonological representation is possible for a particular spelling image.

The best solution is to include a phonological level and a level of morphological
analysis (prefix stripping) in the model. To this end, we have to extend our morpho-
logical database with concepts for phonological objects and processes. Such a level
will be described in the next chapter. In the absence of phonological information,
heuristics could be used. E.g. consider the case of the disambiguation of grapheme
<e>. In a word with three instances of <e> (e.g. wervelen, to whirl), 33 combina-
tions of /e/, /e/ and /9/ are theoretically possible. The number of possibilities can be
reduced to three by taking into account heuristics like the following: Dutch infinitives
end in /dn/, Dutch morphemes must have at least one vowel not equal to 8, when
<e> is followed by two{imdentical}consonants it represents /e/, etc.. In the case of
three consecutive <e>s, the three remaining analyses are e-0-d, e-¢-d, and d-e-0. All
possibilities are realised in existing Dutch words: wervelen (to whirl), herlezen
(reread) ancil vervelen (to bore), respectively. The heuristics we developed can
disambiguate all's yworés “with two consecutive syllables containing grapheme <e>.
The system could also ask the user for information each time it encounters a choice
which it cannot make with the available information. In that case heuristics are still
useful to constrain the number of possibilities among which the user has to choose.
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We adopted a strategy in which ‘educated guesses’ are used to make choices in
the absence of the necessary information. The user, monitoring the output of the pro-
gram, indicates erroneous forms or parts of forms (this can be done quickly and
easily with a mouse and menu system), and on the basis of this information, the sys-
tem tries to diagnose its error and to find a correction. To achieve this, a diagnosis
procedure is attached to the regular-verb-lexeme object, which accepts as input infor-
mation about how many and which forms were indicated as erroneous, and delivers
as its result a new paradigm of computed forms. As a side-effect, this procedure can
delete false instances of the concept verb-form, and recompute them. Only anticipated
errors can be handled this way. If no errors are detected in a computed paradigm,
the computed verb forms are added to the lexical database.

The same auto-correction procedure is used to recover from errors due to an
erroneous categorisation of input verbs (a verb with irregular inflected forms is
erroneously made a specialisation of the regular-verb-lexeme type). In this case, the
diagnosis procedure specialises the verb-lexeme as one of the (semi-)irregular verb
categories discussed in the next section, and transfers control to this lexeme, which
may have a diagnosis method itself.

3.1.5 Irregular Inflection

The inflection of Dutch ‘strong’ verbs involves a vowel change which is a relic of an
Ablaut process which has become unproductive. The different classes of irregular
verbs must be learned, and a possible reason for their survival is their high fre-
quency of use.

A specialisation hierarchy of irregular-verb concepts is used to describe the
inflection of these irregular classes. Specialisations of these types inherit regular pro-
cedures from the regular verb lexeme type, and irregular procedures are delegated to
other categories of (semi-)irregular types or to concepts which represent exception
mechanisms (we will call the latter mixins). This process of multiple inheritance (an
object inherits from two or more types) allows an easy definition of exception
categories. Figure 8 lists the mixins we use for Dutch irregular verbs. Inheritance
by delegation is only one possibility to implement multiple inheritance in KRS, but in
this case it is the most natural way. Irregular verbs mostly are only irregular in a
few forms (mainly past forms). Only for these forms, irregular processes must be
considered. This can be done best by directing inheritance explicitly to some type or
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mixin for these forms.

(DEFCONCEPT IRREGULAR-VERB-MIXIN)

(DEFCONCEPT VOWEL-CHANGE-MIXIN
(AN IRREGULAR-VERB-MIXIN

(PAST-ROQT

{Change vowel in (>> ROQOT)})
(PAST-PARTICIPLE-ROOT

{Change vowel in (>> ROOT)})
(PAST-SINGULAR

{A VERB-FORM

(LEXICAL-REPRESENTATION
{Compute past-singular using past-root}
(PAST-PARTICIPLE
(A VERB-FORM

(LEXICAL-REPRESENTATION
{Compute past-participle using past-participle

root})))))

(DEFCONCEPT EN-PAST-PARTICIPLE-MIXIN
(AN IRREGULAR-VERB-MIXIN
(PAST-PARTICIPLE
(A VERB-FORM

(LEXICAL-REPRESENTATION
{Compute past-participle using
en-past-participle-rule})))))

Figure 8: Concepts for irregular verb mixins.

Sometimes, the vowel change in the vowel-change mixin can be predicted with
certainty. E.g. an irregular verb with root vowel ui has a past participle and past
root with vowel o. Sometimes, there are two possibilities. In that case, the most
probable solution is chosen as a first try. With the present diagnosis system, a max-
imum of two tries is needed to predict the vowel change of all existing strong verbs.
The consonant frame of the root, too, can be of help in predicting the vowel change.
As irregular verbs constitute a closed class, it is of course possible to store them all,
but such a solution would do injustice to the regularity which clearly exists in the
Dutch irregular verb system.

The en-past-participle mixin uses the past-participle root if it is defined (in that
case, the concept inherits from vowel-change mixin), otherwise, the root of the
regular-verb-lexeme type. The spelling rules and concept hierarchy used in the com-
putation of regular verbs are also applicable here. Only one suffix (en) had to be
added (Figure 9).
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(DEFCONCEPT EN-PAST-PARTICIPLE-SUFFIX
(A SUFFIX
(LEXICAL-REPRESENTATION
[STRING "an"])))

Figure 9. The concept en-past-participle-suffix

Irregular verb categories can be defined in terms of the regular-verb-lexeme type

and the irregular-verb-mixins (Figure 10).

For

For

For

For

For

example,

example,

example,

example,

example,

(DEFCONCEPT SEMI-IRREGULAR-1-VERB-LEXEME
(A REGULAR-VERB-LEXEME
((PAST-PARTICIPLE
(A DELEGATING-SUBJECT
(DELEGATE-TO (AN EN-PAST-PARTICIPLE-MIXIN}))})))

bakken (to bake), bakte, gebakken.

(DEFCONCEPT SEMI-IRREGULAR-2-VERB-LEXEME
(A REGULAR-VERB-LEXEME
((PAST-PARTICIPLE
(A DELEGATING-SUBJECT
(DELEGATE-TO (A VOWEL-CHANGE-MIXIN))))))

wreken (to revenge), wreekte, gewroken.

(DEFCONCEPT SEMI-IRREGULAR-3-VERB-LEXEME
(A REGULAR-VERB-LEXEME
((PAST-SINGULAR
(A DELEGATING-SUBJECT
(DELEGATE-TO (A VOWEL-CHANGE-MIXIN))))))

vragen (to ask), vroeg, gevraagd.

(DEFCONCEPT IRREGULAR-1-VERB-LEXEME
(A SEMI-REGULAR-1-VERB-LEXEME
( (PAST-SINGULAR
(A DELEGATING-SUBJECT
(DELEGATE-TO
(A SEMI-IRREGULAR-3-VERB-LEXEME))))))

lopen (to run), liep, gelopen.

(DEFCONCEPT IRREGULAR-2-VERB-LEXEME
(A SEMI-IRREGULAR-2-VERB-LEXEME
((PAST-SINGULAR
(A DELEGATING-SUBJECT
(DELEGATE-TO
(A SEMI-IRREGULAR-3-VERB-LEXEME))))))

zwijgen (to keep silent), zweeg, gezwegen.

Figure 10. Concepts for irregular verb categories.
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In principle, every single irregular verb can be defined in terms of these and
similar exception mechanisms. However, for classes with only one or a few items,
the exceptional inflections were defined explicitly for reasons of efficiency. This is the
case with suppletive zijn (to be), auxiliaries, and verbs with a consonant change (e.g.
kopen, to buy, past singular kocht). In appendix A.3.1, the complete concept hierar-
chy used in the computation of verb forms is shown, and derivations of regular as
well as irregular verbs are given.

Figure 11 gives a survey of the complete synthesis part of the program. Unk-
nown citation forms are made an inheritor of one of the paradigms (lexemes) of
which the attached morphological processes are used to compute the lexical represen-
tation of inflected forms (by means of the affixes and the stems). This lexical
representation is transformed into spellings or pronunciations by means of a spelling
and a pronunciation filter, respectively. The pronunciation filter will be described in
Chapter 4.

AFFIXES STEMS

1
MORPHOLOGICAL RULES

WORD FORMS

|
| |
SPELLING RULES | PHONOLOGICAL RULES
SPELLING PRONUNCIATION

Figure 11. Overview of the synthesis algorithm.
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3.2 Morphological Analysis

The task of a morphological analysis algorithm is to determine

(1) whether a given string of orthographic or phonological symbols constitutes a
word of the language,

(2) if this is the case,
(2a) to represent its internal (lexical) structure and

(2b) to access its linguistic properties.

Such an algorithm presupposes the existence of a lexical database and a morpho-
logical grammar as data, and segmentation and parsing procedures as processes. The
presence of a grammar makes it feasible for a program to recognise not only existing
words, but also possible words. These are words which do not exist (yet), but may
one day be created as a result of rule-governed creativity. Some Dutch examples are
louchiteit and voordeurdeler. These words did not exist until recently, but are per-
fectly acceptable for any speaker of Dutch.

As was noted before, morphological analysis is undetermined due to ambiguity.
E.g. a spelling string Iopen would have to be analysed as in Figure 12.

lop+en (noun plural) of LOOP (barrels)
lop+en (verb nominalised) of LOOP (the running)
lop+en (verb finite present plural person-1) of LOOP (we run)
lop+en (verb finite preseat plural person-2) of LOOP (you run)
lop+en (verb finite present plural person-3) of LOOP (they run)
lop+en (verb infinitive) of LOOP (to run)

Figure 12. Six Analyses of lopen.

We will not be concerned with how the linguistic (and in some cases extra-linguistic)
context determines the appropriate analysis; our algorithm will have to provide all
reasonable analyses.

Applications of morphological analysis include hyphenation and spelling error
correction (Chapters 5 and 6), integration into the interpretation parts of larger
natural language processing systems (machine translation and dialogue systems), and
systems for Computer Assisted Instruction (Chapter 7).
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3.2.1 The Storage versus Processing Controversy

In the design of an analysis system, decisions must be taken about the balance
between the amount of information included in the dictionary (storage) and the scope
of the analysis algorithm (computation). The complexity of an analysis algorithm is
directly proportional to the size and nature of the dictionary.

Different types of dictionary can be distinguished depending on the kind of
entries which are stored: morpheme dictionaries, citation form dictionaries and word
form dictionaries. Most existing dictionaries (printed as well as computer-readabie)
only contain the citation form of a particular word (infinitive for verbs, singular for
nouns etc.) and sometimes also some irregular forms (e.g. the past tense ran of to
run would be entered as a separate entry because it is inflected irregularly)’>. Mor-
pheme dictionaries only list the morphemes (base forms and affixes) of the language.

If we want to use these relatively small dictionaries in morphological analysis,
we have to build a complicated morphological analysis program, since we should be
able to find the base form of derived forms which are often different from the form
listed in the dictionary. E.g. we have to recognise huizen as the plural of huis
(house), vertrouwd as the past participle of vertrouwen (to trust), koninkje as the
diminutive form of koning (king), huizenkoninkje as a compound based on huis and
koning, autogereden as the past participle of the compound verb autorijden (to drive),
etc. If, on the other hand, we have a word form dictionary in which all derived
forms of a citation form (irregular and regular) are listed as entries — i.e. if the
whole paradigm is entered; tafels, tafeltje and tafeltjes of tafel (table); werk, werkt,
werkte, werkend, gewerkt ... of werken (to work) etc. — the morphological analysis
program can be much simpler; it only has to look for compounds and is relieved of
the burden of having to interpret conjugations and declensions.

We have adopted the latter strategy because (1) this form of analysis is more
efficient in processing time, and (2), for Dutch it is feasible to store all derived
forms. We will discuss both claims.

5 Makers of dictionaries do not always seem to know exactly which form is exceptional
and which is not. E.g. the first person singular of komen (to come) is ik kom and not the
regular form ik koom, but it is never listed in a dictionary. On the other hand, the perfectly
predictable allomorphs of the Dutch diminutive suffix -tje (-pje, -kje, -etje, -je) are often list-
ed as exceptions.
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(1) The overall speed of program execution depends on a large number of factors.
If we disregard those which have to do with installation dependent parameters
(processor clock frequency, complexity of machine instruction set etc.), two
main components remain: the number of dictionary accesses (one access is the
mean time it takes to determine whether a string of letters or phonemes is
present in the dictionary), and the algorithm processing time (the time it takes
for the segmentation and parsing procedures to analyse the input). In general, an
analyser with a small dictionary will consume more algorithm processing time
and need more accesses, but access time will be shorter (access time is a mono-
tonously increasing function of the size of the dictionary). Only if the difference
in access time for word form and morpheme (or citation form) dictionaries is
very high (which is not the case for Dutch with current storage technology), the
morpheme dictionary solution would be faster than the word form dictionary
solution. The dictionary we use, as well as various possible storage and search
techniques, are fully discussed in section 3.3.

(2) Provided an algorithm exists which generates (semi-)automatically the derived
forms of the citation forms, a word form lexical database can be easily con-
structed and updated. Part of such a program was described in section 3.1.
Furthermore, technologically speaking, the storage of large amounts of word
forms causes no problem.

The amount of processing necessary to analyse a particular word form depends
on the place this word form takes in the regularity continuum. On one extreme of
this continuum we find the trivial cases, on the other extreme the completely excep-
tional cases, and in between forms of varying levels of (ir)regularity. A trivial form
is defined as being analysable using a simple, exceptionless rule. E.g., a diminutive
plural is always formed by adding ‘s’ to the diminutive singular form (hond#je+s,
little dogs). Completely exceptional forms on the other hand cannot be analysed using
rules. E.g., the citation form of suppletive verb waren (were) must be looked up,
and cannot be computed (the form is zijn, to be). In most approaches to morphologi-
cal analysis the boundary between exceptional and regular is put arbitrarily some-
where in the middle of the regularity continuum. Forms which are regular according
to this ad hoc boundary are computed, and the other forms are stored. In our own
approach, only the trivial forms are computed (using the exceptionless rule criterion)
and all other forms are stored.
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Summing up, the specific balance between processing and storage chosen in a
particular system, depends in the first place on the available storage resources and on
the application at hand. For our own purposes, an optimal balance for morphological
analysis between processing and storage is achieved by storing the irregular and regu-
lar forms and computing only the trivial ones.

3.2.2 The Algorithm

Figure 13 gives an overview of the data, processes and representations in our
analysis system. The remainder of this section contains a detailed description of these
components.

Our implementation so far works with spelling input exclusively, but the same
algorithm can be applied to phoneme input if a phonological dictionary is available.
Such a dictionary can be created using the phonemisation algorithm described in
Chapter 4. The spelling input is first transformed into a normal form (a form
without special characters, uppercase letters, numerals etc.)®, and is made a speciali-
sation of a concept possible-word-form, which has a segmentations subject.

Segmentation. Attached to the segmentations subject is a procedure which finds pos-
sible ways in which the input string can be partitioned into dictionary entries. First it
is checked whether the complete string is present in the dictionary; if so, the analysis
algorithm returns the associated analyses. Then, increasingly longer left substrings of
the input string are taken in an iterative way, and the remaining right part is looked
up in the dictionary. If the latter is present, the whole procedure is applied recur-
sively to the (left) remainder of the string. The procedure may stop with the first
solution (‘longest-only’) or continue looking for other analyses with smaller dictionary
items (‘all-possibilities’). Both options are implemented in the present system, but the
longest-only solution is sufficient in most applications. It is also more efficient in pro-
cessing time. When the ‘grain size’ of segmentation is small, more possible segmen-
tations will have to be accepted or réjected by the parser; this leads to considerably
longer algorithm processing times. E.g. in the famous kwartslagen example, not
only kwart+slagen and kwarts+lagen would have to be considered, but also
kwart+sla+gen, kwarts+Ila+gen, kwart+slag+en and kwarts+Ilag+en. The two last

6 See Chapter 6 (spelling error detection) and 8 (lexical analyser) for a discussion of this
step, which is not relevant in this context.
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SPELLING OR PEONEME REPRESENTATION

|

SEGMENTATION
LEXICAL 7
DATABASE DICTIONARY
LOOKUP

!

LIST OF SEGMENTATIONS

MORPHOLOGICAL

GRAMMAR PARSING

LIST OF ANALYSES

Figure 13. Data, representations and processes in a morphological
analysis algorithm. White boxes are processes, black boxes are data.
The double arrows indicate which data are used by which processes.
The single arrows indicate the input and output relations between
representations and processes.

segmentations would be rejected by the parser as the conjunction en (and) cannot
feature in a compound. Related to this problem is an increased risk at the
occurrence of nonsense-analysis results (errors by over-acceptance). E.g. liepen (ran)
would be analysed as li#epen (epics about the Chinese measure li), laster (slander) as
la#ster (drawer star), kwartel as kwart#el etc. The latter analyses are not wrong (they
are allowed by the morphological grammar, and may possibly occur), but they are
unpractical as they will place a burden on the disambiguation part of any program in
which the analysis module is to function. A longest-only approach prevents this.
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Furthermore, people producing them in spelling would be inclined to write a hyphen
between the two parts of the compound. An additional reason to prefer a longest-only
solution is the fact that we are working with a word form dictionary, in which boun-
dary information is present. I.e. morphological structure can be retrieved for a large
part, making further analysis superfluous.

There is no theoretical reason to prefer a segmentation using the longest right
part to one using the longest left part. Both could be defended; the former by refer-
ring to the head role played by the second part of a compound, the latter by pointing
at the ‘psychological relevance’ of left to right processing. We are currently using a
longest right part approach, but the program can be easily adapted to a longest left
approach.” When used in a longest-only mode, our algorithm does not immediately
stop, but keeps on iterating two more characters. This provision was built in in order
to be able to find ambiguity of the kind exhibited by kwartslagen. A longest-only,
longest right part approach stops with kwart#slagen, but with one more iteration,
kwarts#lagen is found as well. We think two iterations is enough to find the large
majority of ambiguous cases with a minimal number of dictionary accesses. We have
already mentioned that the program can also be run in a more expensive mode in
which all possible combinations are found.

Dictionary Lookup. In order to check whether a substring of the input string consti-
tutes a dictionary entry, a procedure word-form-p — a subject of the concept string,
is used. If the word is found, this procedure returns categorial information relevant
for the parser as well as the lexical representation of the word (possibly with infor-
mation about internal word boundaries); a ‘False’ message is returned if the word is
not found. Some global conditions on strings were devised to constrain the number of
dictionary accesses necessary (thereby making the system more efficient).

(i) Strings with a length less than the shortest dictionary entry, or longer than the
longest dictionary item are not considered for dictionary lookup (Cp. Brandt
Corstius, 1978).

(ii) Strings which do not conform to the morpheme structure conditions of Dutch
are not looked up. To achieve this, the initial and final consonant clusters of a
string are checked before looking it up in the dictionary. If the string can be

7 1t would be interesting to investigate if there are any empirical differences when using a

longest-only analysis between longest right and longest left. The difference could be measured
ip number of errors, number of dictionary accesses needed, etc.
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rejected on the basis of these phonotactic restrictions, processing time can be
saved This is of course only true if the string-manipulation and searching neces-
sary for checking the restrictions demands less processing time than a single dic-
tionary lookup. In our particular case, the time saved is considerable. More
information about the use of phonotactic restrictions is given in Chapter 4 and
6.

(iii) All strings looked up get a property already-analysed, which can be Nil (if the
string is not looked up yet), a list with dictionary information (if the string was
already looked up, and found to be a word), or - (if the string was already
looked up, but was not found). Thus, the result of the previous lookup is
immediately available, which again constitutes a considerable gain in processing
time. During segmentation, the same substrings are often looked up more than
once. Again, a caveat is in its place here: in small systems, internal storage may
be too small to follow this approach which requires additional memory to store
the strings.

The lookup procedure also includes some spelling modifications. Sometimes, a
linking grapheme emerges between the parts of a compound. E.g. boerekool,
hemelsblauw, eierkoek etc. The occurrence of linking graphemes is largely unpredict-
able; no hard and fast rules exist (Van den Toorn, 1981a, 1981b, 1982a, 1982b).
This is reflected in spelling behaviour: a lot of confusion exists about this aspect of
Dutch spelling. We looked for a practical solution to this problem. The analysis
system accepts all linking graphemes which cannot be ruled out on phonotactic
grounds (e.g. *kaassplank can be ruled out on the basis of the double s). The ‘trick’
we use is the following. If a string, representing the left part of a possible com-
pound and ending in s, is not found in the dictionary, it is looked up again without
the s. If a string ending in e is not found, it is looked up with an n attached to it.
Although it is a heuristic, it works surprisingly well. The problem of the er linking
grapheme was solved by listing morphemes like kinder in the dictionary (they form
an exceptional case and a small closed class with kalver, blader, hoender, volker,
kleder, lammer, runder and eier).

Parsing. The result of segmentation and dictionary lookup is a set of segmentations,
associated with the input form, and a number of strings (dictionary items with some
categorial information and their lexical representation attached to them). Appendix
A.3.2 lists some sample traces of the application of the segmentation and dictionary-
lookup procedures. This environment will be used by the parsing subject associated
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with the concept possible-word-form to compute the subset of segmentations which
are allowed by the compound grammar of Dutch. The grammar consists of a number
of restrictions on co-occurrence. E.g. Figure 14 lists the rule which restricts the
behaviour of compounds with a noun as their second part.® '

RULE Noun = X + Noun
If X = Noun
Then X = one of Singular Noun, Plural Noun,
Diminutive Plural Noun
If X = Adjective
Then X = one of Normal form Adjective, Inflected Adjective
If X = Verb
Then X = Present Singular First Verb

Figure 14: Rule which restricis the formation of compound pouns.

The rule prevents the acceptance of ungrammatical constructions like *meis-
jegek, *hogerschool, *zwevenvliegtuig etc. At the same time, if a combination is
accepted, the rule assigns a lexical representation to it. The compound inherits all
linguistic features from its second part (the head). Similar rules exist for possible
combinations with adjectives and verbs. The parser works from left to right. E.g.
with a segmentation A + B + C, first the legality of A + B is checked, and then
the legality of D + C (with D = A + B, if A + B is a legal combination).

Measuring Efficiency. Efficiency of a morphological analysis program is a function
of the number of dictionary accesses needed to assign an interpretation to the input
string. In this paragraph we will relate the number of necessary dictionary accesses
for varying input lengths (when using our algorithm) to the theoretically necessary
number of accesses in the worst case.

It can be proved that the theoretical number of dictionary accesses necessary in
the general case (without the restrictions described earlier) is an exponential function
of the length of the input. The relation is described in formula (1).

8 We adopt the view that in a single composition, a maximum of two word forms is com-
bined. Viewed from that perspective, huisvuilvernietigingsfabriek is the composition of
huisvuilvernietiging, ‘s’ and fabriek, huisvuilvernietiging the composition of huisvuil and ver-
nietiging, and finally, huisvuil the composition of huis and vuil. The final structure using la-
beled bracketing would be [[[huisN+vuilN]N+vernietigingN]N+fabriekN]N.
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(1) fm) = 2"2+2f(n-1) (n > O and (1) = 1)
This implies that processing time approaches o in exponential time. The introduction

of restrictions (i) and (iii) above reduces this to polynomial time. The relation is
expressed in formula (2).

@ f(n) = (0 - Sn + 10)0.5

In an empirical test (see below for details) of our algorithm, which incorporates as
additional restrictions (ii) above and a longest-only segmentation strategy, the number
of accesses was further reduced to a linear relation. This means that access time
increases linearly with the length of the input (which is acceptable for practical appli-
cations). For the worst case (i.e. the segmentation routine finds no segmentation), this
linear relation approaches f(n) = 0.5n (where n is the length of the input string, and
f(n) averages access time). Figure 15 depicts the functions for the three cases dealt
with. Notice that in our empirical test, the number of accesses is further diminished
by the fact that substrings already analysed in earlier input strings are ‘remembered’
as well, which results in an increasingly better performance of the algorithm.

The introduction of a phonotactic check before dictionary access reduced the
required number of accesses with 15% on the average (for words with length 2 to
20). For words with length 10 to 20, the average gain even equalled 25%. In sys-
tems where checking phonotactic restrictions is expensive, the restriction could be
reserved to larger words only.

Affix stripping. For some applications (notably hyphenation, chapter 4, and morpho-
logical synthesis), an analysis system which can find internal word boundaries (boun-
daries with representation #) is needed. Although we presume a dictionary in which
these boundaries are already present, we nevertheless have to provide for the possi-
bility that such a dictionary is not available (for example to indicate internal word
boundaries in existing dictionaries, or for new words). To strip affixes, a list of
prefixes followed by an internal word boundary and a list of suffixes preceded by an
internal word boundary, are merged with the dictionary, and additional rules are
added to the compound grammar. The normal analysis procedures described in this
section can then be applied. Notice that in this case, a number of parts of formally
complex words must be added to the dictionary which are not morphemes in the
sense that they are meaningful units. They nevertheless have the same status: e.g.
amen in be#amen (to agree) and velen in be#velen (to order) are cases in point (see
Booij, 1977 and 1981). A similar form in English could be cran in cranberry
(Aronoff, 1976).
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Figure 15. Relations between number of accesses and string length. Curve
A corresponds to the logarithm of formula (1) in the text, curve B to
formula (2), and curve C to the results of our empirical test.

Performance. We tested our parser on a number of compound words. Of an input
text of 924 word tokens, each word token was analysed by the morphological parser.
The speed of the program (measured in average number of dictionary accesses
needed) has already been discussed earlier. The text contained 45 compounds (types,
not tokens), 29 of which were correctly analysed (64%). For ten compounds (22%)
no analysis was found because one of the parts was not present in the dictionary. We
used only the Top-10,000 dictionary (described in section 3.3) as lexical database,
without an additional user dictionary for special terminology. As the input contained
a lot of specialised terminology (checker, vocabularium, detectie, congruentie etc.)
the results should be interpreted with caution. Also due to the incompleteness of the
dictionary, six compounds (14%) were analysed wrongly. E.g. as massas (masses)
was not present in the dictionary, the word form was analysed ma+s#sas. Similarly,
tekstverwerker (word processor) was analysed tekst#ver#werker (text far worker) due
to the absence of verwerker, and inputtekst (input text) was analysed in#put#tekst
(collect hole text) due to the absence of input.
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Residual Problems. A more efficient architecture could probably be obtained by
integrating segmentation and parsing. The serial model presented here, however, has
the benefit of surveyability and modularity. The drawback of any morphological
analysis program is over-acceptance; there are lots of compounds which are grammat-
ical but which are semantically or pragmatically anomalous. These words are
nevertheless accepted by the parser if they occur. In our case, the problem of overac-
ceptance is diminished automatically by the mere fact that less morphological rules
are used than in most systems. The remaining over-acceptance of compounds, how-
ever, cannot be completely solved at the present state-of-the-art of semantics and
pragmatics. Another problem is the incompleteness of the dictionary, but we believe
that this drawback can be removed by including a user dictionary (see Chapter 6).

3.3 Organisation of a Lexical Database

A lexical database (computer lexicon, dictionary) is a computer-readable list of
language elements. For each entry (an element of the list), some relevant information
is provided.

3.3.1 Design Choices and Problems

Traditionally (e.g. Geeraerts and Janssens, 1982), two aspects of dictionary organisa-
tion (for both printed and computer dictionaries) are distinguished: macro-structure
(how do we collect a list of entries?) and micro-structure (which information is
relevant for each entry?). A third design problem, relevant only to computer dic-
tionaries, concerns the storage of the dictionary in memory, and the construction of
search algorithms to find information quickly (how can we minimise access time?).

Macro-Structure. Some problems to be solved in the design of the macro-structure
of a dictionary are the kind of language elements to be entered (morphemes, citation
forms, word forms, phrasal idioms), the number of entries (the n most freapent. as
many as possible?), and the order in which the items are put (alphabetically sorted or
in order of decreasing frequency). The latter is different for printed and computer
dictionaries.

9 It is clear that a dictionary can never comtain all words of a language, because the voca-
bulary is infinite in principle. E.g. the set of numerals is infinite because the set of numbers

is infinite, and unpredictable neologisms and derivations (especially compounds) can be and
are continuously formed.
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Micro-Structure. In organising the information for each individual entry, the main
problem is to determine which information should be available. Information which
could be relevant includes: spelling form, spelling variants, phonological transcrip-
tion, stress position(s), syllable boundaries, morphological boundaries, syntactic
category, subcategories (e.g. transitive, intransitive, reflexive for verbs), selection
restrictions (e.g. to eat takes an animate subject), case frames for verbs, semantic
features, definitions in terms of synonyms, antonyms and hyponyms, origin (Romance
or Germanic), pointers to a concept (for content words), written frequency, spoken
frequency ... . Which information is necessary depends on the particular application
or task at hand and whether we want to retrieve it or compute it. For example in
hyphenation, we need information about the morphological boundaries in a word
form (see Chapter 5), in spelling correction we need information about the morpho-
logical structure and the phonological representation (see Chapter 6). This information
can be either stored or computed.

Search and Storage. We will give a short characterisation of the most important
options which are available. Detailed accounts of different search, sort and storage
techniques in general can be found in Knuth (1973) and, applied to natural language
dictionaries, in Hays (1967).

A first design feature to be considered is the place of storage: internal or exter-
nal memory. We presume that it is not feasible with present-day hardware to store a
complete dictionary (typically involving tens of thousands of records) in internal
memory. It is, however, possible to combine search in internal and external memory
to achieve high performance.

The most straightforward way to organise a dictionary in external memory is to
represent each entry as a record with as its key the spelling form and as fields the
different types of information gssociated with it. These records can be ordered alpha-
betically, in order of decreasing frequency or a combination of the two. A sequential
search consists of comparing a word looked for with all keys of the dictionary
records until a match is found, or until all keys have been checked without a match,
in which case the search fails. This method is unpractically slow.

Sequential search can be sped up considerably, however, by partitioning the dic-
tionary and storing in internal memory a table each element of which points to the
beginning of a partition in external memory. Such a table could consist of the set of
first-two-letter strings of the keys in the dictionary (theoretically 262 elements for
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Dutch and English, in practice much less). Each element of this table would contain
a pointer to a partition in external memory containing the entries the keys of which
start with these two letters (Figure 16).

INTERNAL MEMORY EXTERNAL MEMORY
aa * aardvark
aardwolf
ab ’. abhack
abacus

leader
lIexieon

zy - + zygodactyl
Zygoma

Figure 16. Indexed-sequential dictionary organisation (letter table in
internal memory, partitioned dictionary in external memory).

E.g., if we look up the word lexicon, we look up le in the table in internal memory.
There we find the external memory location where the first word beginning with le
(lead) is listed. From that position on, we do a sequential search until either we find
Iexicon or we reach the end of the partition. This method has been termed indexed-
sequential storage and search. We applied this method (or rather a variant of it) to
the organisation of our main dictionary. The operating system VMS (Digital) pro-
vides standard programs to create indexed-sequential versions of sequential files.
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Another combination of search in internal and external memory consists of stor-
ing the keys of all entries in internal memory to permit fast search. The keys contain
a pointer to a unique memory location in external memory from which the relevant
information can be retrieved. A technique which allows us to do this is storage in
the form of a letter table combined with a trie-search. In trie-lookup, the searched
word is matched to the keys one letter at a time. A letter table is an m-ary tree, with
letters as nodes, and arcs pointing to possible following letters. Consequently, a key
is interpreted as an ordered sequence of nodes, connected by continuation arcs and
leading to a pointer to a location in external memory. In a complete letter table for
a language, we would find at the first level all possible word-initial letters for that
language (say 26). At the second level, 262 continuations are theoretically possible, at
level three 263 etc., but restrictions on morpheme structure reduce the possible con-
tinuations to a fraction of what is theoretically possible. The letter table is therefore
an efficient storage medium for large collections of words.

An example will make things clearer. Suppose we have a lexicon consisting of
only the words aap, aan, apen, appel, banaal and banaan. A ftrie structure for this
dictionary is given in Figure 17. In this figure, an asterisk (the ‘leaf-mark’) indicates
that the sequence of nodes followed to reach it constitutes a word. A pointer to dic-
tionary information can be added after the ‘leaf-mark’. Adding words to the diction-
ary is done by following a path through the trie until there is no more match with
the string to be added, at which point a new branch to the tree is inserted, with the
remaining letters of the string. Searching in a trie is looking for a path through the
tree. If one is found when all letters of the input string have been matched to nodes,
and a leaf-mark is immediately following, then the input string has an entry in the
dictionary, and the associated information can be retrieved by using the pointer after
the leaf mark. If not all letters of the input string can be matched to nodes during a
legal path through the tree or if no leaf-mark follows when all letters of the input
string are matched, then the search fails. In the latter case (failure), a longest match
is found, which may be helpful in some applications. It could be exploited, for exam-
ple, in error correction (see Chapter 6).

A trie structure is also useful in applications where it is interesting to know the
possible continuations of a string (the cohort). E.g. in our mini-dictionary the cohort
of the string ap is the list (apen appel). Cohorts can be straightforwardly computed in
a trie structure. An example of such an application is a typing aid which completes
words as they are being typed in. With each new letter typed in, the cohort of the
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a/a\p \,
p/\l‘l e/\p \n
A N \
RN N
* l/\n

In a corresponding LISP notation:
((a (a(n (x..))
(p (= ..)))
(p (e (n(x..)
(p (e (1 (= .. 00NN
(ba(n(ada(l (»..))
(n (> .. 00NY

Figure 17. A trie structure for a mini-dictionary; tree-notation and
Lisp list notation.

string obtained so far is computed. Whenever the cohort contains one element, this
element is probably the word being typed, and the remaining letters can be printed
by the program. This application seems particularly useful for helping motorically
handicapped people. We used a trie-structure to implement a version of our user
dictionary; a dictionary which can be filled and updated by the user of a particular
application, and which can be combined with the main dictionary.

Still another method to search quickly in external or internal memory is hashing.
Hash functions, which are mostly based on multiplication or division, compute a
(preferably unique) memory location on the basis of (a numerical version of) the key.
In searching, we simply apply the hash function to the searched word, and look at
the location in memory indicated by the resulting value. An example of a hash func-
tion is the summation of the ASCII code (or any numerical code) of each letter in the
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key modulo the largest prime number smaller than the number of entries of the dic-
tionary (e.g., 997 for 1000 entries). We have implemented a version of our user
dictionary using this storage technique.

Another way to achieve the necessary compression of keys to be able to store
them in internal memory is by avoiding redundant use of characters. E.g. the words
occult, occultistic, occupancy, occupant and occupation (together 44 characters) could
be stored occult, Gistic, 4pancy, 7t, 6tion (only 25 characters, 43% saving). The
numeral refers to the number of letters which should be taken from the preceding
word. This compression method is a variant of the letter table discussed earlier.

3.3.2 A Flexible Dictionary System

In section 3.2.1, the traditional storage versus processing dilemma was laid out in
relation to morphological analysis. Applied to morphological synthesis, three theoret-
ically possible choices in the dilemma could be the following:

(i) Store only citation forms and compute all derived forms.

(ii) Store citation forms and irregular derived forms, and compute the rest (this
solution would appear to be the most ‘balanced’).

(iii) Store all citation forms and derived forms (regular and irregular). Compute
nothing.

Present day technology permits us to store enormous amounts of lexical data in
external memory, and retrieve them quickly. Soon, ‘dictionary-chips’ and optical disk
lexicons will be available, improving storage and search possibilities even more. In
view of this evolution, the traditional debate about storage versus computation
becomes irrelevant when applied to language technology. Natural Language Process-
ing systems should exhibit enough redundancy to have it both ways. For instance,
derived forms should be stored, but at the same time enough linguistic knowledge
should be available to compute them if necessary. There is some evidence that this
redundancy is psychologically relevant.

Two competitive psychological theories about the organisation of the mental lexi-
con exist (roughly comparable to the storage versus processing controversy). One
states that it is possible in principle to produce and interpret word forms without
resort to morphological rules except in the (special) case of newforms. We will call
this the concrete hypothesis (e.g. Butterworth, 1983). This hypothesis implies that
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morphological boundaries are represented somewhere. The alternative abstract
hypothesis claims that in production and comprehension rules are routinely used. E.g.
in production, an abstract representation work+[past] is transformed by rule into
worked. Within this hypothesis, it can be claimed that concrete word forms (like
worked) are or are not present in the mental lexicon. In the former case, the lexicon
is largely redundant. This duplicated information (co-existing rules and stored forms)
could be part of the explanation for the fuzzy results in most experiments aimed at
resolving the concrete versus abstract controversy (Henderson, 1985). One example
of this fuzziness can be found in the work of MacKay (1972, 1976). On the one
hand, the fact that regular past tenses of verbs are produced faster than irregular past
tenses seems to suggest that people apply rules of word formation in the routine pro-
duction of (regular) past tense verbs. On the other hand, evidence from a rhyming
task seems to suggest that concrete forms are nevertheless immediately available
whether they are regular or not.

The problem of how much information should be present in a dictionary (both
on the micro- and the macro-structure level) becomes irrelevant if we assume two
types of dictionary: (a) a mother dictionary (MD) containing as much relevant infor-
mation as can be gatheredlo, and (b) various daughter dictionaries (DDs), tailored to
suit a particular application and derived from the mother lexicon. We have called
such a system a Flexible Dictionary System, and in section 8.2, we will give a
detailed description of the architecture of a FDS, and how it can be constructed
(semi-)automatically. Of course there are both practical and theoretical restrictions to
the amount of information entered in the MD. Memory is not unlimited, so it would
not make very much sense to store e.g. all inflectional forms of nouns and verbs
when compiling a dictionary for Finnish. In general, it would not be interesting to
store forms which can be analysed and generated by a simple exception-less rule.

3.3.3 The Top-10,000

The development of the Top-10,000 dictionary is a project carried out at the Univer-
sity of Nijmegen. A computer readable version of a dictionary containing some
10,000 citation forms (11,605 to be precise; class ambiguity in a citation form was
resolved by entering a separate form for each class a particular citation form could
belong to) with some syntactic information, compiled from various sources, was ini-
tially available.

-170 -




MORPHOLOGY Lexical Database

Construction. A (function-oriented) program developed by Dik Bakker, Henk Schotel
and the present author, generating a number of inflectional and derivational variants,
was applied to this dictionary. The program was written in Franz Lisp, building
upon an original Fortran program by Dik Bakker. It generates plural, diminutive and
diminutive plural of nouns, all inflected forms of verbs, ordinal variant of numerals
and inflected, comparative and superlative forms of adjectives. A computer readable
Van Dale dictionary (Kruyskamp, 1982) was used by the program as a source of
information about irregular word forms. After applying it, the dictionary was
expanded by a factor five.

Although it works fairly well, we believe this particular program has a number
of important drawbacks: first, no attention was paid to a user-friendly interface allow-
ing the output of the program to be checked and corrected interactively; and second,
the program drew upon an unrelated dictionary containing part of the information
which had to be computed (the Van Dale). An object-oriented program such as the
one described for the inflections of verbs (section 3.1) would be more suitable. The
latter approach is more complete, more easily extensible and maintainable, more
modular because of its object-oriented implementation, and it does not make use of
external sources of information (‘irregular’ forms are to a large extent computed
instead of simply listed). All relevant information about phonology, spelling and
morphological structure is present in the program, and intervention by the user while
checking and correcting the output is reduced to a minimum.

Apart from morphological synthesis, each of the morphological modules
described earlier and the phonological ones in the next chapter, can be applied to
extend the information present in the Top-10,000 dictionary: morphological analysis
to find morpheme boundaries in wordforms, phonemisation to compute phonological
representations of word forms and syllabification to indicate syllable boundaries. In
section 8.2, the application of linguistic knowledge in lexicography will be discussed
more systematically. '

Organisation and Access. A sequential version of the Top-10,000 was transformed
into an indexed-sequential file using standard operations available in VMS and
UNIX-code developed by Eric Wybouw of the AI-LAB in Brussels. Access func-
tions, retrieving specified records and fields of records in this indexed-sequential file
were written as FORTRAN and C procedures, and can be executed from within a
LISP environment. For the Lisp programmer, dictionary access operations take the
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form of LISP functions (Figure 18 lists some of these).

(lookup ‘word) Looks up word and returns t (word is found) or nil
(word is not found). If a word is found, the record
containing it as a key is made the current lemma as
a side-effect.

(lemma:stress) Position of word stress in current lemms.

(lemma:pronun) Transliteration of current lemma into a phonological
alphabet.

(lemma:category) One of noun, adj, adv, art, verb, prep, pro, conj,

interj, num.

(lemma:singularp) True if current lemma is a singular noun.
(lemma:transp) True if current lemma is a transitive verb.
(lemma:ordinalp) True if current lemma is an ordinal numeral.

Figure 18. Some Lisp dictionary access functions.

Updating. It has already been mentioned that a dictionary can never be complete. It
should be possible to add neologisms and newly derived forms to the MD in a con-
venient way. How this was done in our system will be fully explained in section 8.2.
The modified or added records are stored in a user dictionary which acts as a shell
around the MD. From time to time, the contents of this user dictionary is merged
with a sequential version of the MD, and a new indexed-sequential version is com-
puted (a procedure expensive in processing time).

3.3.4 Conclusion

The distinction between MD and DDs resolves the storage versus processing dilemma
by introducing a possibly psychologically motivated redundancy to the dictionary sys-
tem. The construction, extension and maintenance of the MD can be made more
manageable by using the linguistic knowledge and processes, and optimal databases
for specific applications (DDs) can be derived from the MD without much effort (see
section 8.2). Current and forthcoming storage and search technology seem to
guarantee that it is a feasible enterprise. With the Top-10,000 dictionary, we have a
reliable database of the 10,000 most frequent citation forms and their derived forms,
which could be a good point of departure for th;: development of a complete MD for
Dutch using among other the linguistic knowledge described in sections 3.1 and 3.2
of this chapter, and in Chapter 4.
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3.4 Related Research

In computational linguistics, much less work has been done on morpho(phono)logy
than on syntax. This may be due to the fact that English, with its impoverished mor-
phological system, has been the target language of most projects until recently. In
these applications, all word forms (including inflected and derived ones) could be
simply included in the dictionary with their phonetic representation. At most, related
word forms (elements of the same paradigm) would be made to share common
features, or some rudimentary form of affix stripping would be included to save
storage space. It comes as no surprise then, that most original insights have come
from research on languages with a rich morphology, e.g. Finnish. We will describe
Koskenniemi’s (1983) research on finite state morphology as well as two additional
systems and compare them to our own approach. In addition, a number of related
object-oriented approaches to morphology will be discussed. Finally, our model will
be evaluated from the point of view of psycholinguistics.

3.4.1 Finite State Morphology

Recent computational morphophonology has been dominated by finite state models, as
exemplified by the work of Kimmo Koskenniemi (1983, 1984) and Kay (1983). The
model Koskenniemi proposes consists of a dictionary and a set of morphophonologi-
cal rules.

The dictionary consists of a root lexicon and a number of affix lexicons. The
latter are lists of inflectional and derivational suffixes. The root lexicon contains the
morphemes of the language in their underlying representation (drawn from an alpha-
bet of phonemes, morphophonemes, boundary symbols and diacritics), syntactic and
semantic properties, and a list of pointers to continuation lexicons. If a particular
lexicon is pointed at in a lexical entry, this means that all its members can co-occur
with this morpheme. In a sense, these pointers determine the possible sequences of
morphemes within a word.

Whereas rules in generative phonology are sequentially ordered, uni-directional
and involving a series of intermediate stages; two-level rules operate simultaneously
(in parallel), are bidirectional and relate the lexical level immediately to the phonetic
or orthographic level, and vice versa (only two levels of description are necessary).
The bidirectionality of the rules allows them to be used both in analysis and genera-
tion. The rules also act as a filter which blocks some morpheme strings allowed by
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the continuation pointers in the lexicon. Consider as an example rule (1), taken from
Barton (1985),

(1) Ye=Z —171°

=5

which states that lexical y must correspond to surface i when it occurs before lexical
+s (as is the case with tries which has lexical representation try+s). Two-level rules
use character pairs as units instead of characters. The equality sign is a wildcard

character. The arrow indicates that the character pair on the left must occur in the

context of the character pairs on the right.

Each rule can be compiled (by hand or automatically) into a Finite State Trans-
ducer. An FST is basically a Finite State Automaton, but with two tapes instead of
one. The transducer starts from state 1, and at each step, it changes its state as a
function of its current state and the character pair it is scanning. Each FST should be
interpreted as a constraint on the correspondence between lexical and surface (phono-
logical or graphemic) strings. The FST corresponding to rule 1 is given in Figure
19. The use of . instead of : after state numbers indicates possible final states.

y s = (lexical)

i y = s = (surface)
state 1: 2 4 1 1 1
state 2. 0 0 3 0 0
state 3. 0 0 0 1 0
state 4: 2 4 5 1 1
state 5: 2 4 1 0 1

Figure 19. Finite state transducer table for rule (1), adapted from
Barton, 1985.

Different FSTs can either be collapsed into a single FST, or applied simultaneously.
In analysis, the tape representing the lexical representation is written (with the addi-
tional help of dictionary stored in the form of letter trees, see section 3.3), and the
tape with the spelling or phonological representation is read. In synthesis, the
phonetic or spelling tape is written, and the lexical representation tape is read. It is
obvious that such a system is both extremely efficient!! and computationally attrac-
tive. The approach has been applied successfully to Finnish, and is being adapted for
1 Nevertheless, it has been proved by Barton (1985) that analysis and generation with
FSTs is an NP-hard (i.e. computationally difficult) problem in the general case. The computa-

tional class NP consists of problems which can be solved in polynomial time on a non-
deterministic Turing Machine.
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Japanese, Rumanian, French, Swedish, English and other languages (see Gazdar,
1985, for full references).

The approach does not endanger the usefulness of our own médel, however.
To begin with, Koskenniemi’s system is devoted more to phonology than to morphol-
ogy (only inflectional morphology is discussed, and alternations of longer sequences
of phonemes are resolved in the lexicon). It would be difficult in his approach to
account for restrictions on the combination of roots into compounds, for example,
and the inclusion of rules modifying word internal structure (Ablaut, reduplication,
infixation) would be problematic, too, as was noted in Golding and Thompson
(1985).

Second, we have been working on quite a different level of abstraction. From
the onset, we have wanted our system to be formalism- and theory-neutral. This
implies, for example, that it should be equally well equipped to handle feature bun-
dles (like in generative phonology) as monadic phonemes (Koskenniemi’s approach).
The rationale behind this was that enough problems remain in the organisation of a
word formation component for Dutch to justify a flexible, open-ended system.

Furthermore, recent trends in phonological theory (auto-segmental phonology
and metrical phonology) cannot be straightforwardly incorporated into a two-level
approach, as the latter has only limited context-sensitivity, while this incorporation
constitutes no problem for oer own model.

Perhaps the most important difference is the fact that Koskenniemi starts from a
lexicon in which underlying representations of morphemes are already present (IF
main interest is to construct an efficient parser and generator). In contrast, we tried
to organise our knowledge base in such a way that the underlying representation can
be constructed if needed.

3.4.2 Oracle

Oracle (Honig, 1984) is a general morpholoéical analysis program (in principle
language independent). It resembles our system in the independence of lexicon, mor-
phological rules and spelling rules. The segmentation procedure is left to right, long-
est left first (as opposed to our longest right first), and parsing is interleaved with
segmentation (as opposed to our sequential approach). The regular lexicon contains
only categorial information. Entries of the irregular lexicon are listed with their
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internal structure. An irregular lexicon was necessary to prevent a large number of
invalid results by applying unproductive morphological processes routinely. This
problem led us to a solution in which word forms are stored instead of morphemes.
Morphological rules are described using an extended context-free grammar; spelling
rules and context rules use a regular expression formalism.

As the program expects well-formed input, a large number of invalid word
forms are accepted (and analysed). For example, both koppen and kops are accepted
as the plural of kop (cup), while only the former is correct. Spelling rules undo
those root modifications which produce spelling forms different from the lexical form.
Like in our own system, Oracle incorporates no semantic processing. A superficial
syntactic analysis of the sentence in which a word occurs is included to disambiguate
between multiple analyses.

As we did not focus our research on analysis (in fact, we use some kind of
analysis-by-synthesis approach), it is difficult to compare both systems. We believe
that our analysis of spelling rules is linguistically more relevant, and our inclusion of
a phonological component (next chapter) improves completeness and descriptive ade-
quacy. To be fair, it should be mentioned that Oracle was not intended as a linguistic
model, but it remains to be seen whether the formalisms developed are flexible
enough to make the modeling of experimental linguistic theories a straightforward
matter.

3.4.3 Lexicrunch

The Lexicrunch program (Golding, 1984; Golding and Thompson, 1985) induces
rules of word formation given a corpus of root forms and the corresponding inflected
forms, thereby compressing the dictionary. The resulting rules can then be used in
analysis and generation. This approach is diametrically opposed to our own, which
uses inflectional rules to expand a citation form into a word form dictionary, and
which restricts morphological analysis to compound analysis including, whenever
necessary, detection of internal word boundaries.

The basic operation which rules can perform is string transformation (replace
substrings and concatenate strings). Rule induction proceeds in two stages: data entry
and rule compression. During data entry, pairs of roots and corresponding inflected
forms are accepted, and the system tries to find a set of minimal string manipulations
which transform the former into the latter. The resulting, inefficient, rules are
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subsequently compressed, which is an expensive operation. This process involves res-
tating of transformations (there are lots of ways to achieve a particular string
transformation), cross-classification of words, elimination of redundant transforma-
tions, and building a decision tree. Currently, the system has been applied ‘ade-
quately’ to the past tense inflection in English, the first person singular indicative of
Finnish and the past participle in French.

A major drawback to the system is that the inferred rules are linguistically non-
sensical. They are based on the surface properties (appearance) of the input strings,
and linguistically relevant representations like morphological boundaries, syllable
structure and phonological representations are either absent, or remain unused.
Therefore, the system seems applicable only as a means of dictionary compression,
which, as we have argued earlier, is unnecessary in view of current storage and
search technology, especially for languages like English and Dutch. Moreover, other
dictionary compression methods exist which are computationally less demanding. The
system can certainly not be used to model morphological competence and perfor-
mance. On the other hand, we think the system is extremely useful in the linguistic
analysis of irregular past tenses. The elements of the different Ablaut categories
indeed seem to be related by appearance (both consonantal and vocalic properties of
the stem): e.g. drink, shrink, sink, stink. The same goes for Dutch. E.g. stinken,
drinken, zinken. Although this regularity is nicely captured by Lexicrunch, it does
not justify its application to regular processes.

As regards Dutch, (concatenated) compound analysis is impossible with Lexi-
crunch, and several morphological rules which rely heavily on phonological informa-
tion cannot be induced reliably on the basis of the spelling string alone (cp. section
3.1).

3.4.4 Other Object-Oriented Approaches

In this section, some recent approaches to linguistic description with an object-
oriented tenor are described and compared to our own approach.

In word grammar (Hudson, 1984, Hudson and Van Langendonck, 1985) a
language is represented as a network of linguistic entities (comparable to concepts),
related by a limited number of propositions (comparable to subjects and type hierar-
chies). Linguistic entities are words, parts of words, strings of words, etc. Basic
propositions are composition (relating a word to its parts), model (relating a more
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general entity to its specialisation, this proposition makes selective inheritance of
information possible), companion (relating a word to the words which it occurs
with), referent (connecting words to semantic structure), and utterance-event (linking
a word to the pragmatic context via uttering it). The similarity to our approach lies
in the uniformity of representation (all linguistic knowledge is represented uniformly)
and the object-oriented flavour. The main difference is that in Hudson's system all
representation is declarative (descriptive) so that the use of the knowledge in genera-
tion and analysis is not considered.

De Smedt (1984) describes advantages of the object-oriented programming para-
digm for the representation of syntactic knowledge. An object-oriented implementa-
tion of IPG (a psycholinguistic theory of sentence generation; Kempen and Hoen-
kamp, forthcoming) using the object-oriented language CommonORBIT is outlined in
Kempen and De Smedt (in preparation).

In Steels and De Smedt (1983) linguistic structures are viewed as collections of
descriptions (frames). Frames are organised into tangled inheritance hierarchies.
Linguistic processing (building structures in analysis or generation) happens by apply-
ing frames and searching the hierarchy in both directions (i.e., generalisation and
specialisation). The theory can be easily implemented using an object-oriented
language.

KAY
Functional Unificational Grammar (1979, 1985) is another recent linguistic

theory which lends itself to an object-oriented implementation. A functional descrip-
tion, which is the basic representation unit of FUG, is a set of feature-value pairs in
which the values can be functional descriptions in their own right (this is basically a
frame-structure). An implementation of functional descriptions as KRS concepts with
subjects as features and concepts as fillers is straightforward. Unification can be
defined as a subject of the concept representing the functional description type.

3.4.5 Psycholinguistic Research

In Chapter 1, it was claimed that a computer model should be constrained by both
linguistic and psychological theory. In this section we will review our model from the
point of view of related research in psycholinguistics. What we see happening in the
domain of morphology, is a convergence of psycholinguistic and computational
efforts. In both disciplines the construction of explicit models of morphological and
lexical processing and representation is attempted. Even the terminology overlaps
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(e.g., lexicon file, computational order, on-line processing, affix-stripping).

A number of observations and experiments suggests that internalised
morpho(phono)logical rules are a psychological reality!2. This evidence can be
divided into two categories: production of errors (overgeneralisation in child
language: Schaerlaeckens, 1979; speech errors by adults: Fromkin, 1973 and Garrett,
1975 and aphatic speech: Henderson, 1985), and production or comprehension of
new complex words (rule-governed creativity in adults and children: Berko, 1958).
All error forms and new forms show phonological accomodation, i.e. the correct
allomorph and pronunciation are produced in the phonological context. These data
seem to suggest that a relatively independent morphological level exists between the
syntactic and the phonological levels (Gibson and Guinet, 1971; Laudanna and
Burani, 1985; Cutler, Hawkins and Gilligan, 1985). Units at this level are mor-
phemes (stems) and affixes, word forms and rules. It is exactly these units which are
also represented as concepts in our computational model.

Most of the data discussed so far, however, give only a vague idea about the
morphological processing going on in language users and about the memory represen-
tations they use to store lexical material. What we would like to know is whether
morphological rules are routinely used in production and comprehension, or only in
special cases. Furthermore, we would like to have some information about how lexi-
cal entries are represented and how they are accessed, and whether inflections and
derivations are processed differently.

Unfortunately, psycholinguistic research does not help us to resolve these prob-
lems. Most of the more detailed theorising on the basis of experiments is highly
controversial (see Henderson, 1985 for a recent discussion). This controversy may be
due in part to the debatable precision of a psycholinguist’s instruments (lexical deci-
sion task, priming, naming tasks). To begin with, there is a serious risk of task
effects (strategies generated by the task or the context, but without correlate in ‘nor-
mal’ processing). Furthermore, only strictly serial models and theories can be tested.
Different time lapses between input and output of a black box have nothing to say
about the organisation of the black box if parallel processing is allowed. Worse, it is

12 Notice that this assurance does not extend to the way these rules are psychologically (or
biologically) implemented. There may be ways that rule-governed behaviour can be produced

in which there is no explicit representation of any rules (by parallel distributed processing
models, for example, see Rumelhart and McClelland, 1986).
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nearly impossible to balance all possibly relevant independent variables in the selec-
tion of the test items (it is simply not clear what would constitute an exhaustive list
of relevant dependent variables in morphological processing). Even the selection of
the test material implies a theoretical choice (e.g. which words are affixed and which
are not?). In view of these provisos, it is only natural that not much agreement has
been achieved among workers in this field. Another possible reason for the lack of
clear results — the fact that derived and inflected forms may be at the same time
stored and computed — was discussed in section 3.3.

Although our morphological model was primarily designed from a technological
point of view, it could be adapted to serve as a psychological model of human mor-
phological processing. The level of abstraction (concepts for affixes, morphemes,
word forms, paradigms and rules) seems empirically right, and theories like the mor-
phological decomposition model (Taft and Forster, 1975, 1976; Taft, 1981), the logo-
gen model (Murrell and Morton, 1974; Morton, 1970, 1979a, 1979b) and the cohort
model (Marslen-Wilson and Welsh, 1978; Marslen-Wilson and Tyler, 1980;
Marslen-Wilson, 1980) can be easily simulated using the same concepts (but with
additional subjects).

In a sense, computational models are richer than psycholinguistic theories
because they have to be explicit to the extreme. In general, a lot of problems which
we are confronted with in the development of artificial morphological generators and
analysers (ambiguity, backtracking, heads of compounds, Ablaut, root structure
changes etc.) are almost never mentioned in psycholinguistic research. Perhaps
language technology can provide a fresh perspective on psychological theory building
in these matters (rather than vice versa).

3.4.6 Conclusion

Summing up this brief overview of related research, we believe that our model has
some advantages setting it apart from other approaches. The basic open-endedness
and extensibility inherent to object-oriented implementations make the system ideally
suited as a ‘laboratory’ for the studying of different linguistic formalisms, models and
rule interactions (this will become even clearer in the next chapter). Psycholinguistic
models can also be implemented and evaluated with it. At the same time, the imple-
mented program has proved to be efficient enough to be used in concrete practical
applications (see Part III).
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However, our model may be inferior in computational efficiency and elegance to
finite state approaches. It would therefore be interesting to investigate whether Dutch
morphophonology can be described similarly, once we have agreed upon the relevant
rules and their interactions.
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Aspects Of Dutch Phonology

In this chapter, an object-oriented database of phonological knowledge for Dutch will
be developed, and two phonological processes which make use of this knowledge
(phonemisation and syllabification) will be discussed in detail. In section 4.1, the
syllabification algorithm is described, and the role of internal word boundaries in this
process is explicated. In section 4.2, the phonemisation algorithm is outlined, and the
architecture of our phonological database and its user interface are sketched.
Throughout the chapter, special emphasis will be put on the interaction between pho-
nological and morphological knowledge and processes.

4.1 A Syllabification Algorithm!3

4.1.1 The Syllable as a Phonological Unit

In general, the Dutch syllable conforms to the sonority hierarchy (Kiparsky, 1979), a
universal restriction on the build-up of syllables. In essence, this condition specifies
that the sonority of phonemes decreases from the inside of the syllable to the out-
sides, following a sonority hierarchy in which vowels are most sonorant, followed by
semi-vowels, liquids, nasals, fricatives, and plosives: — in that order. In Dutch,
syllable-initial clusters like sp, st and sk ignore the hierarchy.

In addition to the sonority hierarchy, language-specific restrictions on length and
form of syllable-initial and syllable-final clusters, and on the nucleus of the syllable
can be defined. E.g. in Dutch, only vowels can be syllabic (be the nucleus of a

13 This section is based in part on Daelemans (1985c).
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syllable), syllable-initial clusters cannot be longer than three phonemes, etc. Gen-
erally, there are two complementary ways to obtain these language-specific data: one
more bottom-up, the other more top-down. A phonologist would try to describe
morpheme and syllable structure conditions by means of positive and negative rules,
filters and other constructs (e.g. Trommelen, 1983 and Booij, 1981 in the framework
of generative phonology). This approach is based on empirical data, but has a top-
down (deductive) nature. The complementary approach is more bottom-up (induc-
tive) in that it would involve statistical analysis on a large quantity of data. In the
latter case, we are confronted with a vicious circle: we need a syllabification program
to produce the raw material for our statistical analysis (i.e. syllables) and we need
the statistical information to make a proper syllabification program.!4

While the deductive approach is more pleasing from a linguistic point of view,
statistical analysis is needed because some clusters which are pronounceable on
theoretical grounds may not be realised in the vocabulary of the language. On the
other hand, there is a large amount of loan words in Dutch. Some of these may con-
tain un-Dutch clusters. Nevertheless, we wish to divide them correctly into syllables
since they are not felt to be foreign any more. The lists we will use are based on a
statistical study of the spelling syllable by Brandt Corstius (1970) (for which he used
his SYLSPLIT hyphenation algorithm) and on Bakker (1971). In the process of test-
ing our program, the lists were considerably modified and extended, according to the
empirical data.

A useful description of the syllable, borrowed from metrical phonology is the
one in Figure 1. This diagram suggests that a syllable is a string of phonemes, con-
sisting of a nucleus (a single vowel: short, long or diphthong), optionally preceded
by consonants (the onsef) and/or optionally followed by consonants (the coda). It can
be shown that the rhyme is a phonologically relevant unit by the fact that restrictions
exist on the co-occurrence of nucleus and coda without comparable restrictions on the
co-occurrence of onset and nucleus (Figure 2, adapted from Booij, 1981 and Trom-
melen, 1983).

Another traditional argument for the phonological relevance of the rhyme are
rules like schwa-insertion, which would have the rhyme as their domain (Trommelen,

14 The problem disappears if we entertain the idea to collect a large enough corpus of syll-
ables by hand.
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/ﬂL\
(ONSET) RHYME
NUCLEUS (CODA)
H E RFST

Figure 1. Syllable Structure. Parentheses indicate optionality.

1. Long vowels or schwa cannot be combined with the velar nasal to form
a rhyme.

*aang, *eeng, .

2. Long vowels or schwa cannot be combined with [b] to form a rhyme.
*aab, *eeb, ... (Exception: foob)

3. Diphthongs and [r] cannot be combined to form a rhyme.
*eir, *aur, ... (Exception: taur)

4. If the nucleus of a rhyme is stressed and long , the coda must be
of the form (C)(s)(t).

*oemp, *aalm, ...

Figure 2. Restrictions on the Rhyme of Dutch Syllables.

1983). Schwa-insertion is a rule which inserts a schwa between a liquid and a non-
coronal or nasal consonant if they occur in the same coda.

The boundary between two syllables may be fluid in some cases, but in general,
speakers of a language can indicate syllable boundaries without problem, which
makes syllabification a competence phenomenon. The phonological process of splitting
up a word into syllables is governed by a universal maximal syilable onset principle
(Selkirk, 1982). This principle dictates that in a consonant cluster between two
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nuclei, as many consonants as possible belong to the same syllable as the following
nucleus. The remaining consonants belong to the previous syllable. Again, Dutch
does not follow this principle completely. A contradictory rule which states that short
vowels occur in closed syllables forces the syllabification of words like pastei (paste)
to be pas-tei instead of the expected pa-stei.

The algorithm we will describe in the next section assigns syllable boundaries to
spelled words. As with the morphological module in the previous chapter, spelling
was our point of departure for practical reasons: most language data are accessible to
the computer via spelling exclusively. Apart from this, the algorithm was designed
with practical applications (like hyphenation) in mind, which makes spelling an obvi-
ous choice.

4.1.2 A Computational Approach to Syllabification

Automatic syllabification remains a thorny problem for computational linguistics. The
rules, which are simple for humans, are difficult to implement because they make
extensive use of knowledge about the internal structure of words (morphological
knowledge). In this chapter, new statistical data necessary for developing
syllabification algorithms are presented, and a system is outlined which uses a lexicon
and a word form parser to imitate the capacity of language users to analyse words
morphologically. The presence of a lexicon suggests a simple solution to the prob-
lem: store the syllabification of each word form explicitly in the lexicon, and retrieve
it when needed. However, we need a program to do this automatically for existing
lexicons, and to cope with new words.

The algorithm, based on the approach taken by Brandt Corstius (1970), but with
important modifications, splits up Dutch words into spelling syllables, following an
explication of the rules provided by the official Woordenlijst van de Nederlandse Taal
(word list of the Dutch language), and was inspired by recent (generative) phonologi-
cal research on the subject. Phonological syllables do not always completely coincide
with spelling syllables, but the latter can be easily derived from the former. Apart
from its application as an automatic hyphenation program of Dutch text (section 5.2),
the system plays an important role in the grapheme-to-phoneme conversion system
described in section 4.2. This system needs information about the syllable structure
of words. An overview of a computational theory of syllabification is given in Fig-
ure 3. In the remainder of this section, we will discuss the different parts of this
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scheme in detail.

inrut . ;

| INPUT STRING

-
1 Losksr

r 9

mnm]t-t ions

' » LIST OF "WORDS"

PORSTHD l
i

| PRIMITIVE PHONEMISATION

onaiyses

Morphological
Analysis (see 3.3) J_

LIST OF SEGMENTS

|

PHONOTACTIC SYLLABIFICATION RULES

¥

LIST OF PHONOLOGICAL SYLLABLES

}

SPELLING MODIFICATIONS

3
:

LIST OF SPELLING SYLLABLES

DATA

Figure 3. An outline of the syllabification algorithm. Black boxes

represent data, white boxes processes. The double arrows indicate which data
are used by which processes,. The single arrows indicate the input and
output relations between representations and processes.

The processes are KRS subjects, attached to the word form concept described in
the previous chapter. This implies that, although syllabification rules apply after mor-
phological synthesis at the lexical level, syllable representations are accessible to the
spelling filter attached to the spelling subject of the word form concept. |
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During morphological analysis, morphological word boundaries are inserted into
a string of spelling symbols by a parsing process (section 3.2) which uses a word list
(lexical database, see section 3.3). In the primitive phonemisation phase, each ‘word’
(a string of spelling segments between word boundaries) is transformed into a string
of vocalic and consonantal segments. We have called this process primitive phonemi-
sation because, in this stage, a first step from spelling to sound is taken.
Syllabification Rules apply to the output of the segmentation stage. They are based on
the Maximal Onset Principle, but with important extensions and modifications for
Dutch. The result of this stage is a string of phonological syllables. An additional
set of spelling modifications is necessary to transform these into spelling syllables.

4.1.2.1 Monomorphematic Words

In this section we concentrate on the division into syllables of words without morpho-
logical structure and words in which morphological structure has no bearing on
syllabification (i.e. after morphological analysis). The rules described in this section
therefore not always work in the case of complex words.

The (more or less) language-independent process we will describe is to be sup-
plemented with language-specific data, as described earlier. These data include lists
of the syllabic and non-syllabic segments of a language and lists of possible onsets
and codas of Dutch syllables. For Dutch, a syllabic segment is defined as a spelling
symbol or a string of spelling symbols pronounced as one vowel or diphthong (a, ee,
ij, ooi, ui, ...). Each syllabic segment is the nucleus of a syllable. Since each syllable
has exactly one such nucleus, and syllabic segments can only function as the nucleus
of a syllable, the number of syllables of a word (a useful piece of information for
some applications, notably style checking) can be measured by counting the number
of syllabic segments in it (cp. Brandt Corstius, 1970). A non-syllabic segment is a
spelling symbol or string of spelling symbols pronounced as one consonant or other-
wise analysable as a consonantal unity (p, t, w, ch, qu, ...). Table 1 lists all seg-
ments for Dutch. |

The clusters ph, th and ng are treated as a single segment. However, they are
removed from the table in some applications (e.g. an hyphenation algorithm without
morphological analysis, 5.2.3.1). In the latter applications, they must be treated as
two-segment clusters, due to possible confusion in words like uit-houden (to suffer),
op-houden (to stop), and in-gang (entry).
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Syllabic segments:

s, e, i, 0, u, y, aa, ee, ie, oo, uu, ae, au, ij, ei, eu, ai, oi,
ou, oe, ui, oy, ay, ey, uy, aai, aau, eeu, eui, ieu, oei, oo0i,
eau, oui, oeu, oey, aay, oQy.

Non-syllabic segments:
b, ¢ (pronounced /k/ or /s/), d, f, g, h, j§, k, 1, m, n, p,

qu (pronounced /k/ or /kw/), (ph, th, ng)
r, s, t, v, w, x (pronounced /ks/), y (as in yoga), z, ch.

Table 1. Syllabic and non-syllabic segments of Dutch.

The first step in the algorithm consists of transforming the input word (a string
of spelling vowels and spelling consonants) into a string of syllabic and non-syllabic
segments (primitive phonemisation). E.g.:

schreeuwen (to cry) is segmented s-ch-r-eeu-w-e-n

apparatuur (apparatus) is segmented a-p-p-a-r-a-t-uu-r
To obtain this result, a function is used that separates spelling vowels from spelling
consonants, and a function which analyses adjacent strings of spelling vowels or con-
sonants from left to right until the longest possible segment is found. E.g. the vowel
string aaie in papegaaien is analysed as aai-e, and not as aa-ie, because aai is the
longest possible syllabic segment which can be found, passing through the string
from left to right.

This particular strategy to parse vowel clusters is possible because in general in
Dutch, a diaeresis or hyphen is used when the division ‘longest possible left part +
rest’ is not correct. E.g. zoéven (a moment ago), auto-ongeluk (car accident). The
diaeresis and hyphen prevent the analysis of oe and 0o as one syllabic segment. This
permits us to use a deterministic vowel string parser even in morphologically com-
plex words (see next section and also section 5.2.3.1).

There are some exceptions to this strategy; the vowel strings iee, aie and oie are
always divided i-ee, a-ie and o-ie (longest right part). E.g. materi-eel (material),
moza-iek (mosaic), zo-iets (something like that). When the other division is the
proper one, this is signalled by a diaeresis. (e.g. drieéndertig, thirty three). Further-
more, ieu is only interpreted as a single segment if a w follows immediately (e.g,
nieu-we, new). If this is not the case, the analysis is i-eu, as in superi-eur (superior).
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Alternative solutions to this problem exist. In an approach used by Boot (1984)
a string of spelling vowels is assigned syllable boundaries by looking for patterns in
it in a well-defined order. This order was determined by the general principle ‘long-
est patterns first’ and by empirical results (exhaustive testing). Basically the same
idea was put forward by Wester (1985a, 1985b) in the context of a generative
description of the function of diaereses in Dutch spelling. We will comment upon the
general approach by means of the proposal of the latter. Wester argues correctly that
the traditional view of the diaeresis as ‘written on the second of two adjacent (spel-
ling) vowels which together can be read as one vowel, but should not be read as
such’ is deficient in that this rule would require a dramatic increase in the use of
diaereses. For example, diaereses would have to be written in the following words:
*geiit (uttered), *ingeniéur (engineer), and *bloejen (to blossom). Wester explains
this fact by postulating an ordered list of rules (Figure 4), rewriting strings of spel-
ling vowels to segments (cp. the ordered list of patterns in Boot, 1984)15

(1) [+Voc].[+Voc]i -> <+Voc,+Voe>
(2) lollellil o> <oeid
(3) [elli] -> <ei>
(4) fulfil -> <ui>
(5) {el{u] -> Lew>
(6) falfu) -> <auw>
(7 {ol[ul -> <ouw>
(8) [olle] -> <oe>
(9) [ille) -> <ied
(10) [+Voc] -> <4Voc>

Figure 4. Ordered list of rules rewriting strings of spelling vowels to
segments. Square brackets indicate spelling vowels, angular brackets
syllabic segments. Based on Wester (1985a).

A diaeresis is only necessary when the lexical representation of a word does not
coincide with its mechanical reading (as determined by applying the rules in Figure
4. Examples are: geéist (demanded; lexical = ge#eist, mechanical = gee-ist), and
kippeéi (chicken egg; lexical = kippe#ei, mechanical = kippee-i). In the earlier cases
a diaeresis is not necessary since both readings coincide: geuit (uttered, lexical =
mechanical = ge-uif). If the Boot-Wester hypothesis is correct, vowel strings can
always be provided a correct syllable-boundary by means of the list of rewrite rules
and the information supplied by diaereses. Apart from being obviously incomplete

15 Incidentally, the two ordered lists are completely different and contradictory. Many ex-
amples given by Wester cannot be solved properly by means of Boot’s list.
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(ij, ooi, aai, eeu and others should be added to the list), a problem exists for the
vowel string jeu which can be divided (ingeni-eur, engineer) or not (nieu-we, new)
depending on the context. While a left-to-right parsing algorithm can solve this prob-
lem by adding a context-sensitive rule, as we showed earlier, there is no way to
prevent the incorrect division nie-uwe in Wester’s system (or when ieu is added to
the list, the incomplete division in-genieur). While equally adequate in principle, we
see therefore no reason to prefer the Boot-Wester approach to our own.

After this preliminary analysis into segments, traversing the string of segments
from left to right, each cluster of one to seven non-syllabic segments intervening
between two consecutive syllabic segments is provided a syllable boundary. In our
examples:

s-ch-r-eeu-w-e-n

eeu, e --> compute syllable boundary for cluster w

apparatuur

a, a --> compute syllable boundary for cluster pp

a, a --> compute syllable boundary for cluster r

a, uu --> compute syllable boundary for cluster t

It follows that word-initial and word-final non-syllabic clusters are never split (they
do not occur between two syllabic elements of the same word).

The following set of rules is used to distribute the non-syllabic cluster over two
successive syllabic segments.

Rule 1. If there are no non-syllabic segments (the cluster is empty), insert a syllable
boundary between the syllabic segments.

E.g. moza-iek (mosaic), cha-os

If there is a diaeresis in spelling, it can always be substituted by a syllable boundary
before the element which carries it. We assume that a diaeresis is present whenever
it is prescribed by the spelling rules of Dutch. E.g.

Israél --> Isra-el
nadpen (to ape) --> na-apen

Rule 2. If the cluster consists of one non-syllabic segment, insert a syllable boundary
before it. E.g.:

la-chen (to laugh), po-ten (paws), stra-ten (streets)
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Rule 3. If the cluster consists of two non-syllabic segments, and it belongs to the set
of cohesive clusters, insert the syllable boundary before it. Otherwise insert it
between the two non-syllabic segments. E.g.:

pot-ten (pots), kan-ten (sides) versus

li-vrei (livery), a-pril

Cohesive clusters (Table 2) contain two inseparable non-syllabic segments.

vr, vl, (th, ph), sch,
pr, br, tr, dr, cr, kr, gr, fr,
pl, bl, cl, kl, fl, kw

E.g.: li-vrei, me-thode, logi-sche, a-pha-sie (ph is an obsolete
spelling of /f/),

a-pril, ze-bra, ma-troos, Ma-drid, a-cryl, ma-kro, a-gressie,

A-frika, di-ploma, pu-bliek, cy-clus, re-klame, re-flex, reli-kwie.

Table 2. Cohesive clusters in Dutch.

Sometimes they are inseparable because the first segment of the cluster cannot occur
in syllable-final position (vr, vl), sometimes because the cluster is pronounced as one
segment (th, ph, sometimes sch). In the remaining cases, the clusters occur in loan
words. They then consist mostly of a plosive, followed by a liquid. Note that th and
ph are only present in this table if they are not present in Table 1.

Rule 4. If the cluster consists of three or more non-syllabic segments, then traverse
the cluster from right to left, and find the largest possible cluster which can function
as the onset of a syllable in Dutch (i.e. which belongs to the set of possible syllable-
initial clusters; see Table 2). Insert a syllable boundary before it.

Clusters of three non-syllabic segments:
schr, spr, spl, str, scl, scr, skl, skr.
Clusters of two non-syllabic segments:

sch, sm, sp, ps, ts, kn, sn, gn, st, dw, kw, tw, zw, th, ph,
sk, sc¢, cl, pl, sl, bl, fl, chl, g1, ki, vi, chr, cr, pr, tr,
br, dr, fr, gr, kr, vr, wr, tj (as in zeetie; little see),

sj, pj (8s in droom-pje; little dream), sh, sf, fn,

fi, pn

Table 2. Possible onsets (syllable-initial clusters) in Dutch.

E.g.:
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kor-sten (crumbs), amb-ten (offices), herf-stig (autumnal)

There are some problems with this rule. Although ts is a possible syllable-initial clus-
ter — it occurs in a number of loan words —, there is a reluctance to insert a syll-
able boundary in front of it in clusters of length three. E.g. art-sen (physicians), not
ar-tsen; rant-soen (ration), not ran-tsoen. A similar phenomenon exists with the possi-
ble syllable-initial cluster tw: ant-woord (answer), not an-twoord and Ant-werpen
(Antwerp), not An-twerpen. These words are interpreted as compounds, possibly for
reasons of analogy or (folk) etymology.

A small-scale, informal empirical investigation showed that there is also some
confusion as to where to insert a syllable boundary in clusters ending in st: tek-sten
or teks-ten (texts), bors-ten or bor-sten (breasts), mon-steren or mons-teren (inspect).
Both possibilities are equally possible. But there are also clear cases, conform to the
rule: ven-ster (window), bor-stel (brush).16

Finally, there is the case of the cluster str (mostly in words of foreign origin).
Following the rules, a syllable boundary can be inserted before this cluster, because
it belongs to the list of possible syllable-initial clusters. However, sometimes this is
clearly the wrong solution: Cas-tro, not Ca-stro and mis-tral not mi-stral. This is due
to the fact that the vowel before str is short, and in Dutch, short vowels are nor-
mally indicated by closed syllables. The same rule contradicts the maximal syllable
onset principle in the case of intervocalic non-syllabic clusters of length two (see
4.1.1). In other cases two alternatives seem equally possible: adminis-tratie and
admini-stratie, Aus-tralié and Au-stralié, mine-strone and mines-trone. Individual
differences in the pronunciation of these words may account for this undecidedness.

For clear cases among these exceptions, ad hoc rules should be added to the
program, overriding the syllabification rules. For fuzzy cases, for which people differ
in meaning, the default rules should be applied.

16 In Trommelen (1983), s in onsets is analysed as extra-metrical (i.e. independent from
the metrical syllable structure), and in codas it is analysed as an appendix (again independent
from the syllable structure). The undecidedness in words like these is then explained by the
special status of s, and the fact that no morphological boundary can force a decision. But no
convincing independent evidence is given for the marginal status of s (except that it makes
the rules look better).
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4.1.2.2 Polymorphematic Words

Polymorphematic or complex words are words consisting of a combination of sim-
plex words, complex words, and/or affixes. In complex words, the rules discussed
earlier often fead to errors. This is due to the fact that Dutch syllabification is also
guided by the principle ‘divide according to morphological structure’. This principle
sometimes conflicts with the basic syllabification rules. We tested a programl7, incor-
porating the rules discussed in the previous section, on a corpus of 5546 word forms
(the letters A, W and Z in a computer-readable version of Uit den Boogaart, 1975).
This program included no morphological analysis. It failed in 5.6% of the cases (707
of a total of 12647 computed boundaries) due to the morphological structure of the
words. This is an unacceptable error percentage, and the experiment proves that mor-
phological analysis is necessary to obtain high quality syllabification.

In morphological description, the different parts of a complex word are
separated by morphological boundary symbols. In Dutch (as in English) two types of
boundaries are considered; morpheme boundaries (+) and word boundaries (#)
(Booij, 1977). Only the latter type overrules syllabification rules. E.g. compare

groen+ig groe-nig (greeny) (syllabification not overruled)
to
groen#achtig groen-ach-tig (greeny) (syliabification overruled)

Other examples of the priority of morphological structure to syllabification rules:

in#enten in-en-ten (vaccinate) <-> *i-nen-ten
stads#plan stads-plan (city map) <-> *stad-splan
zee#tje zee-tie  (little sea) <-> *zeet-je

The third column shows the erroneous syllabification which would ensue if the
syllabification rules were not overruled.

In Dutch, all prefixes and all parts of a compound are followed by a word
boundary. Some suffixes are preceded by a word boundary, others by a morpheme
boundary. Only word boundaries must be replaced by a syllable boundary before the
regular syllabification rules apply. In our algorithm, this is done by a word form
parser which splits up compounds into their parts, and by an affix analyser which
indicates the boundary of all prefixes and those suffixes which are preceded by a

17 More fully described in 5.2.3.1.
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word boundary.!8 These algorithms were described in section 3.2. By means of this
partial morphological analysis the problems caused by the conflicting effects of
syllabification rules and the morphological principle are resolved in essence. Remain-
ing errors are the result of deficiencies in the morphological analysis. »

To minimise the probability that these erroneous morphological analyses have an
adverse effect on syllabification, analysis can be limited to those cases where it is
absolutely necessary. There is a category of combinations of word parts separated
by an internal word boundary (‘internal words’) which can be proved to be ‘unprob-
lematic’ for syllabification. That is to say, the default application of the syllabification
rules for simplex words is correct for these combinations as well. In those cases, no
morphological analysis is transferred to the syllabification part of the algorithm. In
our program, an analysis is only returned in the following cases (an internal word is
indicated by W)).

) Wi ends in a non-syllabic segment, and Wi 41 Starts with a syllabic segment

(e.g., infenten, to vaccinate).

(ii) W, ends in a syllabic segment, and Wi 41 starts with a possible syllable-initial
cluster which is not a cohesive cluster (e.g., zee#tje, little see).

(ili) W. ends in one or two non-syllabic segments, and W.  , starts with a non-
syllabic cluster, where the last segment of Wi and the first segments of Wi +1

taken together form a possible syllable-initial cluster (e.g., stads#plan, city map).

Notice that it is not the case that no morphological analysis is computed in these
cases (it is only after such an analysis that the restrictions can be checked). The
mechanism described only diminishes the probability that an erroneous analysis is
sent to the syllabification algorithm by diminishing the overall number of analyses
which is sent.

It is an empirical question which suffixes in Dutch are preceded by a word
boundary. The official word list claims that all suffixes beginning with a consonant
and the suffixes -aard and -achtig overrule syllabification rules. But there may be a
class of unclear cases. One variant of the past participle suffix (-t¢) may be a case in
point. When asked to hyphenate the following words, people tend to hesitate between
s-te (interpreting the boundary before te as a word boundary) and -ste (interpreting it

18 Morphological analysis is only necessary when a dictionary containing information about
the place of these internal word boundaries is not available and for new compounds.
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as a morpheme boundary), with a slight preference for the former: boks-te (boxed),
fiets-te (biked), vors-te (investigated), wals-te (waltzed), verviaams-te (Flemished). It
should be noted that the difference between word and morpheme boundary is not only
motivated by a different effect on syllabification, but also by other phonological
phenomena, e.g., the shifting of word accent and blocking effects on other phonologi-
cal rules.

4.1.3 Implementation of the Algorithm

We added a subject syllabification to the KRS concept word-form. This procedure
computes the syllable boundaries. Sub-problems are delegated to various other pro-
cedures (e.g. primitive-phonemisation and compute-word-boundary, attached to
word-form; find-syllable-boundary, attached to vowel-string, and generate-syllable-
boundaries, attached to the concept consonant-string. The different lists with phono-
tactic data (possible syllable-initial clusters, cohesive-clusters etc.) are implemented
simply as Lisp lists.

4.2 A Phonemisation Algorithm!®

Phonemisation cannot be regarded as a simple transliteration function f: S -> P,
where S is a set containing the alphabet of spelling characters and P the set of pho-
nological symbols. The relation is not isomorphic, it is context-sensitive, and involves
mappings from single spelling symbols to strings of phonological symbols and from
strings of spelling symbols to single phonological symbols. This creates a parsing
problem when the function is applied to a string of spelling symbols.

It is quite common for a single sound to be represented by different spelling
symbols (or sequences of spelling symbols) on different occasions. E.g. phoneme /a/
may be realised in spelling as <a> or <aa> depending on whether it is the nucleus
of an open or a closed syllable. On the other hand, one spelling symbol may
represent different sounds in different contexts. A notorious example to which we
have already referred is grapheme <e>, which can be realised in speech as /e/ (lax
vowel), /e/ (tense vowel) or /d/ (unarticulated vowel, schwa). E.g.

<perforeren> (to perforate) --> /perforeron/.

19 This section is based on parts of Daelemans 1985b.
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In this case, it is a combination of stress and syllable structure information which
decides how the phoneme is represented in spelling.

The parsing problem is illustrated by the transcription of <ng>, which has to
be transliterated to /nvy/ in some cases (e.g. aangeven, to pass) and to /N/, the velar
nasal?0, in other cases (e.g. zingen, to sing). In this case it is morphological struc-
ture (aan#geven versus zing+en) which determines the correct transcription.

Reliable phonemisation can be achieved only by means of a system of context-
sensitive rules, drawing on diverse sources of linguistic information (mainly phono-
logical and morphological, but also syntactic and semantic).

4.2.1 Overview of the Algorithm

The algorithm works in three stages: (i) syllabification and word stress assignment,
(ii) application of transliteration rules, and (iii) application of phonological rules. Fig-
ure 5 provides an overview. Before applying the algorithm, a small on line excep-
tion dictionary with the pronunciation of foreign words and phonologically irregular
Dutch words is checked. In a lexical database as described earlier, the phonemisation
of these words and of regular words can be simply retrieved, and the algorithm
would only have to be used in the case of new word forms.

(i) Syllabification and word stress assignment. For each input word the syllable
structure and a partial morphological structure are computed or retrieved. At the
same time, word stress is looked up in the lexical database.

(ii) Transliteration rules. Spelling syllables are transformed into phonological syll-
ables by means of a set of mappings.

(iii) Phonological rules. Diverse phonological rules are applied to the output of stage
(ii).

The difference between transliteration and phonology, as regards the output of
these stages, roughly corresponds to the (fuzzy) traditional distnction between a
broad and a narrow phonetic transcription. Sometimes there is no linguistic motiva-
tion to treat a particular rule in either (ii) or (iii). Each stage will be described in
more detail in later sections.

20 Our notation of the velar nasal is the only case in which we will deviate from the stan-
dard phonetic notation.
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Figure 5. An outline of the phonemisation algorithm. Black boxes

represent data, white boxes processes. The double arrows indicate which data
are used by which processes. The single arrows indicate the input and output
relations between representations and processes.

Several applications are possible for a phonemisation algorithm:

(i) The construction of a phonological representation of written text is an important
step in the automatic synthesis of speech from printed text. An obvious applica-
tion of such a system would be the construction of a reading machine for the

visually handicapped (see section 8.3).
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@ii)) It can be used as a tool for linguistic research and for teaching phonology (see
section 8.1).

(iii) The algorithm can also be used for the automatic generation of pronunciation
and rhyme dictionaries or to add a level of phonological information to existing
dictionaries (see section 8.2).

(iv) If the program is applied to a large enough text corpus, statistical information
about the frequency of phonemes and phoneme combinations can be obtained.
These data may be helpful in teaching Dutch as a foreign language.

Two restrictions should be kept in mind:

(i) The input text should not contain abbreviations and numbers. These must be
expanded to a pronounceable form first. E.g. 21 should be transformed into
een-en-twintig, and bijv. to bijvoorbeeld (for example). This pre-processing
could be done by a lexical analyser (described in section 8.3).

(ii) No syntactic or semantic analysis is involved. Consequently, the phonological
phrase, which restricts sandhi processes in Dutch, is not present as a possible
domain for phonological rules, and semantic ambiguity cannot be resolved. E.g.:

ververs /vervars/ (painters) versus /varvers/ (to refresh).

In words like these, the correct pronunciation cannot be predicted without semantic
information. Our system will choose one possibility at random in these cases.

4.2.2 The Representation of Phonological Data?!

Few textbooks agree upon an inventory and classification of Dutch phonemes. Espe-

cially the status of /8/, /h/, /N/, semi-vowels and diphthongs is much debated, and

different sets of distinctive features are proposed for categorising vowels.

Classifications are closely related to the phonological rules which are used. Every

theory tries to make distinctions in such a way that phonemes fall into ‘natural’

classes which can be treated as unities by the rules. E.g., if a set of consonants (say

/1/ and /r/) always feature in the same rules in the same way, a class liquids can be
21 The data presented in this section can only be used when spelling symbols have already

been transformed into phonemes. Le. they can only be used by the phonological rules, not

by the transliteration rules (this distinction is made clear in the next sections). This implies

that some functions must be defined twice: once applicable to graphemes and once to

phonemes. The predicate vowel-p which distinguishes between vowels and consonants is a
case in point.
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created, containing these consonants. Our phoneme inventory is organised so as to
be easily compatible with most formalisms and taxonomies currently in use in Dutch

phonology.

A simple hierarchy is used (Figure 6) to describe the relations between different
phonological concepts.

SEGMENT

CONSONANT VOWEL

PLOSIVE
p

SEMI-VOWEL SHORT-VOWEL DIPHTHONG

' FRICATIVE w s e
k f LiQuip  J

s a LONG-VOWEL gt
¢ NASAL L e

X n a
b r 1 o

) m €
d h o i
g v n * °

2 y

% u

3 2

Figure 6. Hierarchy of Phonological Concepts.

The nodes of the tree refer to types. The branches denote subtype relationships
between types. The phonemes listed are subtypes of the type immediately above them

in the figure.

Consonants are categorised by means of the properties manner of articulation
(plosive, fricative, nasal, ...), place of articulation (bilabial, alveolar, velar, ...) and
voice. The first property is represented in the hierarchy of Figure 6, the other two
are represented by means of features associated with objects (Figure 7). Vowels are
categorised by means of the properties length, manner of articulation (rounded or
not) and place of articulation (front, high, ...). Again, the first property is implicit in
the hierarchy, and the others are represented by means of features (Figure 8).
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Figure 7. Features for Consonants.

The phonological knowledge base is implemented as a hierarchy of KRS con-
cepts with associated subjects. Figure 9 shows the definition of some of the concepts
in the knowledge base.

Programs can access this phonological knowledge base by means of a relatively
independent interface consisting of Lisp predicates and functions in a uniform format.
E.g. (obstruent-p x), (syllabic-p x), (make-short x) etc. These functions should be
interpreted as questions to the lexical database: (obstruent-p x) means ‘Is x an
obstruent?’. The answer can be t (true). nil (false). a numerical value (when a
binary opposition is insufficient, and a gradation should be used), or a special mes-
sage (when a function is not applicable to its argument). E.g. (high-p s) returns
undefined. This is comparable to either ‘irrelevant’ or ‘redundant’ in generative pho-
nology. Table 3 lists the access functions and transformation functions which are

used in our system.

The functions can be computed in any of four ways:
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Figure 8. Features for Vowels.

The information can be implicit in the hierarchy of objects. E.g., phoneme /a/
is defined as an inheritor of the object-type long-vowel, which inherits from the
type vowel, which stands itself in a type/subtype relationship to segment. To
answer the ‘question’ (segment-p a) the program merely needs to check the
hierarchy.

The information can be stored as data associated with an object. E.g. the object
/w/ (an inheritor of the type semi-vowel) has value ‘true’ for the feature round-
ness. To answer the question (round-p w) the program checks if a feature
roundness is specified for /w/, and if so, what the value is of this feature.

The information may be inherited from objects higher in the hierarchy. E.g. the
function (voiced-p a) returns true because the object /a/ is an inheritor of long-
vowel, which is an inheritor of the vowel, which has value true for the feature
voicedness. Note that this feature was not specified explicitly for the object /a/.
In this way default values can be provided. E.g. the type vowel also has as a
feature that it is stressable. All vowels inherit this feature by default. Defaults
can be overruled by specifying the same feature with a different value for the
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(DEFCONCEPT SEGMENT
(A PHONOLOGICAL-OBJECT
(PRINT-FORM (A STRING))))

(DEFCONCEPT CONSONANT
(A SEGMENT
(SYLLABIC FALSE)
(VOICED (A BOOLEAN))
(VELAR FALSE) +3 This is the default

(VOICED-VERSION (A CONSONANT))
(DEVOICED-VERSION (A CONSONANT))))

(DEFCONCEPT NASAL
(A CONSONANT
(VOICED TRUE)))

(DEFCONCEPT CH22
(A NASAL
(PRINT-FORM [STRING "n”])
(VELAR TRUE)) ;3 Overrides default specified in
;3 Concept CONSONANT

@v)

Figure 9. Some KRS-concepts describing knowledge about consonants.

relevant objects lower in the object hierarchy; to the object /d/, the value nil is
specified for the property stressable, although it is a vowel. The value of a
feature of an object is not inherited by its inheritor if it conflicts with a known
value of that feature associated with the inheritor.

Finally, the answer can be computed. The question (obstruent-p k) is answered
by computing a Lisp Boolean function (or (fricative-p k) (plosive-p k)).

At present, the phonological knowledge base distinguishes 41 phonemes (some

of these only occur as the result of assimilation processes) and five diacritics. We list
them in Table 4. This inventory can be altered or extended at will, as can the
hierarchy and the number of access functions. E.g, we could decide to give up the

distinction long versus short for vowels and use tense versus lax instead. Or we
could alter the hierarchy so that voiced obstruents inherit information from their
voiceless counterparts. Changing or extending the knowledge base can be done by
adding or modifying KRS concepts and subjects, but it can also be achieved (in a
more limited way) by changing the Lisp-function interface (by renaming, adding or
removing functions).

The present organisation of the phonological data derives from an eclectic choice

from the opinions of various authors: Collier and Droste (1977), Collier (1981), De
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LISP PHONOLOGICAL ACCESS FUNCTIONS

fricative-p (segment) consonant-p {segment) voiced-p (segment)

plosive-p (segment) obstruent-p (segment) fraont-p (segment)
nasal-p (segment) nasa-liquid-p (segment) back-p {segment}
liquid-p (segment) bilabial-p (segment) high-p (segment)
semi-vowel-p (segment) palatal-p (segment) low-p (segment)

long-p (segment) alveolar-p (segment) round-p (segment)
short-p (segment) velar-p (segment)} syllabic-p (segment)
diftong-p (segment) labiodental-p (segment) stressable-p (segment)
vowel-p (segment) glottal-p (segment)

LISP TRANSFORMATION FUNCTIONS

make-voiced (segment)
make-voiceless (segment)
make-short (segment)
make-Tong (segment)

Table 3. Access functions to and transformation functions of phonological
data.

Schutter (1978), Van den Berg (1978), Van Bakel (1976), Booij (1981) and Cohen
(1961).

4.2.3 Syllabification and Word Stress Assignment

The algorithm used to compute syllable boundaries is described in section 3.3. We
use a lexical database (section 3.5) and a partial morphological analysis system (sec-
tion 3.2) to make possible the correct hyphenation of the whole potential vocabulary
of Dutch; i.e. all existing words and all potential new words which may be formed
by rules of compounding and affixation.22 The syllable is central in this algorithm; it
is the default domain for the application of phonological and transliteration rules.
This approach deserves some explicit motivation.
22 The necessity for the presence of morphological analysis in grapheme-to-phoneme

transliteration systems has recently been argued for the case of German as well (Pounder and
Kommenda, 1986).
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PHONEME INYVENTORY
1 e 2 11 I 1 21 1 L 31 g g
2 y oy 12 E € 22 N n 32 k kK
3 v u 13 A a 23 n n 33 d d
4 o 0 14 6 ey 24 m m 34 t t
5 8 @ 15 7?2 oY 25 6 ¥ 35 b b
6 i i 16 8 o 26 K X 36 p p
7 e € 17 h h 27 v v 37 s [
8 a a 18 w 0w 28 f f 38 Z2 3
9 7 ce 19§ j 29 £ 2z 33 ¢ ¢
16 0 0 286 r r 3B s 3 @ M m
41 J n
Diacritics
42 7 oY
43 8 o“
44 g €t
2 ?

Table 4. Phoneme and diacritic inventory. The first column lists the
concept names, the second column the internal representation, and the third
column the traditional phonetic symbol. E.g., the velar nasal is a concept
named CH22 and with internal representation "N”.

As some important phonological rules have the syllable as their domain, it is at
least necessary to represent it. Consider for example schwa-insertion, a rule which
inserts a schwa (/d/) between a liquid and a nasal or non-coronal consonant. This
rule applies only if both consonants belong to the same syllable. E.g. compare

erg (bad) /erdX/ and melk (milk) /meldk/ (schwa-insertion)

to

er-ge (bad) /eryd/ and mel-ken (to milk) /melkd/ (no schwa-insertion).
A simple pattern matching rule system would fail to make this distinction. Other
rules, like final devoicing, a rule which devoices voiced obstruents in final position,
and progressive and regressive assimilation, are traditionally described as applying to
words or morphemes, excluding their operation at the end of syllables. However,
the following examples show that it would be more correct to define them with the
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syllable as their domain: e.g.

het-ze (smear campaign) becomes /hetsd/ (progr. assimilation), as-best
(asbestos) and anek-dote (anecdote) become /azbest/ and /anegdotd/ (regr.
assimilation) and Cam-bod-ja becomes /kambotja/ (final devoicing).

Although these examples show that syllable structure is necessary, they do not prove
that it is central. The centrality of the syllable is suggested by the following observa-
tions.

(i) The combination of syllable structure and information about word stress seems
sufficient to transform all spelling vowels correctly into phonemes, including
grapheme <e>>, a traditional stumbling block in the design of Dutch phonemisa-
tion algorithms.

(ii) An implementation of our algorithm shows that most phonological rules can be
defined straightforwardly in terms of syllable structure. I.e. rules which are
defined in the literature with the morpheme as their domain, can be redefined
with the syllable as their default domain without producing errors (rules apply-
ing at syllable boundaries also apply at morpheme boundaries).

Not everyone is convinced that it is necessary to consider the syllable as a starting
point for a phonemisation algorithm. For instance, Boot (1984) claims that

‘(...) there is no linguistic motivation whatsoever for a [phonemisation
WD] model in which syllabification plays a significant role (o.c. p. 63) [my
translation WD].’

It is clear from the data presented here that this is not true. His own ‘second gen-
eration’ program uses a set of context-sensitive pattern matching rules and some form
of affix-stripping. No dictionary is present. It is hard to see how his program would
be able to distinguish between word-pairs such as beven (to shudder; no prefix) and
bevelen (to command; prefix be#). They are transliterated respectively as /bevdn/
and /bdveldn/. What is needed to detect affixes is morphological analysis, which
presupposes a dictionary, as was pointed out in 3.3. The output of the syllabification
part of the algorithm is a character string in which internal and external word boun-
daries (# and ##) and syllable boundaries (=) are inserted.

Parallel with morphological analysis, the primary word stress of each word and
of each part of a compound is looked up in the dictionary which is used for morpho-
logical analysis. This information is indicated by an asterisk (*) before the stressed
syllable. Word stress can be computed instead of looked up for compounds.
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Some examples of the output of this stage:

vergelijking (comparison)

#¥ver#ges *lij=king#¥#

een heerlijke appelmoes (a delicious apple-sauce)

#Heent#*heer = lij = ke##*ap = pel#*moes##

herfststorm (autumnal tempest)

##*herfst#*storm##

4.2.4 Processing Syllable Strings

Before discussing the transliteration and phonological rules in more detail, we return
once more to the object-oriented organisation of the phonological data. Every syll-
able in the hyphenated input string becomes an instance of the type syllable (imple-
mented as a KRS concept), which has a number of features (Figure 10 lists these
features, and their value for one particular syllable).

OBJECT-TYPE FEATURES EXAMPLE l
THE SYLLABLE KING ‘f
IN ##VER#GE#LLUKING ## (COMPARISON) ’
SYLLABLE srELLING KNG ‘
IS-CLOSED? TRUE
IS-STRESSED? FALSE
PREVIOUS-SYLLABLE SYL982483
NEXT-SYLLABLE PALSE
EXTERNAL-WORD-BOUNDARY-ON-RIGHT? TRUE
INTEANAL-WORD-BOUNDARY-ON-RIGHT7 FALSE
STRUCTURE P ——
ONSET /k/
NUCLEUS /1/
CODA /n/
AHYME /1g/
TRANSCRIPTION /kin/

Figure 10. Features of the object SYLLABLE and an example.

The value of some of these can be set by means of the information in the input:
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spelling, is-closed? (true if the syllable ends in a consonant), is-stressed? (true if the
syllable carries word stress), previous-syllable (a pointer to the particular syllable
immediately preceding the one being processed), next-syllable (a pointer to the next
syllable), external-word-boundary-on-right? (can be true or false), and internal-word-
boundary-on-right? (can be true or false) are initialised this way. The names of these
features are self-explanatory. Their values are used by the transliteration and phono-
logical rules. For other features, the value must be computed: structure is computed
by means of the value for the spelling feature and the predicate vowel-p, which dis-
tinguishes spelling vowels from spelling consonants. The value for this feature
reflects the internal structure of the spelling syllable: nucleus (the vocalic element of
a syllable), onset (the consonantal part optionally preceding the nucleus) and coda
(the consonantal part optionally following the nucleus). E.g. the structure of the spel-
ling syllable herfst is "h” “"e” "rfst”. As the syllabification part of our algorithm
incorporates a similar segmentation (primitive phonemisation), the structure feature
can be provided a value without computation as well.

The values of the features onset, nucleus, and coda (this time of the phonologi-
cal syllable) are computed by means of the transliteration and phonological rules.
Their initial values represent the spelling, and their final values the pronunciation.
The rules take the values of these features as their input and can change them. The
rhyme of a syllable is nucleus and coda taken together, and the feature transcription
stands for the concatenation of the final (or intermediate) values of onset, nucleus and
coda. A useful metaphor is to envision the onset, nucleus and coda features as
pieces of paper. At first, the spelling is written down on them. Later, the rules may
wipe out what is written down, and write down other symbols. When all rules have
been applied, the pieces of paper can be pushed against one another and the result is
the phonological transcription of the spelling syllable.

Apart from the information specified by features of the object and the phonolog-
ical data discussed earlier (all accessible in a uniform Lisp function format), the rules
use primitive string-manipulation functions to check their conditions and to change the
values of the features. If the transformation from spelling to phonological syllable
has been achieved for all syllables in the input, their transcriptions are concatenated,
and the result is returned.
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4.2.5 Transliteration Rules

An input string is scanned twice from left to right: by the transliteration rules and by
the phonological rules.2® Transliteration rules are mappings of elements of syllable
structure to their phonological counterpart. E.g. the syllable onset <sch> is mapped
to /sX/, nucleus <ie> to /i/, and coda <x> to /ks/. Conditions can be added to
make the transliteration context-sensitive: the syllable onset <c> is mapped to /s/ if
a front vowel follows and to /k/ if a back vowel follows. Here the distinction
between transliteration and phonological rules becomes fuzzy. E.g.

cola /kola/ versus cent /sent/

We have already mentioned that syllable structure and word stress information suffice
to disambiguate spelling vowels. E.g. grapheme <e> when occurring in a stressed
and open syllable becomes /e/, in an unstressed syllable /d8/ (schwa), and in a
stressed and closed syllable it becomes /e/. Some examples (external word boun-
daries are omitted for clarity’s sake):

*cent (closed and stressed) becomes /sent/,

*ne=ro (open and stressed) becomes /nero/,

*lo=pen (to run; closed and unstressed) becomes /lopdn/, and
*ro=de (red; open and unstressed) becomes /rodd/.

Other spelling vowels are transformed in a similar way.

Apart from this mapping, some modifications are necessary to transform spelling
syllables into phonological syllables: e.g. the cluster <ng>, sometimes split into
two parts during syllabification, must be rewritten as one phoneme: *zin=gen (to
sing) becomes /ziNon/. There are about forty transliteration mappings and
modifications.

4.2.6 Phonological Rules

The phonological rules apply to the output of the transliteration mappings. They are

sequentially ordered, but alternative orderings, triggered by arbitrary properties of the

input, can coexist with the default order. This default order can be changed. Each

rule is a subtype of the phonological-rule concept, which, like any rule, has five
23 This is by no means an essential property of the algorithm, transliteration and phono-

logical rule application could easily be done in one pass. The present organisation is only in-
tended to reflect a conceptual (theoretical) distinction between both types of rules.
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features: active-p, application, conditions, actions and examples. An example of the
KRS-implementation of a rule is given in Figure 11.

(DEFCONCEPT SCHWA-INSERTION
(A PHONOLOGICAL-RULE

(ACTIVE-P TRUE) ;3 The rule is turned on
(APPLICATION +; Actually, this subject is inherited
(DEFINITION ;; from the general concept Rule
[IF (>> CONDITIONS) (>> ACTIONS)]1))
(CONDITIONS 33 coda-first and coda-second refer
(DEFINITION ;; to the first and second character

[FORM (AND (LIQUID-P CODA-FIRST) ;; of the coda
(ALVEOLAR-P CODA-FIRST)
(OR (BILABIAL-P CODA-SECOND)
(LABIODENTAL-P CODA-SECOND)
(VELAR-P CODA-SECOND)))1))

(ACTIONS
(DEFINITION
[FORM (CHANGE-CODA
(STRING-APPEND CODA-FIRST
(>> PRINT-FORM OF SCHWA)
CODA-SECOND)) 1) )))

Figure 11. A simplified KRS-concept for the schwa-insertion rule.

Active-p can be true or false. If it is set to true, the rule can be executed. This way,
the effect of the ‘deletion’ or the ‘addition’ of a particular rule can be studied. If a
rule is active, first the conditions specified in the application part of the rule are
checked. This is a Lisp expression which evaluates to true or false. Conditions
mostly consist of checking for phonemes with specific properties in the onset, nucleus
or coda of a syllable, and inspecting the context of the syllable within the specified
domain. If the result is true, the action part of the application feature of the rule is
executed. Actions consist of modifications of the values for the features onset,
nucleus and coda of a particular syllable or its neighbour (changing what is written
on the ‘pieces of paper’). Actions may also involve the triggering of phonological
processes. E.g. in the case of schwa-insertion, a complete phonological process (re-
syllabification) should be triggered. E.g.:

ver=%*berg (to hide) -> (schwa-insertion) -> /vdrberdX/ -> (re-

syllabification) -> /vor=be=raX/
Intermediate values for the features are unrecoverably lost (the output of one rule
serves as the input of the next), unless they are explicitly stored at some specific time
intervals. E.g. we could copy what is written on the pieces of paper each time a rule
has been applied. This way a detailed derivation is obtained.
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If a rule was activated, the conditions satisfied, and the actions undertaken, two
‘book-keeping’ activities occur:
() The name of the rule is entered in the rule history associated with each input
string. This way the derivation of an input string can be traced.

(i) The input-string to which the rule applied is stored in the feature examples of
this rule. This way, interesting data about the operation of a rule can be
obtained.

Some important rules included in the program are listed in Appendix A.8 with a
short description, accompanied by a few examples (computed by the program). A
trace of the derivation was added for each example. The order in which the rules
appear in this derivation for each syllable reflects the order in which they were
applied to that syllable. The numerical value preceding the names of the rules in the
derivation reflects the overall temporal order in which the rules were activated by the
program.

4.2.7 Evaluation of the Program

In Appendix A.4, the result of applying the program to a randomly chosen Dutch
text is demonstrated. The input text (A.4.1), the output of the intermediary
syllabification and word stress retrieval stage (A.4.2), the southern Dutch transcrip-
tion (Flemish, A.4.3) and the northern Dutch transcription(A.4.4)24 are presented.
Figure 12 gives short fragments of these different representations. T<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>