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Chapter 1

Introduction

Grammatical relations (GRs) are interesting from a theoretical as well as from a practical
point of view because they constitute a link between syntax and semantics. In many
cases the surface subject and direct object of a verb correspond to the first and second
argument of the verb’s semantic predicate. If they do not (e.g. in a passive sentence),
the deep grammatical relations determine the argument positions. Temporal, locative and
other adjuncts introduce additional restrictions on the state or event described by the main
verb. The predicate-logic structures that are derivable from GR information can be used
for applications such as Question Answering (see Chapter 7).

This thesis is about finding grammatical relations to verbs in English sentences by means
of a supervised machine learning algorithm. This introductory chapter defines the task
(Section 1.1), introduces the general parsing framework in which the relation finder is used
(1.2), lists the central research questions (1.3) and gives an overview of this thesis (1.4).

1.1 The task

The topic of GRs is closely related to the discussion about the complement/adjunct (C/A)
distinction. Many tests have been proposed for distinguishing complements (like direct
objects) from adjuncts (like non-obligatory temporal expressions), see e.g. Jackendoff (1977,
p.58), Pollard and Sag (1987, p.134), and Meyers, Macleod, and Grishman (1994). However
while the tests work well in most cases, different tests might yield different results for some
problematic cases. Jacobs (1994) argues (for German) that this is due to different concepts
of what complements actually are. He shows that for any pair from a set of seven common
concept definitions there is at least one example that would be classified as complement
by the first definition but as adjunct by the second. Thus “complement” is only a cover
term for a group of concepts, whose extensions do not coincide. In the main part of this
thesis we will not explicitly distinguish complements from adjuncts. Our GRs are based on
the annotations in the Wall Street Journal (WSJ) Corpus of the Penn Treebank (release

1



2 CHAPTER 1. INTRODUCTION

IT). An example of a problematic case for a C/A distinction is the temporal expression
“so long” in the sentence “I don’t understand why it’s taken so long”.! Although it is
obligatory, some theories might consider it an adjunct. Our learner will just assign it the
label “closely related temporal adverb phrase”, with the special tag closely related marking
“constituents that occupy some middle ground between argument and adjunct of the verb
phrase” (Bies et al., 1995), that is without committing itself to either analysis. It is only
in Section 6.2.2 where we map our GR labels to the GRs of another system for comparison
that we have to decide whether a label can best be mapped to a complement or an adjunct
(according to the other system’s definition).

1.1.1 Relations to verbs

In this thesis we deal with GRs to verbs only. There are several reasons for this:

e The verb and its direct dependents are central to the meaning of a sentence. Together
they provide the main logical assertion.

e The distinction between complements and adjuncts of nouns and adjectives is even
more controversial than for verbs.

e Verbs typically have more dependents than nouns and adjectives. Therefore some
dependents will be quite distant from the verb. In addition the form of complements
is different: verbs can take complements that are simple NPs whereas nouns and
adjectives cannot. They typically require of PPs for the same relation. Nouns also
allow NPs in the possessive. It is therefore not clear whether the same information
should be used to find GRs of verbs, nouns and adjectives. It might thus be better
to keep these tasks separate. This is clearly a point for further research.

e The Penn Treebank marks only clausal complements of nouns as complements and
annotates only post-modifying adjuncts of nouns as separate constituents. For ex-
ample the phrase “October 1987” in “the October 1987 global stock crash”? is no
separate constituent and can therefore not be annotated with any function (although
it clearly is a temporal specification of “crash”). This means that the task of finding
GRs of nouns and adjectives that is definable on this material is not comparable to
the task for verbs. Including it would harm overall interpretability of results.

1.1.2 Chunks and heads

In principle GRs to verbs do not only include subjects, objects, temporal adjuncts and the
like but also the relation between an auxiliary or modal and the main verb, as in “will join”.

'From file wsj_1041.mrg
2From file wsj_0700.mrg



1.2. THE PARSING FRAMEWORK 3

Depending on the theory, “join” is the verbal complement of “will” (e.g. in Collins (1997))
or “will” has an auxiliary relation to “join” (e.g. in Carroll and Briscoe (2001)). In any case,
relations of this kind are easier to find than other GRs. Following Abney (1991) (see also
Section 2.4.1.1) we distinguish between chunking and attaching. During chunking, word se-
quences like “will join” or “has not been found” are grouped together into chunks. The GRs
between words within the same chunk are then predictable just by looking at the part-of-
speech (PoS) of the words. For example, for any sequence “modal+infinitive” there will be a
relation such as verbal complement (infinitive,modal) respectively aux(modal,infi-
nitive). There is extensive literature on automatic chunking (reviewed briefly in Sec-
tion 2.4.1.1).

In this thesis we concentrate on GRs between chunks, on which less work has been done.
These are therefore more challenging and also the more important GRs for applications
such as Information Extraction or Question Answering. We define each chunk to have a
unique headword. Thus finding GRs between chunks is equivalent to finding GRs between
(head)words. In summary the task studied in this thesis is to find grammatical relations
between (heads of) verb chunks and (heads of) other chunks in English sentences.

1.2 The parsing framework

Wanting to find GRs between verb chunks and other chunks implies that chunks have
already been found, and labeled with their type (verb chunk etc.). It also suggests that
the relation finder should use this chunk information when performing its task. This fits
the general framework of History-Based Grammars (HBG), which is introduced in Black
et al. (1992). Black et al. (1992) start by noting that humans successfully cope with the
ambiguities of natural language sentences by examining the context. The central questions
are then:

e What exactly is the context?

e How much information about the context of a word, phrase or sentence is necessary
and sufficient to determine its meaning?

In a HBG model, the context is called the history, where “history is interpreted as any
element of the output structure, or the parse tree, which has already been determined,
including previous words, non-terminal categories, constituent structure, and any other
linguistic information which is generated as part of the parse structure”. This even includes
the parse trees of all the sentences preceding the current sentence in a discourse (the
discourse history). Any following parse decision can then, in principle, be influenced by
any piece of information from the history.

Black et al. (1992) implement a generative model, so the part of the history that belongs
to the current sentence contains all the nodes that have already been generated, and all
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the rules that have been used, in the leftmost derivation of the parse tree up to the current
node. However this implementation is not crucial for HBG, and other authors have applied
the term also to non-generative models. For example Collins (1999, p.128) refers to the
bottom-up parser of Ratnaparkhi (1997) as history-based.

In our case the history for the current sentence contains at least all the words in the
sentence and the boundaries and types of chunks. As chunking frequently presupposes PoS
tagging® we will also assume that the history contains the PoS of all the words. Although
this does not exhaust the information that might potentially be useful for relation finding
(e.g. one might want to consider information on coreference resolution, or Named Entities,
or the discourse history) it already constitutes a rich, internally structured input without
any fixed maximum length. Black et al. (1992) use decision trees in order to cope with

this abundance of information. We will use an alternative machine learning algorithm:
Memory-Based Learning (MBL).

1.2.1 Memory-Based Learning

The use of a standard machine learning method for a new task has the advantage that there
are fast, robust, flexible implementations. For example the Question Answering application
described in Chapter 7 requires a fast implementation that can run in a server mode. On
the other hand using a general method also imposes certain challenging restrictions. Like
many machine learners, a Memory-Based Learner is a propositional learner and performs
classification. The propositional format means that each instance (the unit of learning)
has to be represented as a fixed number of feature value pairs. As we saw above, the input
to relation finding is internally structured and does not have a fixed maximum length. One
of the central questions of this thesis is then how to represent the information from the
history in the format that is required by the learner.

Classification means that each instance is assigned a symbolic class label (as opposed to a
numeric class in regression). This requirement is easily fulfilled as GR labels, which are the
desired output, are symbols. MBL can perform multi-class classification (as opposed to
binary classification). This means that we can use a single classifier to find all types of GRs
at the same time. Much recent work shows that combinations of classifiers often perform
better than a single classifier (Dietterich, 1998; van Halteren, Zavrel, and Daelemans,
2001; Tjong Kim Sang, 2002). In this thesis we restrict ourselves to the one-classifier
architecture, which is faster. We perform extensive post-experimental analyses that show
why certain algorithmic settings, additional features or other feature representations work.
These analyses would be much harder if we had to deal with several classifiers that jointly
determine the output.

3See also Section 2.4.1.1 on chunking. Van den Bosch and Buchholz (2002) report on experiments to
find chunks (and function tags) on the basis of the words only.
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In its standard mode, a Memory-Based Learner performs local, mutually independent deci-
sions.? This allows the relation finder to work on incomplete sentences and to extract only
specified GRs of specified verbs if needed. These two properties are crucial for the Question
Answering application in which the relation finder is applied to the “text snippets” that
the search engine Google returns, which are rarely whole sentences. As the application
is online, speed is important. Given a question like “Who invented the telephone?” and
a sentence like “T'wenty years after the News Letter was first printed, the telephone was
invented by Alexander Graham Bell, in 1876.” it would be unnecessary work to determine
the GRs of “printed” or to find more than the (deep) subject and object of “invented”.

In summary we try to perform the task of finding GRs to (heads of) verb chunks using a
single Memory-Based classifier that performs local, independent decisions.

1.2.2 Cascaded Memory-Based Shallow Parsing

Although finding GRs to verb chunks presupposes a tagging and chunking step, we want to
abstract from the properties, and errors, of any particular tagger or chunker for the main
experiments of this thesis (Chapters 4 and 5). We will therefore directly extract the PoS
tags and chunks from the treebank. This procedure is explained in detail in Section 3.1.
For comparison with other systems that either do not assume a separate chunking step or
define chunks differently, and for practical applications, however, we need to rely on an
actual tagger and chunker (see Section 6.1.4).

To make this concrete we assume our GR finder to operate in the context of the cascaded
Memory-Based Shallow Parser (MBSP) that was first suggested by Daelemans (1996) and
first implemented by Buchholz, Veenstra, and Daelemans (1999). It consists of several
modules that are applied in sequence: the Memory-Based Tagger (MBT), see Daelemans et
al. (1996), a memory-based chunker (Veenstra and Van den Bosch, 2000), a memory-based
PNP finder (although nothing hinges on all these modules being memory-based) and finally
the memory-based relation finder. The PNP finder combines prepositional chunks and
noun chunks to what we will call PNP chunks. For example it would combine the chunks
“[pp instead of 1 [yp John 1 , [yp Peter ] and [yp Mary 1” to the PNP chunk
“Upnvp [pp instead of 1 [yp John 1 , [yp Peter ] and [yp Mary ] }".

In this thesis we concentrate on the relation finder. Thus the task is to find GRs to verbs
given the words, tags, simple chunks and PNP chunks.

4Tt is possible to use the output of previous decisions of the same learner as additional features, which
makes decisions dependent on each other (this is implemented for example in the Memory-Based Tagger
(Daelemans et al., 1996)). It is also possible to use beam search to find a decision sequence that is globally
optimal (p.c. Jakub Zavrel). However this does not yield a big improvement, probably because the local
decision is already based on much information, including the right context.
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1.3 Research questions

Given the above task definition, we investigate the following two aspects:

e What information is useful for performing the task? In linguistics a similar
question is often answered with the help of examples. If there is one example of the
task for which some information can be shown to be useful then this information is
deemed useful for the task. By contrast our approach is more quantitative. Certain
pieces of information will be relevant for most examples (i.e. instances) so their influ-
ence will be great. Others are only relevant in rare cases. Although our error analysis
might still uncover these cases, influence of the information on overall performance
will be negligible. Such a quantitative analysis might prove insightful for linguists as
well. It is certainly relevant for people who attempt a similar task with a different
(machine learning or other) technique as even the smartest method needs the crucial
information.

e How can this information best be used by a Memory-Based Learner? As
the definition of “best” depends on the context of the application, there are actually
three subquestions:

— Which information and representation yields the best performance?

— Which information and representation speeds up or slows down the process
(speed-performance trade-off)?

— Which information and representation increases or decreases memory require-
ments of the process (memory-performance trade-off)?

The answers to these questions are interesting for anyone who wants to use a memory-
based relation finder for some application, especially if the type of application (e.g.
online) imposes constraints on speed and/or memory. In selected cases we will not
only look at overall results but also break down performance by individual relations.
This analysis can help to design tailored classifiers for applications that use only a
subset of the GRs.

1.4 Overview

This thesis is structured as follows. Chapter 2 sketches the theoretical background of
grammatical relations: how they are defined, what phenomena are described by them and
how they are annotated in treebanks. It also reviews work that is related to determining
GRs. The review shows that diverse types of information are relevant to the task and
that this information can be represented in different ways. It thereby provides a point of
reference for our own experiments on this topic. Sections 2.4.3 and 2.4.4 specifically review
other work on GR extraction.
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Chapter 3 describes the original Penn Treebank data and how we extracted chunks, heads
and GRs from it. This conversion is complex because this information is not explicitly
contained in the treebank. The second part of the chapter explains the general set-up for
the experiments in the following two chapters, which form the core of this thesis.

Chapter 4 introduces the MBL algorithms that are used in this thesis and explains the
various parameters. The second part of the chapter applies these algorithms with different
parameter settings to the GR data. The most interesting improvement over the default
setting is achieved through the Modified Value Difference Metric (MVDM) which models
task specific similarity between feature values. Our analyses show that this allows the
algorithm to implicitly learn hierarchies of PoS, syntactic and semantic similarity between
words and a non-linear measure of “distance” in a sentence.

Chapter 5 systematically tries to improve performance and/or speed and memory require-
ments by deleting superfluous features and adding useful new ones and by trying different
representations of the same information. The most interesting new information involves
sequences of PoS or chunks. Representing information from sequences is especially chal-
lenging in a propositional format. We present two possibilities: using MVDM on sequences
regarded as atomic values and using numeric features. We also show how information from
words that are not semantic but syntactic heads can help the learner. Even knowledge
about the absence of such words in a chunk can be relevant.

The first sections of Chapter 6 treat several practical issues. They show that training the
learner with a more fine-grained class definition than is actually needed does not harm
results on a coarser-grained evaluation. Training on material that is slightly different from
test material, however, decreases performance. This is shown by experiments with two
different corpora and with manually annotated versus automatically tagged and chunked
text. In the last section of Chapter 6, the cascaded Memory-Based Shallow Parser is
compared to other systems that also extract grammatical relations.

In Chapter 7, MBSP is integrated into a Question Answering prototype. This application
demonstrates that the performance that can be achieved by the parser is sufficient for
Question Answering when large numbers of documents are available. This is typically the
case on the World Wide Web.

Chapter 8 summarizes the answers to our research questions and suggests future research.
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Chapter 2

Theoretical background and related
work

This chapter gives an overview of work from various subfields of (computational) linguistics
that are concerned with GRs. It serves several purposes:

e It provides the theoretical background for Chapter 3 (Data) by describing the fun-
damentals of phrase structure and dependency structure syntax.

e It introduces many of the phenomena described through GRs, the problematic cases
for these descriptions and the terminology used for both. Many of these concepts
will return in qualitative analyses in subsequent chapters.

e It reviews related work in parsing and subcategorization extraction (amongst others
the two approaches with which we compare our system in Section 6.2). Some ap-
proaches use techniques that are also employed in our Memory-Based Shallow Parser.
Others illustrate alternative approaches.

We briefly describe each method. In overview tables, we focus on the question what tests,
heuristics or pieces of information are used to determine 1) whether there is a GR between
two units (words, chunks or constituents), and 2) what type of GR it is. Question 1) is the
attachment problem. Question 2) is connected to the problem of the complement/adjunct
distinction.

The chapter is divided into six sections, each of which is devoted to a subfield of (compu-
tational) linguistics:

Grammar theories (Section 2.1) introduce formalisms for describing the grammars of
natural languages. They differ for example with respect to whether they treat GRs
as primitives of the theory or as derived from some other representation.
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Grammars (Section 2.2) typically try to give a comprehensive overview of all the phe-
nomena in one language. As GRs are part of the classic inventory of grammar
descriptions, their properties are also described in grammars in detail.

Treebanks (Section 2.3) are corpora in which each sentence has been manually annotated
with its syntactic structure. The most central concept is that of attachment, which is
typically expressed through the tree structure. Depending on the annotation scheme,
different types of GRs are distinguished and marked either implicitly or explicitly.

Parsers (Section 2.4) automatically assign a syntactic structure to (new) sentences. As
present-day parsers are frequently trained and tested on treebanks, they are largely
dependent on the treebank’s annotation scheme. Much knowledge and many tests
that treebank annotators use to determine the structure of a sentence cannot be
automated. Instead it has to be specified explicitly which parts of the information
that is available should be used by the algorithm to make attachment and GR type
decisions.

Subcategorization dictionaries (Section 2.5) list the subcategorization frame(s) for lex-
ical items. The items are at least the verbs, and sometimes also adjectives or nouns.
The C/A distinction is crucial for subcategorization dictionaries as a subcategoriza-
tion frame is a list of the complements that the lexical item can take. Thus the
inventory of complement GRs determines how fine-grained the description of a frame
can possibly be. Adjuncts are only treated insofar as this is necessary to distinguish
them from complements. Subcategorization dictionaries typically have guidelines for
lexicographers for making this distinction.

Automatic subcategorization acquisition (Section 2.6) tries to achieve automatically
what is done manually for most subcategorization dictionaries. Thus most of what
was said about the dictionaries carries over to these automatic methods: the C/A
distinction is crucial, and the inventory of GRs largely determines the number of
frames. As with parsers, one has to specify explicitly on what information decisions
are based.

2.1 Grammar theories

This section describes a limited selection of grammar theories. A lot of other work that
could have been included here has been left out, e.g. Generalized Phrase Structure Gram-
mar (GPSG) (Gazdar et al., 1985), Tree Adjoining Grammar (TAG) (Joshi, 1987) and most
notably the work of Noam Chomsky. However, many of their ideas and formal solutions
return in other theories.
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2.1.1 X syntax

X theory (Jackendoff, 1977) is a refinement of the general system of phrase structure (PS)
grammars. It uniquely defines a head for each constituent, restricts the shape of grammar
rules, and allows cross-category generalizations. With a few exceptions all grammar rules
are of the form X" — (Cy) ... (C;) X" ! (Cj;1) ... (Cy), where X can be a lexical category
like N(oun), V(erb), A(djective) etc. X" is the nth projection of X (the nth bar-level) and
X"~1 is the head child of the rule. According to the same scheme, X"~! itself must contain
a head child X"~2 and so on down to X°, i.e. X, which is a lexical item and the lexical
head of all the X’s above it. The maximal projection of X is called a phrasal category. It
is commonly denoted by XP. X!, X? and so on are also written as X, X or X', X”. All the
C;s in the above rule must be phrasal categories or specified grammatical formatives (like
auxiliaries or complementizers). In principle, the C;s are optional (which is indicated by
the parentheses around them).

Coordination forms an exception to the general X scheme. A coordinated phrase has
the same category and bar level as the conjuncts, and it is unclear what the head is.
Syntactic categories are defined through their values for distinctive syntactic features. For
example the four major parts-of-speech can be distinguished through two binary features.
Jackendoff (1977, p.32) defines verbs and nouns to be Subj+, and verbs and prepositions
to be Obj+ whereas Chomsky (1970) groups verbs and adjectives (V+) and nouns and
adjectives (N+) together. In any case, these features allow generalizations across categories
by defining certain constructions to be possible for all categories that are e.g. N+.

The C;s to the left of the head are called its specifiers, the C;s to the right its complements
(or, together, the complement). Note that this is a different use of the term comple-
ment than in the rest of this thesis. Jackendoff (1977) distinguishes three bar levels and
accordingly three types of complements:!

e Functional arguments. These are subcategorized. Except for the subject, they attach
under X’. Semantically, they are arguments of the head’s predicate. Examples are
direct, indirect and predicative NP object, predicative AdjP, subcategorized AdvP
or QP (quantifier phrase), particle, clausal and PP object.

e Restrictive modifiers attach under X”. They contribute to the main assertion of the
sentence by adding extra truth conditions. Under V", they include AdvPs and PPs
of manner, means, time, instrument, purpose or accompaniment, measure phrases,
QPs, and adverbial and comparative clauses. The attachment of arguments to X’
and of restrictive modifiers to X” means that under the standard X schema, the
former always precede the latter. This in turn means that cases like “John gave the
beans quickly to Bill” and “John told me yesterday that he met Mary” have to be

! Chomsky (1970) assumes only two bar levels, with complements under X and specifiers under X (rules:

X=X Comp; X_—) [Spec,X] X). Adjuncts must then be attached by so-called Chomsky-adjunction through
rules like X — X Adjunct, in which the bar level of the head category stays the same.
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considered extraposition, and represented with coindexed traces (__;) and fillers (S}),
e.g. like
(S (NP John) (V2 (V! (V9 told) (NP me) _ ;) (NP yesterday) (S* that ... ); )).

e Non-restrictive modifiers attach under X"”’. Semantically, they add an auxiliary as-
sertion, one of whose arguments is usually the main assertion. They include sentence

adverbials, sentential appositives, parentheticals, and other subordinate clauses un-
der V" (i.e. S).

Jackendoff (1977, p. 58) also lists some criteria for distinguishing the three types of comple-
ments. Information that is testable against the surface syntax of a single sentence includes
the do so construction, clefting, commas, position in the sentence and order relative to
other complements. Other criteria for complements of verbs refer to obligatoriness, focus
and sentence negation.

In X theory, grammatical functions are defined through configurations in the tree. The
direct object, for example, is the first NP after the head under X’.2 This approach means
that grammatical functions like “temporal adjunct” are not definable syntactically, only
distinctions between different categories and attachment levels are possible. A distinction
like that between direct and predicative object can only be expressed in the subcategoriza-
tion frame of the verb.

The X scheme does not depend on a specific definition of heads. In Chomsky (1986), the
old VP is reanalyzed as IP consisting of an Infl(ection) head which subcategorizes for a VP
and the subordinate clause as CP, with a Comp(lementizer) head that subcategorizes for an
IP. Abney (1987) analyzes the old NP as DP, with a Det(erminer) head that subcategorizes
for an NP and the AdjP as a DegP, with a Deg(ree) head that subcategorizes for an AdjP.
The analysis of PPs as having a P head that subcategorizes for a DP/NP already fits
this new scheme. The new analyses distinguish between lezical heads, which belong to
an open-class PoS (nouns, verbs, adjectives) and functional heads, which are closed-class
(verb inflectional suffixes and modal auxiliaries, complementizers, determiners, adjective
inflectional suffixes and degree particles like too (big), as (big), so (big), prepositions).
Other names for this distinction are semantic and syntactic heads respectively. We will
use these latter names in the remainder of this thesis, as “lexical head” is used to refer to
any head that is a word, in contrast to the head of a rule which might be a constituent.

2.1.2 Dependency syntax

Dependency syntax (Tesniere, 1959; Mel’¢uk, 1988) stands in opposition to phrase structure
syntax. Figures 2.1 and 2.2 show a phrase structure tree and a dependency structure
for the same sentence (adapted from Mel’¢uk (1988)). Whereas PS is concerned with
constituents (the higher nodes in the tree), the categories of constituents (node labels),

2Jackendoff (1977) assumes an obligatory of-insertion rule for direct objects of NPs and ADJPs.
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S
VP
PP
NP
S
VP VP
NP NP NP NP Vv
| | N EZN
Pon V  Pron Prep  Det N  Pron Awx Part

Figure 2.1: A phrase structure tree for a sentence. This is an example only, the constituent
labels do not mean to express any particular theory.

circumstantiative prepositional modificative
predicative @ /%\ predicative auxiliary
She loved me for the dangers I had passed

Figure 2.2: A dependency structure for the same sentence. This is an example only, the
dependency labels do not mean to express any particular theory (1st compl. = 1st completive,
determ. = determinative).

and how constituents can be combined into larger constituents, dependency syntax only
accepts relations (i.e. dependencies) between words as primitives. The arrows, or arcs, in
the figure represent relations. Following Mel’¢uk (1988), they point from the head to the
modifier.®> Instead of head and modifier, governor and dependent are also used. We can
say that the head governs the modifier, and the modifier depends on the head.

In addition to (surface) syntactic dependencies, like those depicted in our example, Mel’¢uk

3Note that other authors (Eisner, 1996a; Krymolowski and Dagan, 2002) use arrows from the modifier
to the head. Although this is confusing, it does not affect the underlying theory or algorithm.
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Py s /\‘ N .
7/ \
/
R /—\ /—\‘ S
What does he need it for ?

Figure 2.3: A non-projective sentence: the link between “what” and “for” (dashed) covers the
root “does”. Labels are not shown.

(1988) also acknowledges morphological and semantic dependencies between words, and
anaphoric and communicative links. Morphological and semantic dependencies often co-
incide with syntactic dependencies, but they do not have to. Agreement for example is a
morphological dependency. The adjective in a German NP reflects the gender of the noun,
the definiteness of the determiner and the case that the verb imposes:

(1) Der kleine Mann lacht. (masculine, nominative, definite)
Ein kleiner Mann lacht. (masculine, nominative, indefinite)
Ich sehe den kleinen Mann. (masculine, accusative, definite)

Syntactically however, the adjective only depends on the noun. In a control construction,
like “He promises her to come”, there is a semantic subject relation between “he” and
“come” without a (direct) syntactic relation. Similarly, there is a semantic object relation
from “passed” to “dangers” in the example sentence in Figure 2.2 while there is no direct
syntactic relation.? This is a case of a non-local dependency (also called long-distance
or unbounded dependency). However, in general, “morphological dependencies are used
to indicate syntactic dependencies. Syntactic dependencies, in turn, generally indicate
semantic dependencies” (Mel’¢uk, 1988, p.118). In contrast to morphological and semantic
dependencies, syntactic dependencies always link all the words in a sentence into one
structure.

A syntactic dependency structure is a connected directed labeled graph. It has exactly one
non-governed node (top node or root) and all the other nodes have exactly one governor.
From this latter requirement and the connectivity it follows that syntactic dependencies
cannot form cycles. Mel’¢uk (1988) does not exclude crossing links. However, he notes that
a sentence is called projective if 1) no arc covers the top node, and 2) arcs do not cross.

He also notes that most sentences are projective. Figures 2.3 and 2.4 show two sentences
that are not projective. Cases in which the best dependency analysis is not obvious include
notorious linguistic problems like coordination, especially with gapping, and multi-word
expressions like compound prepositions and idioms. Although Mel’é¢uk (1988) does not give
an inventory of syntactic relations, example 2.2 shows that there is no complement /adjunct
dichotomy. Rather, different types of adjuncts are identified by different relation labels.
The general claim is that syntactic relations are recoverable from the combined information

4The indirect relation dangers — had — passed points in the other direction.
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John has a better saary than Mary .

Figure 2.4: A non-projective sentence: the link between “better” and “than” (dashed) crosses
several other links. Labels are not shown.

of function words (e.g. governed prepositions and conjunctions, auxiliary verbs), word form
arrangements (word order), prosody (in speech), and inflections (e.g. for agreement).

2.1.2.1 Converting between dependency and phrase structures

To turn a phrase structure tree into a dependency structure (which is roughly what we
do when converting the original treebank data into our grammatical relation format, see
Section 3.1) one first has to identify the lexical head of each constituent. This can be done
by following the projection path. Next, one has to make the implicit GRs explicit. So for
each application of a rule like X" — NP X" one notes a subject relation between the head
of the NP and the head of X”. For each application of a rule like X’ — X% NP ... one
notes a direct object relation between the head of the NP and X°, and so on. Alternatively,
one can use a description of the configuration directly as label, e.g. NP_V"”_V" instead of
subject (of a verb) and V°_V'_NP instead of object (of a verb). Note that one then needs
a special device to make the distinction between direct and indirect objects. Note also
that given PS trees as described in Jackendoff (1977), one cannot distinguish predicative
from non-predicative objects and modifiers can only be distinguished into “PP restrictive
modifier”, “PP non-restrictive modifier”, “ADVP restrictive modifier”, etc. and not into
semantic classes like “temporal modifier” or “locative modifier”. Trace-filler constructions
have to be resolved before the dependencies are computed.

To turn a dependency structure into a phrase structure, we first have to define constituents.
If the sentence is projective, a sequence of a head and its direct dependent(s) and those
dependents’ dependents and so on forms one constituent. We need a convention, based on
the GRs and/or the parts-of-speech of X, to decide whether a structure like Y + X — Z
corresponds to the bracketing (Y X Z )or ((YX)Z)or (Y (X Z)). Next we have to
determine the category of the constituent by looking at the PoS of the head, which yields
the X, and by checking what types of complements or adjuncts are attached, which yields
the bar level. If the sentence is not projective, we have to introduce traces for the crossing
links or introduce discontinuous PS trees (PS trees with crossing branches), see Bunt and
Horck (1996).
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2.1.3 Lexical-Functional Grammar

Lexical-functional grammar (LFG) (Kaplan and Bresnan, 1982) uses two levels of repre-
sentation. In constituent structure (c-structure) context-free rules are used to assign a
phrase structure tree to a sentence. Rules and lexical entries carry functional descriptions
which together define the functional structure (f-structure) of a sentence. The f-structure
alone is the input to the semantic component which derives predicate-argument formulas.

F-structure is a directed acyclic graph and consists of features (e.g. TENSE), symbols as
feature values (e.g. PAST), and semantic forms as feature values (e.g. "give((1 SUBJ), (1
OBJ), (1 OBJ2))’). Some features denote grammatical functions (SUBJ, OBJ, OBJ2).
Grammatical functions are thus primitives of the theory and not defined through phrase
structure. Examples of grammatical functions are SUBJ(ect), OBJ(ect), OBJ2 (second ob-
ject), oblique objects introduced by a preposition like TO OBJ or BY OBJ, COMP (closed
complement like subcategorized that-clause, wh-clause, etc.), XCOMP (open complement
like subcategorized infinitive and predicative object, see below), and the rather generic
ADJ(unct). Semantic forms consist of a predicate and its arguments, e.g. give(z,y, 2).

In Kaplan and Bresnan (1982) grammatical functions denote surface functions. Thus a lex-
ical redundancy rule for passive works by changing SUBJ to BY OBJ and OBJ to SUBJ
to derive e.g. a lexical entry for the passive participle handed from the finite form hand.
However the old SUBJ’s and new OBJ’s value is still associated with the semantic form’s
predicate’s first argument. As it is with these argument positions that thematic roles like
Agent or Patient are associated, the intuition that active and passive constructions of the
same verb roughly mean the same is still captured. Due to this distinction between gram-
matical functions and semantic argument positions, also expletives like “it” and “there”
or parts of idiomatic expressions can have grammatical functions without showing up in
semantic form. Grammatical functions are also used to define predicative verbs and control
verbs. Both subcategorize for an open complement XCOMP, which has no overt subject.

(2) The girl persuaded the baby to go.

persuaded V(1 XCOMP SUBJ) =(1 OBJ)
(1t PRED) = persuade((1 SUBJ), (1 OBJ), (1 XCOMP))’

(3) The girl promised the baby to go.

promised V. (1 XCOMP SUBJ) =(1 SUBJ)
(1 PRED) = *promise((1 SUBJ), (+ OBJ), (+ XCOMP))’

For example the (simplified) lexical entry for the verb persuaded in (2) captures the in-
tuition that the understood subject of the infinitival complement (XCOMP) is identical
to the object of the matrix verb (object control, see the example sentence), whereas for
the verb promised the understood subject is the matrix verb’s subject (subject control).
These two types of verbs are called equi verbs. In raising verbs there is also control of the
understood subject but the controller does not appear in the semantic form of the matrix
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verb. See (4) for an example sentence and lexical entry (all examples from Kaplan and
Bresnan (1982)).

(4) The girl expected the baby to go.

expected V. (1 XCOMP SUBJ) =(1 OBJ)
(1 PRED) = "expect((1 SUBJ), (1 XCOMP))’

2.1.4 Head-Driven Phrase Structure Grammar

Head-Driven Phrase Structure Grammar (HPSG) (Pollard and Sag, 1987; Pollard and
Sag, 1994) adopts a PS analysis of sentences in which the head is of central importance.
Following X, the head determines most of the syntactic properties of its projections. We
saw that in X theory, category symbols were taken as abbreviations for a combination
of syntactic feature values. HPSG carries this approach to its logical conclusion by en-
coding all information in features. Signs, which correspond to words or constituents, are
feature structures. Even the tree structure is encoded in features: a phrasal sign has a
DAUGHTERS feature which contains the signs for all its children. This models immediate
dominance relations between signs. Linear precedence (“which constituent is realized be-
fore or after which other constituent”) is taken to be derived from the information contained
in the feature structure by independent principles (see below).

Features are hierarchically organized. A sign has features for PHONOLOGY, SYNTAX
and SEMANTICS. Semantic features contain information about quantifiers, gender, num-
ber, kinds of pronouns, etc. Syntactic features are divided into local and non-local features®
(binding features; for non-local dependencies). Local features are lexicality (a sign is ei-
ther lexical or phrasal), SUBCAT, which has a list value, and various head features. Head
features are either binary (auxiliary, inverted, predicative) or have symbolic values (major
syntactic category, case, verbal form (finite, infinitival, present participle, etc.), nominal
form (expletive or “normal”), and preposition of PP). The particular value of features for
a given phrase or sentence is derived by unification between the lexical signs, rules and
universal and language-specific principles. For example the locality principle states that
only the information under a sign’s SYNTAX and SEMANTICS feature but not the infor-
mation under DAUGHTERS is accessible to any other sign that wants to combine with it.
This in turn means that information stemming from a sign’s non-head children can only

influence this sign’s syntactic behaviour if this information is unified into the SYNTAX or
SEMANTICS of the head child (from where it is unified into the parent).

The distinction between complements and adjuncts is directly expressed in the feature
structure by having different types of non-head-daughters: complement-daughters, adjunct-
daughters and filler daughters (for non-local dependencies). Pollard and Sag (1987, p.134)
list criteria for distinguishing complements from adjuncts which refer to optionality, syn-
tactic category, semantic type (e.g. manner, durative), linear order and iterability. The

5Similar to GPSG’s head and foot features (Gazdar et al., 1985).
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complements (including the subject in HPSG) are listed under the SUBCAT feature of the
head. Unlike X theory, HPSG allows complements and adjuncts to be sisters, and even
to be interspersed. Constraints on the unmarked relative order of signs are expressed by
referring to a sign’s lexicality, category, discourse function (like FOCUS) and the relative
obliqueness of constituents. Obliqueness of complements is determined by their order on
the head’s SUBCAT list. This order also defines grammatical functions. Thus the least
oblique complement is the subject, the second-least oblique complement is the direct object
and so on. Adjuncts and heads are more oblique than complements. As in the unmarked
case, less oblique constituents have to precede more oblique ones, the typical order of “di-
rect object < indirect object < adjuncts” is captured. Other linear precedence constraints
handle the order of focussed constituents.

2.1.5 Summary

In this section we described the alternative syntactic representations of PS and dependency
structure and how they can be converted into one another. GRs are defined through tree
configurations in X theory, and through obliqueness/order on the SUBCAT list in HPSG
whereas they are primitives of the theory in dependency grammar and LFG. The C/A
distinction is expressed through attachment to different bar levels in X theory, through
occurrence in the semantic predicate in LFG and through the SUBCAT list in HPSG,
while it is not explicitly represented in dependency grammar. We explained the idea of
syntactic and semantic heads, how GRs have been used to encode predicative objects,
passive and control, and HPSG’s locality principle which restricts the features that can
theoretically be relevant for the combination of a head and a dependent. Phenomena like
expletives, idiomatic expressions, multi-word prepositions, coordination, extraposition or
non-local dependencies pose special challenges for theories.

2.2 Grammars

There are many grammars of English, some very general, others tailored to the needs of
e.g. native and non-native language learners. We only describe the grammar of Quirk et
al. (1985) here. It is a very comprehensive grammar, and also the one referenced in the
annotation guidelines for the Penn Treebank, which forms the basis of our experimental
data.

2.2.1 Quirk

The grammar of Quirk et al. (1985) describes many English linguistic phenomena in great
detail. Especially interesting for our purposes is the comprehensive treatment of adjuncts
(traditionally called adverbials), a topic that receives much less attention in most syntactic
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theories than complements. Quirk et al. (1985) distinguish seven semantic types of adjuncts
and many subtypes:

space: position, direction, distance

time: position, duration, frequency, relationship (still, already)

process: manner, means, instrument, agentive (the by-phrase in passives)

respect (as in “With respect to the date, many people are expressing dissatisfaction.”)
contingency: cause, reason, purpose, result, condition, concession

modality: emphasis (certainly), approximation (probably), restriction (only)

degree: amplification and diminution ((not) very much), measure (sufficiently)

All semantic types of adjuncts can be realized by nearly all types of syntactic phrases: NPs,
AdvPs, PPs, verbless, finite and non-finite clauses. Syntactically the (sub)types differ in

their wh-element in relative clauses or questions: where (to/from), (since/till) when,
how (far/long/often/much)

their possible or preferred/unmarked position in the sentence as a whole: e.g. de-
gree adjuncts cannot occur sentence-initially, time adjuncts often occur sentence-
initially, space adjuncts often sentence-finally, adjuncts of modality and degree can
occur sentence-medial, modality occurs rarely sentence-finally. These preferences of
semantic types interact with the syntactic realization, e.g. whereas space adjuncts
in general often occur sentence-finally, PPs indicating position in space (where) are
also often found sentence-initially. Another factor is the heaviness which roughly
corresponds to the length of a constituent. Longer constituents usually contain more
information and often this information is new in the discourse. As adjuncts have more
freedom of movement, their heaviness influences their position more than it influences

the position of complements: e.g. adjuncts found sentence-medial are typically single
word AdvPs.

their order relative to other adjuncts, especially in sentence-final position (in sentence-
initial or medial position, more than one adjunct is avoided). The unmarked order is
respect < process < space < time < contingency. Again, heaviness and the require-
ments of the information focus can change this default. There are also preferences
between subtypes: e.g. for time: duration < frequency < position.

In summary, semantic types and subtypes, syntactic category and heaviness influence the
possible positions of adjuncts, both with respect to the verb and the complements and
with respect to other adjuncts. Conversely this means that the relative surface position
of an adjunct together with its syntactic category should help in determining its semantic

type,

i.e. its function.
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( (SBARQ (WHNP-1 (WP Who))
(SQ (VBD was)
(NP-SBJ-2 (-NONE- *T*-1))
(VP (VBN believed)
(S (NP-SBJ-3 (-NONE- *-2))
(VP (TO to)
(VP (VB have)
(VP (VBN been)
(VP (VBN shot)
(NP (-NONE- %*-3)))))))))
¢ 2N

Figure 2.5: The sentence “Who was believed to have been shot?” in Penn Treebank II an-
notation. The asterisks mark empty elements (traces, with PoS -NONE-). They are coindexed
with their fillers. Function tags after the syntactic category indicate grammatical function. Here,
only subjects carry overt tags (-SBJ). This annotation allows to extract the underlying predicate-
argument structure of the sentence: believe(‘someone’, shoot(‘someone’, who))

2.3 Treebanks

The annotation scheme of treebanks is normally loosely based on some grammar theory.
Of the two treebanks described in this section, the Penn Treebank implements a relatively
pure PS approach whereas the NEGRA treebank uses a combination of PS and dependency
annotation.

2.3.1 Penn Treebank

The Penn Treebank (Marcus, Santorini, and Marcinkiewicz, 1993; Marcus et al., 1994;
Bies et al., 1995) is the largest English treebank and probably the one most widely used in
computational linguistics (e.g. by most of the work in Section 2.4). It is also the basis for
the experiments reported in this thesis. We will therefore describe its annotation scheme
in more detail in a later section (3.1.1). Here we only give a general overview. The Penn
Treebank Project started in 1989. Between then and 1992, 4.5 million words of American
English were automatically PoS tagged and then manually corrected. About two thirds
of the material were also automatically parsed and then hand corrected. The first release
uses a basically context-free PS annotation for parse trees, where node labels are mostly
standard syntactic categories like NP, PP, VP, S, SBAR etc. (cf. Appendix A.2). In 1995
a new version was released that used a much richer annotation including coindexed null
elements (traces) to indicate non-local dependencies, and function tags on the node labels
to indicate the grammatical function of a constituent. Figure 2.5 shows an example.

The parsed texts are from the 1989 Wall Street Journal (WSJ) corpus, and from the Air
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Travel Information System (ATIS) corpus (Hemphill, Godfrey, and Doddington, 1990).
This second release is the basis for the experiments reported in Chapter 4 and following.
A third release came out later using basically the same annotation scheme as the second
but including also a parsed version of the Brown Corpus (Kucera and Francis, 1967). This
data is used for additional experiments in Chapter 6.

The PoS tag set is the same in all three releases. It is based on the Brown Corpus tag
set but the Penn Treebank project collapsed many Brown tags (Marcus, Santorini, and
Marcinkiewicz, 1993). The reasoning was that statistical methods, which were used for
the first automatic annotation and envisaged as potential “end users” of the treebank, are
sensitive to the sparse data problem. This problem comes into play if certain statistical
events (e.g. the occurrence of a certain trigram of PoS tags) occur very infrequently or
not at all in the training data so that their probability cannot be estimated properly. The
sparseness of the data is related to the size of the corpus and the size of the tag set.
Thus given a fixed corpus size, the sparse data problem can be reduced by decreasing
the number of tags. Consequently, the final Penn Treebank tag set has only 36 PoS tags
for words® and 9 tags for punctuation and currency symbols ($,£). These are listed in
Appendix A.1. Most of the reduction was achieved by collapsing tags that are recoverable
from lexical or syntactic information. For example, the Brown tag set had separate tags for
the (potential) auxiliaries be, do and have, as these behave syntactically quite different from
main verbs. In the Penn tag set, these words have the same tags as main verbs. However,
the distinction is easily recoverable by looking at the lexical items.” Other tags that are
conflated are prepositions and subordinating conjunctions (together IN) and nominative
and accusative pronouns (together PRP) as these distinctions are recoverable from the
parse tree by checking whether IN is under PP or under SBAR, and whether PRP is under
S or under VP or PP.2 It should be noted however that most parsers, including MBSP, use
the original (conflated) Penn tags.

The syntactic annotation is guided by the same considerations as the PoS tagging. There
is e.g. only one syntactic category label (SBAR) for that- or wh-clauses and only one (S)
for finite and non-finite (infinitival or participial) clauses although the two types behave
syntactically quite differently. Again the argument is that these distinctions are recoverable
by inspecting the lexical material in the clause’ and again all parsers basically use the
simple treebank categories.

In general only maximal projections (NP, VP, ...) are annotated, i.e. intermediate bar
levels (N', V') are left unexpressed (with the exception of SBAR). In the first release,

6In addition to these 36 simple tags, a word can also get a disjunction of tags if the correct single tag
cannot be determined. This sometimes happens with JJ|NN (adjective or noun as prenominal modifier),
JJ|VBG (adjective or gerund/present participle), JJ|VBN (adjective or past participle), NN|VBG (noun
or gerund), and RB|RP (adverb or particle).

Tt is not clear why the punctuation and currency tags are not conflated then, too.

8Tn practice it is more complicated than this. In small clauses like the italic part in “I see him swimming”
there is an accusative pronoun under S according to the treebank annotation (Bies et al., 1995, p.257).

9The absence of a that complementizer is marked by a special null element.
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the distinction between complements and adjuncts of verbs was expressed by attaching
complements under the VP as sisters of the verb and by adjoining adjuncts at the VP
level. In the second release, both complements and adjuncts are attached under VP. The
special tag -CLR (closely related) “marks constituents that occupy some middle ground
between argument and adjunct of the verb phrase” (Bies et al., 1995). These include
what other theories might analyze as subcategorized PPs or AdvPs. A handful of adjunct
functions (like temporal or locative) is differentiated (see Appendix A.3 for a list of function
tags). Heads are not explicitly marked.

2.3.2 NEGRA

The NEGRA project constructed a treebank for German (Skut et al., 1997a; Skut et al.,
1997b). Although this thesis deals with English only and therefore does not use NEGRA
material, this treebank is described here because it uses an interesting alternative to the
Penn syntactic annotation. This comparison can serve to highlight some of the underlying
design decisions of the Penn Treebank. The Penn Treebank uses a context-free backbone.
Function tags indicate the grammatical function of a constituent and coindexed trace-filler
constructions serve to indicate non-local dependencies. The NEGRA treebank combines
a PS with a dependency grammar analysis (cf. Section 2.1.2). The nodes in the tree
are labeled with syntactic categories whereas the edge labels denote grammatical func-
tions. As branches are allowed to cross, no trace-filler device is necessary for discontinuous
constituents/non-local dependencies. However the structures are still (discontinuous) trees,
i.e. each constituent has a unique parent. Therefore so-called secondary edges are needed
to indicate control constructions and structure sharing in coordinated constructions. Skut
et al. (1997a) describe an algorithm for converting the NEGRA trees into standard phrase
structures.

As no broad-coverage parser for German was available, the first treebank sentences had
to be annotated completely manually (except PoS tags). Later a bootstrap approach was
followed (Brants and Skut, 1998). With more and more annotated material, the annotation
could be automated stepwise. In the simplest case, the annotator indicates which words or
previously built constituents belong to a new constituent and what the new constituent’s
category should be. A Markov model then suggests the function labels, based on the PoS
or categories of the children and the category of the parent. In the next step, the system
also suggests the category label. Eventually, the system can predict the internal structure
of NPs, PPs and APs of limited depth (< 3) by encoding this structure in a set of seven
chunk tags and using another Markov model to predict the chunk tags given the PoS tags.
Thus none of the models uses lexical information. Up to now, 20,602 sentences (355,096
tokens) of German newspaper text have been annotated.”

Some notable features of the annotation include:

08ource: http://www.coli.uni-sb.de/sfb378/negra-corpus/
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e The annotation is rather flat. For example there is no extra level for finite VPs or
SBARs.

e In general, heads are indicated by the HD edge label. However, not every construction
needs a (unique) head. Determiners, adjectives, and nouns in NPs are all marked by
the NK (noun kernel) label. This prevents problems if there is no noun in the NP
that could serve as head. Verbless clauses simply have no head.

e Within coordination, all coordinated constituents carry the edge label CJ (conjunct).
There are special node labels for the parent of coordinated constituents e.g. CVP for
coordinated VPs.

e Punctuation is left unattached, in contrast to punctuation in the Penn Treebank.
See e.g. the question mark in Figure 2.5, which is attached under SBARQ.

e Clear complements like subjects, accusative and clausal objects are marked by their
edge labels (SB, OA, OC). However object and adjunct dative NPs are not distin-
guished (both DA). The general label MO(difier) is used for all adjuncts, but also

includes prepositional objects.

The method for finding GRs that is developed in this thesis has only been applied to data
from the Penn Treebank. However it should also be applicable to data derived from a
treebank like NEGRA. To this end, heads, chunks and GRs would have to be defined. As
heads and grammatical functions are mostly marked explicitly, they should not form a
problem. The concept of chunks is trickier in a language like German (or Dutch) where
premodifiers of nouns can themselves have complements, see (5), and prepositions and
determiners can be merged into one word, see (6).

der auf seine Tochter stolze Vater
(5) the of his  daughter proud father
the father, (who is) proud of his daughter,

(6) am Abend
in the evening

2.3.3 Summary

The previous two sections described two treebanks that differ in certain aspects. In sum-
mary, the Penn treebank uses trace-filler annotations for all kinds of non-local dependen-
cies, whereas the NEGRA treebank mainly uses crossing branches for this purpose and
secondary edges for control and structure sharing in coordinated constructions. Only the
Penn Treebank differentiates between types of adjuncts and between PP objects and PP
adjuncts of verbs. Only NEGRA marks heads explicitly.
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There are more syntactically annotated corpora than the two treated here. In the CGN
project a one million word corpus of spoken Dutch is being annotated in NEGRA-like style.
New edge labels include PC (prepositional object), LD (locative or directional complement)
and ME (measure complement) (Moortgat, Schuurman, and van der Wouden, 2001). In the
SUSANNE project (Sampson, 1995) 130,000 words of the Brown Corpus were annotated
with phrase structures and function tags. In the CHRISTINE project'! a comparable
number of words of spoken English was annotated.

2.4 Parsing

Parsing means assigning syntactic structure to sentences. However, what kind of structure
is assigned precisely depends very much on the underlying grammar or grammar theory,
or, in the case of parsers trained on treebanks, on the underlying annotation scheme. In
addition it also depends on the goal of parsing. Sometimes parsing is done for a specific
application. It might then be that not all the information that one normally finds in a
parse tree is necessary for this application. Instead of full parsing one might then choose
partial parsing (also called shallow or light parsing) which is more efficient in that it only
derives the information that is needed by the application. Applications for which partial
parsing has been mentioned as an alternative to full parsing include terminology extraction,
lexicography, Information Retrieval and Information Extraction (Grefenstette, 1996), text
summarization and bilingual alignment (Argamon, Dagan, and Krymolowski, 1998) and
Question Answering (cf. Chapter 7).

In some applications, the output of parsing is used as the input for a component that builds
a semantic representation of the text. These representations often use a formalism that is
based on predicate logic. Subcategorization and the C/A distinction have a direct connec-
tion to semantic predicate structure, as complements and the subject denote arguments of
the main verb’s predicate whereas adjuncts introduce predicates of their own. The type of
grammatical function determines the position of a complement within the predicate (e.g.
subject is first argument, direct object is second, etc.) and might also determine the precise
way in which an adjunct is integrated into the semantics of the sentence. In applications
there might therefore be a separate step that takes parse trees as input and outputs lists of
instantiated GRs. These lists then serve to build semantic representations.'? Alternatively
we might skip the intermediate full parsing step if our ultimate goal are lists of instantiated
GRs, and extract GRs directly from sentences.

The next four sections describe the four subfields of parsing hinted at above: partial
parsing (2.4.1), full parsing (2.4.2), extraction of GRs from full parse trees (2.4.3) and

Uhttp://www.cogs.susx.ac.uk/users/geoffs/RChristine.html

12Note that this extra step is not necessary in LFG or HPSG-style parsers in which these representations
are built simultaneously with parsing (as f-structure in LFG, or under the SEMANTICS feature in HPSG,
cf. Sections 2.1.3 and 2.1.4).
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direct extraction of GRs from partially parsed sentences (2.4.4). The last approach is the
one taken in the remainder of this thesis.

2.4.1 Partial parsing

This section on partial parsing consists of three subsections: on chunking, PP attachment,
and subject and object extraction. Chunking can either be used in isolation (e.g. for
terminology extraction) or as a first step towards higher level parsing (e.g. full parsing or
direct GR extraction). PP attachment focuses on a difficult subproblem of parsing as a
means to compare various methods. Subject and object extraction occupies an intermediate
position between partial parsing and direct GR assignment. We treat it under the former
here because it does not yield a full syntactic or semantic description of the sentence and
because the problem has frequently been approached with the same techniques as chunking.

2.4.1.1 Chunking

Abney Although Abney (1991) actually describes a full parser, we treat his work in this
section because its major contribution is the introduction of the notion of a chunk and the
idea of chunking as a first step in parsing. This idea is employed in our Memory-Based
Shallow Parser (cf. Section 1.2). Abney cites psychological evidence for the existence of
chunks. They are also related to prosodic patterns.

Chunks are non-overlapping continuous substrings of a sentence. They are defined through
semantic heads.'> Abney follows the CP, IP, DP and DegP analysis (cf. Section 2.1.1) so
for many of his constituents the semantic head is different from the syntactic head. In
practice this means that the main verb is the semantic head of a sentence or of infinitival
or participial clauses, an adjective is the head of an AP, an adverb the head of an AdvP and
a noun the head of an NP or a PP (of the “P+NP” type). Figure 2.6 shows an example of a
sentence split up into three chunks. QPs and APs in NPs and AdvPs in APs and VPs/IPs
are excluded from being chunks of their own as can be seen in the example grammar in
Abney (1991).

Abney’s parser consists of two parts, the chunker and the attacher. The chunker does not
use lexical information. Chunk-internal ambiguity resolution, e.g. the correct bracketing of
compound nouns, is left for a semantic component. The attacher uses lexical information
in the form of subcategorization frames in addition to general heuristics to disambiguate
the attachment. The parser is a non-deterministic LR parser that uses a hand-written
context-free grammar (CFG) and employs a best-first search.

13The root node R of a chunk with semantic head h is the highest node in the parse tree T that has
semantic head h. The syntactic structure of a chunk is the largest continuous subgraph of T that is rooted
in R and that does not contain the root of another chunk. A subgraph of T is not necessarily a subtree of
T as it might exclude some left or right dependents of some of its nodes.
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C‘:Psitting
/Tsitting
/,’// VPsitting
//// VE’S:it:[i?g
//// \PPsuitcase
DI/:)rnan DPgitcase
/Nan NPgitcase

the bald man was sitting on his suitcase

Figure 2.6: A parse tree annotated with semantic heads and split into chunks (at dashed lines):
[ the bald man | [ was sitting | [ on his suitcase ].

Ramshaw and Marcus Ramshaw and Marcus (1995) use Transformation-Based Learn-
ing (TBL), see Brill (1993), to find “baseNPs”, which are defined as “the initial portion of
non-recursive noun phrases up to the head”. Non-recursive here means “NPs that contain
no nested NPs”. Like in Abney (1991), possessive NPs are chunked as shown in (7).

(7) tree: (NP (NP John ’s) house)
chunks: [ John | [ ’s house ]

The learner is trained and tested on material automatically derived from the WSJ. The
most important contribution of the work is the definition of “chunking as tagging” (which is
also employed in the chunker of our Memory-Based Shallow Parser). Ramshaw and Marcus
(1995) assign each word a chunk tag. Possible chunk tags are I, O, and B (henceforth: IOB-
tags), where I means that a word is inside a chunk, O means it is outside of any chunk, and
B means that one chunks ends and another starts between this and the previous word. The
following example shows a sentence with chunk brackets and with IOB tag annotation:

[ This | is [ John | [ ’s house | .
Thisy isp John; 'sg houser .o

(8)

Inconsistent chunk tags can easily be corrected by changing B(etween) after O(utside) to
I(nside).
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Memory-Based Sequence Learning Argamon, Dagan, and Krymolowski (1998) pre-
sent a supervised learning method called Memory-Based Sequence Learning (MBSL) and
use it for finding the baseNPs of Ramshaw and Marcus (1995).! Whereas Ramshaw and
Marcus’s chunker makes decisions about elements (word/PoS tag pairs), namely which IOB
tag to assign, MBSL makes decisions about sequences (of PoS tags), namely whether or
not they are an instantiation of the target concept (here: baseNP). Like all memory-based
approaches, it keeps the complete training material in memory, and derives test decisions
directly from it. Given a test sentence, represented as a sequence of PoS, MBSL scores
each subsequence (called a candidate) by computing its similarity to the training sequences.
Once all candidates are scored, the final chunk division of the sentence is determined by
recursively accepting the highest scoring candidate and removing all candidates that would
overlap with it (as chunks have to be non-overlapping). The most important points of the
method are that it uses (sub)sequences as basic units and that it does not use lexical
information.

Munoz et al. Munoz et al. (1999) introduce another supervised learning method and
apply it to the baseNP and the subject-verb task (the latter is discussed in Section 2.4.1.3).
The learning algorithm SNoW (Sparse Network of Winnows) takes binary input vectors
(one binary feature for each word and for each tag) and produces an output vector in which
each component represents the activation (roughly: the amount of evidence) of one target
node. Muiioz et al. (1999) try two different architectures. In the first, IOB tags are used.
There are two classifiers, each with three target nodes (for I, O, and B). The most highly
activated target node for each instance yields the final decision of this classifier. The two
classifiers are chained, i.e. the second classifier takes the output of the first as extra input
(in addition to the words and PoS).

In the second architecture, opening and closing brackets are predicted directly instead
of IOB tags. Again chaining is used: the closing bracket classifier takes the predictions
of the opening bracket classifier as input.'® Predicted brackets are assigned a confidence
value. The final bracket prediction is the combination of non-overlapping pairs with the
highest sum of confidence values. The most interesting contribution of the work lies in this
algorithm for matching brackets.

Li and Roth (2001) show that a chunker based on the architecture described above has a
better performance on the chunking task and is more robust when presented with lower
quality data than the state-of-the-art full parser of Collins (1997).

Veenstra, Tjong Kim Sang et al. Veenstra (1998) describes a chunker which uses
the memory-based algorithms IGTree and IB1-IG (explained in Sections 4.1.1.2 and 4.1.2)
to assign IOB tags for baseNP detection. Chaining helps for IGTree but not for IB1-1G.
Daelemans, Buchholz, and Veenstra (1999) introduce a similar but unchained chunker for

14 Application to subject-verb and verb-object pair extraction is discussed in Section 2.4.1.3.
5 Unfortunately, nothing is said about the precise form of these features.
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VP VP VP
NP
V. NP, PP V. NP, PP V. NP, PP
PN PN PN
P NP, P NP, P NP,

Figure 2.7: The PP attachment problem represented graphically. Given the partial structure
at the left, decide whether the full structure should be like in the middle or at the right.

NP and VP chunks.'® Tjong Kim Sang and Veenstra (1999) compare several variants of the
IOB tag representation (e.g. marking all chunk-initial or all chunk-final words by a special
tag) to an opening/closing bracket representation for baseNPs, using IB1-IG, chaining and
classifier combination. The original IOB variant performs best but differences to other
formats are not significant.

Many groups have participated in the Computational Natural Language Learning (CoNLL)
2000 shared task of chunking which involves ten types of chunks (the same as in this
thesis; see Tjong Kim Sang and Buchholz (2000) for an overview). The best systems
all use combinations of classifiers, a possibility that we do not pursue in this thesis (cf.
Section 1.2.1). Veenstra and Van den Bosch (2000) describe an entry using only a single
IB1-IG classifier but optimizing certain algorithmic parameters (described in Section 4.1.1).
We use their findings for MBSP’s chunker (see Section 6.1.4).

2.4.1.2 PP attachment

PP attachment is a particularly difficult subproblem of parsing and a benchmark task for
machine learning systems for Natural Language Processing. In its most common formu-
lation, a learner is given the partial structure as in the left part of Figure 2.7 and has to
decide which of the two alternatives (middle and right) is the correct full structure. Note
that this does not say anything about the C/A distinction. The PP can be a complement
or an adjunct of the verb, or a complement or an adjunct of the noun.

Hindle and Rooth (1993) describe a system that tackles the PP attachment task using
statistics on co-occurrence of two bigrams: the verb (V) and the preposition (P), and
the head of the first NP (N;) and the preposition (P). Ratnaparkhi, Reynar, and Roukos
(1994) apply a Maximum Entropy (ME) model (Lau, Rosenfeld, and Roukos, 1993) to the
same task; their model can use n-grams (n < 4) of the four headwords V, Ny, P and N,
(the head of NP,, i.e. the PP’s semantic head). All headwords are assigned a class, and

16The IOB scheme can easily be extended to more than one type of chunk by having tags like I-NP,
I-VP, B-NP, etc.
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classes are ordered in a binary hierarchy, using Mutual Information clustering. Each word
is then associated with a bit string that encodes the path from the root of the hierarchy to
the word’s class. The ME model can then use the values of the individual bits in the bit
strings of the four headwords (V, Ny, P, Ny) as additional features. Using only the class
information performs about 2% better than using only words. Using both helps for one
corpus (Wall Street Journal) but not for the other (Computer Manuals).

Ratnaparkhi, Reynar, and Roukos (1994) compare their model to the performance of expert
treebankers on WSJ material. In one setting the treebankers had to make their decision
on the basis of the four headwords alone. They scored 10% better than the system (88.2%
vs. 78.0% accuracy). In another setting the humans could read the complete sentence.
Their performance then increased by another 5%. This shows that there must be useful
information in the rest of the sentence.

Most of the subsequent work on the PP attachment task uses the same four headword
features (Brill and Resnik, 1994; Collins and Brooks, 1995; Merlo, Crocker, and Berthouzoz,
1997; Zavrel, Daelemans, and Veenstra, 1997). Collins (1999) notes that ignoring the Ny
feature leads to a 1.1% decrease in performance in his PP attachment experiments. Note
that the learning task described above is only a subset of the general PP attachment
problem. For example, the same ambiguity arises in a context of “V PP PP”  and in
general there might even be other attachment sites for the PP outside the VP. In addition,
the attachment of subordinate clauses poses problems similar to PP attachment (Yeh and
Vilain, 1998).

2.4.1.3 Subjects and objects

Grefenstette Grefenstette (1996) describes a cascade of finite-state transducers (FST)
to perform what he calls “light parsing”. The input to the system is automatically PoS
tagged text. The first transducer inserts markers for the beginnings and ends of noun and
verb groups (e.g. [VC VC]). No formal definition of noun and verb group is given but the
examples suggest that verb groups correspond to sequences of Abney-style verb chunks
e.g. “[VC did not appear to affect VC]” whereas noun groups are basically noun phrases,
i.e. in contrast to noun chunks they can contain coordinated NPs and include arguments
and postmodifiers. In addition, a preposition preceding an NP is also included in the noun
group. The second transducer marks the heads of noun and verb groups. Within noun
groups, it distinguishes nominal heads of NPs from those of PPs, within the verb group,
it distinguishes active, passive and copula heads. In addition, non-finite verbs in noun
groups are marked as past or present participles or infinitives. In the case of coordination,
multiple heads are allowed. The third and last transducer extracts surface subject-verb
pairs.

Ait-Mokhtar and Chanod Ait-Mokhtar and Chanod (1997a) describe a similar FST
system that can also recognize (limited) recursive structures and more grammatical func-
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tions in French text. The input is again PoS tagged text. Simple groups (AP, AdvP,
infinitival and present participle verbal chunks) are matched by single regular expressions.
For more complex groups (NP, PP) potential beginnings and ends are marked first. These
are then paired into definitive boundaries by choosing the longest possible sequence that
does not include another potential end. The most complicated case, verb groups, which
can be recursive, uses different kinds of begin markers to indicate different degrees of cer-
tainty. Sure beginnings are paired to ends first. In addition, verb group assignment builds
on the previously found NPs, APs and PPs. After group finding (chunking), grammatical
functions are assigned. No complete list of functions is given, but subject, direct object,
PP objects and verb modifiers are mentioned.

Aft-Mokhtar and Chanod (1997b) basically describe the same system as Ait-Mokhtar and
Chanod (1997a) but explain grammatical function extraction in greater detail and con-
centrate on subjects and objects. These are recognized in two steps: first groups/chunks
are marked as subjects or objects in isolation. This is called function tagging. Next it
is decided which is the subject or object of which verb (or verbs, in case of verb or VP
coordination). The system can handle limited recursion, as in “[VC L’usine, [VC que le
ministre devrait VC| [VC implanter VC] a Eloyes, représente VC] ...”. To do this within
the finite state calculus, verb groups at different levels of embeddings are matched by dif-
ferent regular expressions. Subject-verb and object-verb pairs are then only extracted from
the same level. The main difficulties concern subjects and objects of embedded sentences
or with coordinated verbs. Other phenomena treated include inverted subjects and relative
clauses.

Memory-Based Sequence Learning, Munoz et al. Argamon, Dagan, and Kry-
molowski (1998) and Munoz et al. (1999) also applied MBSL and SNoW to the task of
finding subject-verb (SV) pairs. Both use the same data set, which was extracted from the
WSJ corpus using the tgrep tree extraction script (Argamon, Dagan, and Krymolowski,
1998). Argamon, Dagan, and Krymolowski (1998) also report on extracting verb-object
(VO) pairs. SV pairs are annotated as non-overlapping substrings of a sentence, from the
beginning of the subject noun phrase up to and including the first non-modal verb. VO
pairs extend from the main verb to the head of the object. Thus in contrast to the task
definition underlying the previously discussed work, heads are not explicitly extracted,
pairs cannot be nested, subjects cannot be inverted, objects cannot precede the verb (as
they do in relative clauses), and only one relation is extracted in cases of coordination.
In addition, training as well as test set contain the traces from the treebank annotation.
Argamon, Dagan, and Krymolowski (1999) also include results without the traces, which
are worse than the original ones, especially for VO extraction.

Krymolowski and Dagan (2000) and Dagan and Krymolowski (2002) present a composi-
tional extension of the algorithm in which already found NP and VP phrases (not only
chunks) contribute to NPs or VPs of a higher level. However this approach has not been
tested on the old SV/VO data. Krymolowski and Dagan are currently working on apply-
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ing this method to general (unlabeled) dependency extraction (Krymolowski and Dagan,
2002). We compare MBSP and MBSL for dependencies in Section 6.2.1.

Daelemans et al. Daelemans, Buchholz, and Veenstra (1999) describe a memory-based
system that extracts also embedded, inverted and coordinated SV and VO pairs. These
relations are defined as pairs of headwords, not sequences. The system first applies the
Memory-Based Tagger to text and then a memory-based chunker (using either IGTree or
IB1-IG) that finds NP and VP chunks. Finally SV and VO relations are predicted for
pairs of a VP and another chunk, again using IGTree or IB1-IG or a combination of both.
Prediction is only attempted for pairs that have at most one other VP chunk between them
(but evaluation is on all pairs).

2.4.1.4 Summary

This section described work on chunking, PP attachment, and subject and object extrac-
tion. The information that was used to solve these tasks is rather simple (see Table 2.1).
Chunking is mainly done on the basis of PoS tags and/or words. Depending on the ar-
chitecture the algorithm might also use chunk annotation that it assigned in earlier steps
(TBL, chaining). Only limited local context is used, but actual context size differs. Dif-
ferent systems use different types and definitions of chunks/groups and their heads. Work
on PP attachment mostly uses the four headwords. The P and Nj features correspond to
the syntactic and semantic head of the PP respectively. Ratnaparkhi et al. introduce a
bit string encoding of word classes. Chunking might or might not be used as a first step
towards subject and object extraction. Grefenstette is the only one to distinguish various
verb types. Only Daelemans et al. use a distance measure. The following phenomena
constitute problematic cases for chunking and subject and object extraction: possessives,
coordination, inversion, embedding and non-local dependencies.

2.4.2 Full parsing

Full parsing has been studied for decades and there is a vast amount of literature. In this
section we concentrate on recent trained, lexicalized parsers, as these are most comparable
to our parsing framework. Most of these parsers are also trained and tested on the Penn
Treebank (like ours) and all of them are probabilistic (unlike ours). Probabilistic parsers
assign probabilities to parts of parses. The probabilities of the parts are then (usually)
multiplied to compute the probability of the parse. The parse with the highest probability
is returned as the parse of the sentence. Models differ as to how they split up the parse
into parts and what information is used to condition the probabilities on.

One of the simplest probabilistic models is a Probabilistic Context-Free Grammar (PCFG).
In this case, the parse is a PS tree. The parts of the parse are all the instances of rules used
to derive the tree. The rule probability is conditioned on the left-hand side of the rule,
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| Reference | Method | Modules | Information
Chunking
Abney 91 LR parser, | chunker, (attacher) | PoS, structure built by prev. rule applications,
hand-written (chunks and subcategorization for attacher)
CFG

Ramshaw ’95 TBL chunker word, PoS & prev. assigned IOB tag of current

and 3 left/3 right context words

Argamon ’98 MBSL chunker candidate PoS sequence, 3 left/3 right context

PoS

Muiioz ’99 SNoW first and second | word, PoS & prev. assigned IOB tag or “[” of
level chunker current and 3 left/3 right(?) context words

Veenstra 98 MBL first and second | word, PoS & prev. assigned IOB tag of current
level chunker and 2 left/1 right context words

Daelemans ’99 MBL chunker word & PoS of current and 5 left/3 right con-

text words
PP attachment

Hindle 93 co-occ. stat. V, Ny, P

of bigrams

Ratnaparkhi ’94 | MaxEnt V, Ny, P, Ny, bit string encoding of word

classes
treebankers only V, N;, P, N» or whole sentence
Subject-Verb/Verb-Object Extraction

Grefenstette '96 | FST NP/VP  grouper, | PoS, beginning/end of noun/verb groups, verb
head marker, SV | types (active, passive, copula; present/past
extractor participle, infinitive)

Ait-Mokhtar '97 | FST grouper, function | PoS, beginning/end of various groups, recur-
tagger, SV/VO | sion level
extractor

Argamon ’98 MBSL SV/VO extractor candidate PoS sequence, 3 left/3 right context

PoS, (traces)

Muiioz 99 SNoW first and second | word, PoS & prev. assigned IOB tag or “[” of

level SV extractor | current and 3 left/3 right(?) context words,
(traces)

Daelemans ’99 MBL (tagger), NP/VP | headword & head’s PoS of VP chunk, other
chunker, SV/VO | chunk and its 2 left/1 right context chunks,
extractor distance (in chunks) between VP and other

chunk, other intervening VP chunks, interven-
ing commas

Table 2.1: An overview of the partial parsing work described in this section. The last col-
umn shows the information on which the parser bases its decision (co-occ. stat. = co-occurrence
statistics, prev. = previously).
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i.e. the parent category. All the parsers described in this section improve upon the simple
PCFG model. In particular, they are all lexicalized, mostly by conditioning probabilities
on words.

2.4.2.1 Black et al.

As explained in Section 1.2, Black et al. (1992) introduced the concept of history-based
grammars (HBG) in which all the information in the history (previously parsed sentences,
read words and built-up structure) can influence every following parse decision. To prevent
their generative probabilistic parser from suffering from too sparse data, Black et al. (1992)
suggest training decision trees on the parse decision problem and using the equivalence class
of the history under the decision tree as conditioning information. For practical reasons,
they did not implement the full model. The system’s history only contains information
from the current node and its immediate and functional parent. The immediate parent
is the constituent that immediately dominates the current node C. The functional parent
is the lowest ancestor that has a different syntactic category than C.!” Five features are
associated with each node and only for the prediction of one of them is the decision tree
approach used.

The features are the syntactic category, the rule, the semantic category and two lexical
heads. Nothing much is said about the semantic category (there are about 50, they are
assigned manually and they seem to encode (at least partially) domain-specific knowledge).
“The primary lexical head H; corresponds (roughly) to the linguistic notion of a lexical
head. The secondary lexical head Hs has no linguistic parallel. It merely represents a
word in the constituent besides the head which contains predictive information about the
constituent.” For the PP in their example, the primary head is the head noun of the PP,
and the secondary head is the preposition. For the NP, the primary head is again the head
noun, and the secondary head is the determiner. So it seems that the two heads correspond
to the syntactic versus semantic heads proposed in linguistic theory.

Each feature is encoded in a bit string. Bit strings for syntactic and semantic categories
and rules have been assigned manually, those for the words (the heads) are derived by
automatic clustering. The parser uses a manually developed unification grammar and is
tested on a computer manuals treebank.

2.4.2.2 Magerman

Magerman (1995) describes SPATTER (Statistical PATTErn Recognizer), a bottom-up
parser that uses probabilistic decision trees. Each node in the tree carries four pieces of
information: the headword, the head’s PoS, the syntactic category (not for preterminals)

"In many cases the two parents are identical but with unary rules like N2 — N1, the immediate parent
of N1 is N2, but the functional parent might e.g. be a VP. Black et al. (1992) do not mention this, but the
parent distinction might also be useful for coordination.
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and the “extension”. The extension is similar to the IOB tags in chunking. There are
five different values: for a first child of a constituent, for a last child, for any child that is
neither first nor last, for a single child, and for the root node. There is one decision tree
model to assign these extensions and another one that decides about the syntactic category
of new nodes. PoS tagging is done by a third decision tree model.

SPATTER is the first parser that was trained and tested on the WSJ Corpus. Magerman
also introduced the head table, which determines the head child of each rule and thus,
when applied recursively, the head of a constituent.'® For example, the preposition is the
head of a PP and the leftmost verb (even a modal or auxiliary) or infinitival marker to is

the head of a VP, S or SBAR.

2.4.2.3 Eisner

Eisner (1996b) describes several models for probabilistic dependency parsing.'® The depen-
dency structures are required to be projective, and dependencies are unlabeled. However,
as the words are assigned parts-of-speech, Eisner sometimes talks about an NN-VB de-
pendency, for example. He also claims that the same model could be used with labeled
dependencies. The dependency structures are derived semi-automatically from the WSJ
corpus. Sentences with coordination are excluded.

Eisner’s way to determine heads is partially different from Magerman’s and Collins’s. For
example, he considers the main verb the head of the verb phrase. He also “unflattens”
some treebank structures by introducing extra constituents for sequences of proper nouns,
common nouns, numbers or for the dollar token followed by a quantifier phrase. In addition,
he automatically refines some PoS tags, by marking auxiliaries, premodifiers of nouns, and
participial postmodifiers of nouns, and by distinguishing complementizers from prepositions
(cf. our discussion of the Penn Treebank tag set in Section 2.3.1). He also uses two coarser
versions of the tag set (“short” and “tiny” tags, with 22 and 7 tags, respectively) in
the back-off probabilities. For example, both JJR and JJS (comparative and superlative
adjective) are conflated to “adjective”. Unknown words are “attenuated”, i.e. replaced by
a symbol that indicates some morphological properties of the word (digits, capitalization,
last two letters, length). We will not go into the details of the three (Eisner, 1996b)
respectively four (Eisner, 1996a) probabilistic models that Eisner compares.

2.4.2.4 Collins

Collins (1996) also uses a probabilistic dependency parser. The dependency labels are
explicitly derived from the syntactic labels on the PS trees of the WSJ. A label is a
trigram consisting of the category (or PoS) of the head, the category of its parent and the
category (or PoS) of the dependent at the level where attachment occurs. Dependency

18See http://www.research.att.com/ mcollins/papers/heads
YEisner (1996a) is a more detailed technical report.
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structures are thus projective. Collins uses a modified version of Magerman’s head table.
For example the complementizer, not the verb is the head of an SBAR. This models the CP
analysis (cf. Section 2.1.1). The labeled dependency output is mapped back to treebank
trees for evaluation. Parsing is separated into three steps: tagging, NP chunking and
dependency finding, where each step can use the output information from the previous
steps (the history).

The NP chunker uses a probabilistic variant of IOB chunking with five tags (Begin, Inside,
Between, End, Outside) instead of the minimal three. After chunking, all non-headwords
of chunks are ignored. This reduces the set of possible dependencies to be considered.
The same technique is used in our Memory-Based Shallow Parser. The dependency model
conditions on words, PoS and the “distance”, which combines information about the rela-
tive order (does the dependent precede or follow the head), adjacency, presence or absence
of another verb between head and dependent, the number of commas (0, 1, 2, > 2) be-
tween head and dependent and whether there are commas in special positions (immediately
preceding or following the head respectively dependent).

Collins (1997) introduces a generative version of Collins (1996) which uses Oth order Markov
processes. Generation of children starts with the head child and continues with the leftmost
right sibling of the head, the second leftmost right sibling, and so on, until the special
STOP child is predicted, which prevents generation of further children to this side. The
left siblings of the head are then predicted in a symmetric way, from innermost to outermost
(STOP).

The generative model just described is called Model 1. Its output are simple PS trees.
Model 2 makes the complement/adjunct distinction by adding a tag -C, respectively -A,
to the category labels of constituents that function as complements, respectively adjuncts.
It does so by probabilistically generating a left and right part of a subcategorization frame
for each head. Complements that are generated are deleted from the frame. Generating
complements that are not in the frame is illegal, and the frame must be empty when the
STOP child is generated. Model 3 of Collins (1997) resolves NP extraction from SBAR
relative clauses? by distinguishing non-terminals which contain a gap from those without,
by probabilistically propagating the gap through the tree (similar to GPSG) (Gazdar et
al., 1985) and by discharging it if a trace is generated.

Collins uses special features for coordination and punctuation and introduces an additional
syntactic category, SG, for clauses with an empty subject (mostly infinitives). The latter
enables the algorithm to learn that infinitives behave syntactically very differently from
finite clauses.

”

20 An example for non-NP extraction is “This is the place where; I met him _ ;7. Collins’s example for
an infinitival relative clause is “I called a plumber; _ ; to fix the sink”. Traces can also indicate control
relations like in “The visitor; promised (him) _ ; to return.”
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2.4.2.5 Charniak

Charniak (1995) describes a method for lexicalizing a PCFG. It consists of two parts:
defining heads and conditioning probabilities on heads (amongst others). The definition
of heads is given only informally but seems to work similarly to Magerman’s head table.
The model can represent PP attachment preferences by using the head of the grandparent’s
node (V or Ny) as additional conditioning information. Probabilities are collected from text
parsed with a CFG induced in earlier work. Charniak (1997) also uses a lexicalized PCFG.
The grammar and the probabilities are directly induced from the WSJ treebank. Classes
of words (acquired by clustering) are used as a back-off term for the words themselves.
This is similar to the use of (manually assigned) categories in Black et al. (1992).

Charniak (1999; 2000) describes a new “maximum-entropy-inspired” model for condition-
ing and smoothing that easily allows for testing more conditioning events. Charniak (1999)
uses a “Markov grammar” instead of a “treebank grammar”. This is the same technique
as that used by Collins (1997). However, whereas Collins conditions the generation of
siblings only on the head child, Charniak experiments with different orders of Markov
grammars. In a third order Markov grammar, which proved to work best, the generation
of a left, respectively right, sibling is conditioned on the three previously generated left,
respectively right, siblings (amongst other information). Two other subtle differences with
other parsers are the explicit marking of auxiliaries and of coordinated structures.

2.4.2.6 Ratnaparkhi

Ratnaparkhi (1997) describes a statistical parser based on Maximum Entropy models (Lau,
Rosenfeld, and Roukos, 1993). Like Magerman’s, it is a bottom up parser. It consists of
three separate modules which are applied in sequence: a tagger, an NP chunker, and
a sort of shift/reduce parser. Instead of a simple shift, the parser determines to which
category the unit (word or chunk or constituent) on the top of the stack should eventually
be reduced. This is called BUILD. After that, it decides whether to reduce now to the
previously determined category, or to shift the next unit, i.e. wait for more children. This
is called CHECK.

2.4.2.7 DOP

In contrast to all the other parsers in this section, the Data Oriented Parsing (DOP) model
(Scha, 1992; Bod, 1992) does not restrict the possibility of probabilistic (inter)dependencies
to fixed, local configurations in a tree (e.g. parent/child, or sibling/sibling). The basic unit
to which probabilities are assigned are subtrees. The parse trees in the training treebank
are split up into subtrees in all possible ways which do not violate the unit of a rule. The
unsmoothed probability of a subtree T with root R is the frequency of T (in the training
data), divided by the total frequency of all subtrees with root R. For parsing, subtrees can
be combined into larger trees by substituting a subtree with root X on another subtree
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with leaf X. These subtrees then define one derivation of the larger tree. The probability
of a derivation is the product of the probabilities of its subtrees. As a full tree can have
more than one derivation, the probability of a full tree is the sum of the probabilities of
its derivations. Note that in all other parsers, each tree had just one possible derivation.
Subtrees can be lexicalized, i.e. they contain one or more words, or unlexicalized, i.e. they
contain only non-terminals.

Bod (2001) shows that in general, subtrees as deep as fourteen levels (deeper trees were not
tested) still contribute to parse performance. Only excluding lexicalized subtrees which
contain more than twelve words or unlexicalized subtrees deeper than six levels increases
performance. Excluding subtrees with more than eight non-headwords?' at least does not
influence performance negatively. These results show that structural and lexical depen-
dencies span many more levels than other parsers assume. However they do not tell us
whether all words in all constructions have this property or whether this is only a limited

group.

2.4.2.8 Summary

As Table 2.2 shows, most full parsers in this section base their decisions on heads, PoS,
(linear order of) chunks and/or syntactic categories. Heads are syntactic heads for some
constituents and semantic heads for others, only Black et al. (1992) always use two types
of heads. They also use a bit string encoding of the head (and other) information. Once
the two bottom-up models have constructed a constituent, they only use this constituent’s
category and head (and Magerman also the head’s PoS) as information when building
higher structures. Likewise the generative models mainly use the parent’s head, PoS and
category. Black et al. (1992) also use information from the functional parent, and Charniak
from the grandparent. Information from siblings and neighbours is also restricted to the
two or three previously generated or built left and right ones. Thus the used information is
mostly tree-local or string-local and focuses on heads. Exceptions are the distance features
in the dependency parsers of Eisner and Collins, and the DOP model.

Some approaches use special mechanisms for the following phenomena: coordination,
clauses with empty subjects, relative clauses, auxiliaries, punctuation, unknown words,
and groupings of PoS.

2.4.3 Extracting grammatical relations after full parsing

The three approaches discussed in this section all apply an additional module to the output
of a full parser. They differ however in how much of the information that is necessary to
extract GRs is determined by the parser and how much is provided by the extra module.

21 Non-headwords are all words except the headword of the subtree’s root.
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| Reference | Method | Modules Information
PCFG parser rule: category
Black '92 | generative, parser syn. & sem. cat, rule, heads: bit strings for syn. & sem.
decision cat, rule, index of node in rule, primary & secondary head
tree for of current node and/or immediate & functional parent
equivalence
Mager- bottom-up, tagger, extension & cat: head (30 binary features), head’s PoS,
man decision tree | parser cat, extension, number of children and number of words
'95 spanned of current node, of two left /right neighbours & of
two left /rightmost children
Eisner '96 | unlabeled tagger, de- | presence or absence of dependency (Model A) / preferred
dependen- pendencies parent & children (Model B) / ith left/right child (Model
cies, Model C): word & PoS of head & dependent, number of interven-
C generative ing children & words (distance), PoS of left/right sibling,
relative order of head & dependent (direction), short &
tiny tag, attenuation
Collins labeled de- | tagger, NP | dependency: (word or chunk head) & PoS of head & de-
'96 pendencies chunker, de- | pendent, distance (direction, adjacency, intervening verb,
pendencies commas)
Collins generative, tagger for | head child cat: parent’s cat, head, head’s PoS; non-head
97 Oth order | unknown child cat & PoS: above & head child’s cat, distance (Model
Markov words, NP | 2 & 3: left/right subcategorization frame, Model 3: gap
grammar for | chunker in- | feature); non-head child’s head: above & head child’s cat
dependen- tegrated in | & PoS
cies parser
Charniak | generative, parser rule: cat(?), head; head: cat, parent’s head, grandparent’s
95 lex. PCFG head (if parent is PP), direction
Charniak | generative, parser rule: cat, parent’s cat, head & word class; head: cat, par-
97 lex. PCFG ent’s cat, parent’s head & word class
Charniak | generative, parser PoS: cat, parent’s head & PoS & cat, grandparent’s cat;
99 3rd order head: PoS, cat, parent’s head & PoS & cat, grandparent’s
Markov cat; cat: parent’s head & PoS & cat, cat of 3 prev. gener-
grammar ated siblings
Ratna- bottom-up, tagger, NP | BUILD: head & (cat or PoS) & prev. BUILD decision
parkhi ME chunker, on current node & on two left/right neighbours, features
97 parser on parentheses, commas, periods; CHECK: proposed rule,
head & (cat or PoS) of children & of two left/right neigh-
bours
Bod 92 DOP parser subtree probability: root cat

Table 2.2: An overview of the full parsing work described in this section. The last column shows
the information on which the parser bases its decision (cat = category, dep. = dependency, prev.
= previous(ly), “X: Y, Z” = parse decision X based on Y and Z).
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2.4.3.1 Blaheta and Charniak: function tag assignment

Most parsers that we have described in the previous section assign labeled trees to sen-
tences, where the labels are syntactic categories like NP, VP, or S. However the second
version of the Penn Treebank uses also function tags (-SBJ, -TMP, etc.). Blaheta and
Charniak (2000) present a model for assigning these tags to the output of the Charniak
(1999) parser. The conditioning information is basically the same as in the parser. The
only new feature is the “alternate head” (and its PoS), which corresponds to the Ny of PP
attachment. Thus the features used for determining the kind of (grammatical) relation are
nearly identical to the ones used for deciding whether there is a dependency relation in the
first place. This is an argument for the integration of the two predictions. Indeed Blaheta
and Charniak (2000) note that “there is no reason to think that this work could not be
integrated directly into the parsing process, ...; the function tag information could prove
quite useful within the parse itself, to rank several parses to find the most plausible.” Once
function tags are assigned, GRs could be extracted from trees in much the same way as we
do for the original treebank trees (Section 3.1.2). However Blaheta and Charniak (2000)
do not predict traces, so only local relations could be extracted.

2.4.3.2 Carroll et al.

Initially the GR extraction system of Carroll, Minnen, and Briscoe (1998) was used to
evaluate the parser on precision and recall of GRs instead of labeled brackets. This new
evaluation method was proposed by Lin (1995) and also used in the SPARKLE project
(Carroll et al., 1997). In the system, text is tokenized, lemmatized, PoS tagged and
then parsed by a probabilistic LR parser (the probabilities are derived from a treebank)
using a hand-written, unification-based grammar which, following X (cf. Section 2.1.1)
explicitly distinguishes complements from adjuncts through their attachment to different
bar levels. The parser is basically unlexicalized, only information about subcategorization
frame frequencies is used to rerank parses.??

The set of target GRs is different from the one defined by the function tags of the Penn
Treebank e.g. it does not encode semantic distinctions of adjuncts. It is described in
more detail in Section 6.2.2 where we compare the two relation finders. All relations hold
between two (mostly semantic) heads. Some have additional slots for syntactic heads like
prepositions or complementizers, and for underlying relations e.g. before passivization or
dative shift.

The mapping from parse trees to GRs is performed by special-purpose software that uses
information about which grammar rules introduce which GRs and which children provide
the head and the dependent of the relation, or the filler for the additional slot. Only very
few of these rules encode lexical information (an exception are rules for the verb “be”). As
the grammar contains rules for wh-extraction and control verbs, also non-local relations can

22This method is more fully described in Section 2.6.6.
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be extracted. Carroll, Minnen, and Briscoe (1998) report on extraction of arguments only,
Carroll, Minnen, and Briscoe (1999) also include modifiers. Carroll and Briscoe (2001)
describe a method in which relations are extracted from the top n parse trees returned
by the parser. Each extracted relation is weighted by the number and probability of the
parses it appears in. By varying a threshold on the summed weight of relations, Carroll
and Briscoe (2001) are able to control the precision/recall trade-off of GR extraction.

2.4.3.3 Kibler

Grammatical relations as a means for parser evaluation have received much attention lately
(Crouch et al., 2002; Clark and Hockenmaier, 2002; Briscoe et al., 2002) In this context,
Kiibler and Telljohann (2002) describe a method for extracting GRs from the output of the
robust parser TiiSBL (Kiibler and Hinrichs, 2001b) for German. TiSBL uses a memory-
based approach, as it stores complete training trees in memory. It is robust in the sense
that it will output only a partial parse (with some constituents left unattached) for a test
sentence if the memory does not contain enough evidence for a full structure. It works
in three steps: PoS tagging, chunking and tree construction. The chunks discussed in
Section 2.4.1.1 were defined as “not containing another chunk”. By contrast, the chunks
used in TiSBL are defined as “not containing another chunk of the same type” (Hinrichs
et al., 2002). This allows for simple clause chunks that contain e.g. NP and VP chunks.
Chunking is performed by a cascade of finite-state transducers (Abney, 1996). Based on
the chunks of a test sentence, the tree construction algorithm searches for the most similar
training tree in memory and uses it to construct a parse for this sentence. Ideally similarity
is achieved at the word level and for complete chunks but otherwise the algorithm backs
off to PoS or subchunks. If there is enough evidence, the tree construction module can
correct earlier tagging or chunking errors (Hinrichs et al., 2002).

The parser is trained and tested on an English and a German treebank of transcribed
spoken dialogues. The treebank annotation is similar to NEGRA in that it also has
syntactic node labels and functional edge labels and explicitly marks heads. Therefore
converting trees into dependencies after parsing is relatively straightforward. However the
German treebank annotation does not use crossing branches, secondary edges or trace-
filler-constructions. Non-local dependencies are expressed through functional labels on the
(conceptual) filler such as 0A-MOD (modifier of accusative object). Sometimes these la-
bels do not uniquely identify the phrase that (conceptually) contains the trace, e.g. there
might be two accusative objects. In that case heuristics determine the most likely under-
lying attachment position prior to GR extraction (Kiibler and Telljohann, 2002). Control
relations are not annotated in the treebank, so they are not extracted. The functional la-
bels for German differentiate various types of complements but make no semantic adjunct
distinctions.
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2.4.3.4 Summary

This section described three different approaches to detecting GRs in parse trees. The
parser used by Blaheta and Charniak (2000) does not distinguish complements from ad-
juncts, so this distinction (implicitly) has to be made when assigning the function tags.
In addition the tags also differentiate between various semantically defined adjunct types.
The method employs a machine learner and uses lexical heads as features (in addition
to constituent labels and PoS). The parser used by Carroll, Minnen, and Briscoe (1998)
already encodes the C/A distinction in the parse tree. The three types of adjuncts re-
flect only syntactic differences. The hand-crafted GR extraction system is mainly based
on the identity of the parse rules in the tree. The parser used by Kiibler and Telljohann
(2002) already assigns function tags, which also distinguish complements from adjuncts,
but make no semantic adjunct distinctions. It uses words, PoS and chunks. The extraction
procedure is mainly based on the function tags but uses heuristics for resolving non-local
dependencies.

2.4.4 Extracting grammatical relations after partial parsing
2.4.4.1 Buchholz et al.

Buchholz, Veenstra, and Daelemans (1999) describe an extension of the Memory-Based
SV/VO extraction system to all types of GRs to verbs. As before, text is PoS tagged
with MBT. Then IB1-IG is used to find five types of chunks: NP, VP, AdjP, AdvP, PP.
The latter contain only prepositions (possibly multi-word) and their premodifiers. Next
an IGTree combines PP chunks and NP chunks into PNP chunks (also used in this thesis)
and another IGTree predicts whether a chunk has one of six adverbial functions?®. That
module is not used in this thesis. Finally GRs are assigned by another IGTree to pairs of
a verb chunk and another chunk (the focus chunk). As before, the headword of a chunk
and the head’s PoS tag are used, for the verb chunk, the focus chunk, and its two left
and one right context chunk (or chunkless word). Also the distance, the intervening verb
chunks, and the intervening commas are counted. Additional features are the chunk type
(for the focus and its context) and the preposition of a PNP chunk and the predicted
adverbial function (for the focus only). The system was trained and tested on WSJ text.
A breakdown of performance for some selected relations shows that locative adjuncts are
especially difficult.?*

BLOC (locative), TMP (temporal), DIR (directional), PRP (purpose and reason), MNR (manner),
EXT (extension)

24While the harmonic mean of precision and recall (Fz—;) is over 80 for subjects and objects, it is 63
for temporal adjuncts and only 47 for locative adjuncts.
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2.4.4.2 Ferro et al.

Ferro, Vilain, and Yeh (1999) describe a system that uses Transformation-Based Learning
(Brill, 1993) to find GRs between headwords of chunks (i.e. also GRs to non-verbs). Raw
text is automatically split into sentences, tokenized, PoS tagged (using Brill’s tagger), and
manually annotated for NP, VP, AdjP, AdvP and IN?> chunks. NP chunks are further
divided into Named Entity (NE) types like person or organization, and passive, infinitival
or present participle VP chunks are marked. Attachment of prepositions and subordinating
conjunctions is automatically estimated (Yeh and Vilain, 1998). All this information forms
the input to the actual GR finder. In addition, some external resources are used: a lexicon
for possible stems of words, WordNet, (Miller et al., 1990) for semantic class, COMLEX
Syntax (Grishman, Macleod, and Meyers, 1994) for subcategorization information, and
lists of relative pronouns and partitive quantities (e.g. some).

The learner starts with an empty annotation of GRs and then learns rules to create or
delete relations between a source and a target chunk (dependent and head, respectively).
In principle, the rules can use all of the above information sources in positive as well as
negative tests.26 However, to keep the search space for possible rules manageable, certain
restrictions were used (found by development on the training data). The most interesting
ones are:

e The system searches for relations from source to target chunks that are at most three
chunks away. 95% of the relations in training material fulfill this constraint.

e Conditions can only test the properties of the source chunk, the target chunk, their
immediate neighboring chunks and the chunks in between source and target.

e Only a very limited number of words (of, “?”, some determiners) other than the
headword can appear in conditions. Tests on the PoS of non-headwords are allowed
however.

About two dozen GRs are distinguished. No complete list is given, but argument relations
include deep subject and object, surface subject and object of copulas, prepositional object,
and directional object. Modifier relations include time and location as well as a generic
modifier (not fitting any of the other classes). The method was trained and tested on a
small body of elementary school reading comprehension tests. Note that these texts are
probably less complex than for example the WSJ. The biggest problem is the distinction
between locative, temporal and “other” adjuncts.

Yeh (2000a) compares the system of Buchholz, Veenstra, and Daelemans (1999) (without
the PNP and adverbial function modules) to that of Ferro, Vilain, and Yeh (1999) on the
training and test data of the latter on the task of finding GRs to verbs. He tries to find out

25IN chunks contain prepositions or subordinating conjunctions. The name derives from the PoS tag for
these words in the Penn Treebank.
%6¢.g. headword is house, or headword is not house
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systematically how much of the perceived performance differences can be explained by the
different algorithms or by different feature representations. It turns out that none of the
WordNet, COMLEX, stem, Named Entity, or PP /conjunction-attachment features seem
to have much effect on the performance of the Ferro, Vilain, and Yeh (1999) system (i.e.
some have an insignificant positive and some even a negative effect). The VP properties are
only relevant for complement GRs, not for adjuncts. The non-headwords are irrelevant for
complements (nothing is said about their relevance for adjuncts). The Buchholz, Veenstra,
and Daelemans (1999) system is only better in finding adjuncts. Yeh (2000a) suggests
that this is due to the additional feature that counts verb chunks between two potentially
related chunks. However this feature does not seem to be necessary for finding complement
relations. In addition, using several classifiers, each specialized in a particular focus chunk
type, a particular distance and a particular relation improved performance.

Yeh (2000c) uses the same system as Ferro, Vilain, and Yeh (1999) but instead of starting
from an empty GR annotation, the system starts from the output of either Buchholz,
Veenstra, and Daelemans (1999) or Carroll et al. (1997) or a merge of both. This set-up
improves performance, especially if the training set is small.

2.4.4.3 Summary

Both approaches to GR extraction described in this section operate on tagged and chunked
text. Chunks are used to define context, measure distance, compress the representation
and restrict the search space. The type of chunk, its headword and that head’s PoS are
used as features. Ferro, Vilain, and Yeh (1999) also use limited information from non-
heads. In addition they use many external information sources. However these do not
seem to contribute to performance. Difficult cases include locative, temporal and general
adjuncts.

2.4.5 Summary: parsing

The work described in this section is diverse. Information used for parsing varies from
headwords only (PP attachment) or PoS only (MBSL) over tree-local category and head
information (lexicalized parsers) to many external sources (Ferro et al.). However no system
uses all of this information at the same time. The challenge then is to choose from all the
available information those parts that are relevant and to find a good way to combine
them. Coordination, inversion, embedding, non-local dependencies, and types of adjuncts
seem to cause most problems.
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2.5 Subcategorization dictionaries

The parsers we have seen in Section 2.4.2 do not use external dictionaries. With the
exception of Collins’s model 2 and 3, they do not make the C/A distinction for which
subcategorization is crucial. However, subcategorization information can even be useful
if this distinction is not made, as it also influences attachment, which these parsers do
resolve. Compare the following pairs of sentences which differ in the subcategorization of

the verbs involved and, as a result, in their syntactic structure:?”

(9) John [yp put [vp the cactus] [pp on the table]].
John [y p likes [yp [vp the cactus] [pp on the table]]].

(10) I expected [yp the man who smoked] to eat ice-cream.
I doubted [yp the man who liked to eat ice-cream).

If constructions like these occur often enough in a treebank, the parsers from Section 2.4.2
would implicitly learn these kinds of regularities too. However, these are undistinguishable
from regularities that do not involve subcategorization as long as the annotation scheme
does not distinguish complements from adjuncts or one type of GR from another. Parsers
are not the only application for subcategorization dictionaries. They are also needed for
natural language generation, language teaching programs and human foreign language
learners.

2.5.1 COMLEX Syntax

COMLEX Syntax (Grishman, Macleod, and Meyers, 1994) is an electronic “moderately-
broad-coverage” English lexicon. It contains detailed syntactic information for approxi-
mately 38,000 headwords. It uses 92 subcategorization frames for verbs, 14 for adjectives
and 9 for nouns. The frames record the constituent structure as well as the grammatical
function of complements and distinguish between four types of control.?® The initial lexi-
con is constructed manually using corpus citations, intuitions and definitions and citations
from several printed dictionaries. Meyers, Macleod, and Grishman (1994) and (1996) de-
scribe the criteria that were used to decide on the complement-hood or adjunct-hood of
some dependent of a verb. Criteria for complement-hood are divided into sufficient criteria
and “rules of thumb”. This helps to resolve conflicts between the outcomes of different

2TFirst sentence of (9) from Manning (1993), sentences in (10) from Brent (1991b).

28Subject control: She promised him to come. — She will come.
Object control: She advised him to go. — He should go.
Arbitrary control: She helped to save the child (It is not clear who saved the child in the first place.)
Variable control: She appealed to him to go. She appealed to him to be freed. — He should go./She
should be freed. (Variable control verbs allow subject or object control. The interpretation is determined
by contextual factors.)
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criteria, which is crucial for consistency. Only some criteria are testable against the surface
syntax of a single sentence (i.e. they do not refer to pairs, all occurrences, or semantics).
The information they use are passivity of the verb, syntactic categories, prepositions and
complementizers of typical complements and adjuncts, position in the sentence, and the
wh-word.

The usability of the criteria was tested by letting four lexicographers mark all and only the
complements in a random sample of example sentences. Average pairwise agreement was
91%. The upper bound on the task described in this thesis is probably substantially lower,
as it also involves determining the type of complement respectively adjunct. Grishman,
Macleod, and Meyers (1994) note that in actual lexicon construction work, the criteria work
even better than these figures show, because in many cases where there was disagreement,
the lexicographers noted that the example was difficult, ambiguous or involves figurative
use and they would probably not base a lexical entry on these examples alone. In any case,
they would discuss it with the others, which enhances consistency. When disregarding the
problematic cases, pairwise agreement was 93%. This arguments points to a difference
between lexicon work and treebanking and parsing: in the latter two cases, also difficult,
ambiguous or figurative sentences have to be assigned some parse.

2.6 Automatic subcategorization acquisition

The goal of automatic subcategorization acquisition is to build large subcategorization
dictionaries from corpora. These should not only specify which of many possible subcate-
gorization frames can occur with which lemma (paradigm information) but also how likely
each frame is with each lemma (frequency information), and ideally how the frames in
a paradigm relate to each other (diathesis alternations) and which semantic restrictions
(selection restrictions) are imposed on the arguments. However, most subcategorization
acquisition systems to date aim at paradigm and frequency information, which can be
acquired on a syntactic basis, leaving diathesis alternation and selection restrictions for a
following acquisition step, which uses more semantic knowledge.

Manually built subcategorization dictionaries rarely include relative frequencies of frames,
as compiling this information further complicates an already tedious process. Frame fre-
quency information is essential to guide the parsing process of lexicalized probabilistic
parsers but it can also be used to rank the parses returned by a non-probabilistic parser or
rerank the parses returned by a probabilistic non-lexicalized parser (Carroll, Minnen, and
Briscoe, 1998). In summary, automatic subcategorization acquisition methods generally
have two advantages over manual approaches: they are faster and their output contains
relative frequencies.
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2.6.1 Brent

The first work in automatic subcategorization acquisition was done by Brent (Brent, 1991a;
Brent, 1991b; Brent, 1993; Brent, 1994). He uses only raw, i.e. untagged text and regular
expressions (encoding cues) to recognize verbs and five or six subcategorization frames.
The cues have a very high accuracy because they only encode (nearly) unambiguous cases
(like “verb4+me/him/us/them+punctuation” for the NP frame). For the same reason,
they have a very low coverage. This means that acquired frequencies cannot reasonably be
converted to probabilities for probabilistic parsing. The algorithm counts how often a verb
occurred and how often it occurred with each frame. As even the high-accuracy expressions
sometimes match false positives, Brent applies a statistical test to the frequency counts
to decide whether there is enough evidence for a frame to be accepted. This binomial
hypothesis testing was later also used by Manning (1993), Carroll and Rooth (1998a),
Ersan and Charniak (1995), and Briscoe and Carroll (1997). Brent (1991b) notes that
the most common source of errors are purpose adjuncts that are mistaken for infinitival
complements.

2.6.2 Manning

The system described by Manning (1993) recognizes more frames than Brent’s (also in-
cluding (at most) one PP%) uses a PoS tagger (Kupiec, 1992) and a finite-state NP
chunker and distinguishes active from passive verbs. The cues are much more broad cov-
erage than Brent’s but some “complicated” constructions like participles, coordination or
relative clauses are not covered.

2.6.3 Ushioda et al.

Ushioda et al. (1993) use similar techniques to Brent and Manning, but focus more on fre-
quency information than on paradigm acquisition. Therefore they do not need a statistical
test to filter out false positives: the typically low frequencies of false positives are already
good approximations of the true zero frequencies. Noticeable features of the method are
that the finite-state NP chunker eliminates temporal NP adjuncts and even some non-NPs
like “two months ago” and that the transitive frame can also be recognized in a relative
clause. Ushioda et al. (1993) note that the most frequent sources of errors are incorrectly
chunked NPs and purpose adjuncts that are mistaken for infinitival complements.

2Manning does not make a distinction between prepositions and verb particles, as his example (3b)
shows.
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2.6.4 Carroll and Rooth

Like Ushioda, Carroll and Rooth (1998a; 1998b) focus more on acquiring frequency than
paradigm information. They use a hand-written lexicalized PCFG. The probability pa-
rameters of the PCFG are estimated from a large, automatically PoS-tagged corpus with
the Expectation Maximization (EM) algorithm (Dempster, Laird, and Rubin, 1977). The
grammar has three levels: chunks, phrases, and the sentence level. Chunks exclude comple-
ments and trailing adjuncts but might contain other chunks (e.g. a possessive noun chunk
inside another noun chunk), phrases consist of a head chunk and its complements, and the
sentence level is modeled by a simple trigram model over phrases. Verb chunks are differ-
entiated into finite, present participle, past participle, or infinitival and passive or active.
Subcategorization frames are encoded in the rules for phrases. Clausal complements (e.g.
that-clause, wh-clause) cannot be acquired due to the simplistic sentence-level grammar.

2.6.5 FErsan and Charniak

Ersan and Charniak (1995) use the lexicalized PCFG described in Charniak (1995), see
Section 2.4.2.5. To derive subcategorization frequencies from the probabilities acquired for
parsing, grammar rules for VPs are mapped onto 16 verbal frames by ignoring children
that are adverbs or that appear as right siblings of punctuation, coordinating conjunctions
or the first PP. Some rules could not be mapped to frames and are ignored. It is unclear
how passives are treated.

2.6.6 Briscoe and Carroll

The system of Briscoe and Carroll (1997) acquires a significantly larger number of different
frames than any of the previously described systems. The list of possible frames comes
from merging the COMLEX and ANLT (Boguraev et al., 1987) frame inventory, plus some
additions, and contained 160 frames at the time of the paper (since then, three frames have
been added).

This larger number has two reasons. First, some frames were just ignored by earlier work,
maybe because they were regarded as marginal or as too difficult. Second, the distinctions
are much finer-grained, so that several frames in Briscoe and Carroll’s system correspond
to just one frame in earlier work. The following list illustrates both cases:

e Additional combinations with PPs: PP+infinitive, PP4+wh-clause, PP+participial,
AdjP+PP, two PPs.

e Further distinction of PPs into PNP (They talk about him), PING (They talk about
leaving), PWH (They talk about whether they should leave).
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e Additional combinations with particles (recall that Manning did not differentiate
prepositions and particles).

e More than two complements.
e Subcategorized ADVP.
e Alternations encoded in frames: particle movement, dative movement.

e Distinguishing equi from raising verbs, and the four types of control used in COMLEX
Syntax (cf. Section 2.5.1: subject, object, variable and arbitrary control).

e Distinction between predicative and non-predicative AdjPs, AdvPs, NPs and PPs.
e Marking non-passivizable direct object: “It costs $3.”
e Distinction between ADJP and passive participle: “He seems depressed /happy.”

e Different possibilities for subject: clausal subject, i, extraposition.

So in principle, there are 160 distinct frames. However, not all of these distinctions can be
made by the current system. In that case, instead of deciding just on one frame, the system
systematically outputs a disjunction (e.g. subject control equi verb or object control equi
verb or raising-to-subject or raising-to-object verb). There are 130 possible disjunctions.
If instead of allowing disjunctions, the system is forced to make a choice (e.g. by always
choosing the most common frame), 115 frames are distinguished, which is still substantially
more than in any other system.

Like Ersan and Charniak, Briscoe and Carroll use a general purpose parser within their
subcategorization acquisition system. It was already described in Section 2.4.3.2. In con-
trast to Carroll and Rooth and Ersan and Charniak, the parser makes the C/A distinction
but is not lexicalized. After the text is parsed, so-called “patternsets” are extracted from
the parse tree, which contain all the necessary information for the next component, the
classifier, which assigns patterns to (disjunctions of) frames from the list, or rejects them as
unclassifiable. Finally, binomial hypothesis testing is employed to decide whether enough
evidence for a frame with a specific verb was seen.

Briscoe and Carroll (1997) show that using the acquired subcategorization frame frequen-
cies in their parser reduces errors (measured in crossing brackets between the predicted
and the treebank parse). The parser attaches a probability to every parse tree it returns.
Normally the parse with the highest probability is then taken for evaluation. These scores
are now refined by multiplying the original probabilities with the relative frequency of
a verb’s subcategorization frame for each verbal frame that is instantiated in the parse.
Carroll, Minnen, and Briscoe (1998) show that the improvement is even more visible when
evaluating on argument GRs instead of crossing brackets. GRs are extracted from the
highest ranked parse tree as described in Section 2.4.3.2.
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| Reference | # | frames | for | freq?| Modules | Information |
Brent 5 NP, (NP+NP), that, | verbs no reg. expr., | closed-class words,
'91-°94 (6) | NP+that, inf, NP+inf BHT punctuation, cap-

italization, typical
suffixes, frame fre-
quency
Manning | 19 | —, NP, NP+NP, that, | verbs no tagger, reg. | PoS, NP chunks,
‘93 NP+that, inf, NP+inf, expr. incl. NP | passivity, punc-
PP(p), NP+PP(p), chunker, BHT | tuation, that,
ing, XCOMP, to, prepositions,
NP+XCOMP, subordinating con-
XCOMP+PP, ... junctions, frame
frequency
Ushioda 6 NP, NP+NP, that, | verbs yes | tagged corpus, | PoS, NP chunks,
93 NP+that, inf, NP+inf NP chunker, | that, to, list of tem-
reg. expr. poral NPs
Carroll 15 | —, NP, NP+NP, | word forms | yes | PCFG, BHT rule, verb chunk
98 (18)| inf, NP+inf, PP, | of verbs, type, category of
NP+PP, ing, NP+ing, | nouns, complement, heads,
AP, NP+AP, part, | adjectives, frame frequency
NP+part, PP+inf, | preposi-
(PP+PP, part+PP, | tions
AP+PP)
Ersan 95 | 16 | —, NP, NP+NP, that, | word forms | no PCFG, map- | categories, heads,
NP+that, inf, NP+inf, | or lemmas ping, BHT punctuation,
PP, NP+PP, ing, | of verbs, coordinating con-
NP+ing, AP, NP+AP, | (nouns and junctions,  frame
wh, NP+wh, AP+inf, | adj. with frequency
PP frame)
Briscoe 160 | —, NP, NP+NP, that, | verbs yes | tokenizer, tag- | PoS, categories,
97 NP+that, inf, NP+inf, ger, lemma- | frame instantiated
PP, NP+PP, ing, tizer, parser, | by rule, passivity,
NP+ing, AP, NP+AP, patternset it, prepositions,
part, NP+part, wh, extractor, complementizers,
NP+wh, ... classifier, wh-words,  heads
evaluator only after parsing,
(BHT) frame frequency

Table 2.3: An overview of the subcategorization acquisition work described in this section.
The second and third column show how many and which frames the system recognizes (— =
intransitive, that = tensed that-clause with or without that, inf = infinitive, PP(p) = PP param-
eterized for preposition, ing = participial VP, XCOMP = predicative AP or past participle, part
= particle, wh = wh-clause complement). The fourth column lists for which lemmas frames are
extracted, the fifth column notes whether frequencies are evaluated, too. The sixth column shows
the modules of a system (BHT = binomial hypothesis testing, reg. expr. = regular expressions).

The last column lists the information which the system uses.

2.6.7 Summary: automatic subcategorization acquisition

As Table 2.3 shows, most subcategorization acquisition work defines frames through the
syntactic categories of the complements in them. As information, the systems typically
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use PoS tags, chunks, punctuation and closed-class words (often syntactic heads). Those
that employ a full parser can also use rules and categories, and heads if the grammar is
lexicalized. Some also use verb (chunk) properties. Those that employ binomial hypothesis
testing to filter out unreliable frames use frame frequencies. Problematic cases include
purpose infinitives, participles, coordination, non-local dependencies, and temporal NP
adjuncts.

2.7 Conclusion

In this chapter we introduced the basics of phrase structure and dependency structure,
and treebanks and parsers that use one or the other. We showed how grammatical rela-
tions relate to these theories and how GRs are used to describe phenomena like expletives,
control, predicative complements, and non-local dependencies. We reviewed what informa-
tion can be used to decide about attachment, the C/A distinction, and finer-grained types
of GRs. The information sources are diverse, ranging from semantic classes, automatic
clusters, selection restrictions, frequency, heaviness, verb subtypes, and surface order over
words, PoS, chunks, and categories to punctuation, capitalization and suffixes. The prob-
lematic cases are also diverse, including coordination, idiomatic expressions, extraposition,
inversion, embedding, purpose infinitives, and the distinction between types of adjuncts.



Chapter 3

Data preparation, setup and
evaluation

In the last chapter we reviewed the role and definition of GRs in various fields of computa-
tional linguistics and we saw what information can be used to detect them. In this chapter
we describe how we define GRs and which information is available to our memory-based
learner for finding them. For supervised learning, which we use, this amounts to explaining
how training and test material is constructed (Section 3.1). In Section 3.2 we introduce
the experimental setup and the evaluation method.

3.1 Data

As explained in Section 1.2.1, an instance for the memory-based learner consists of a fixed
number of feature value pairs together with a class label. As no data set yet exists for
our GR task in this format, we constructed it from a fully-parsed corpus. In this section,
we describe how we convert the information from the parse trees of the Penn Treebank IT
(cf. Section 2.3.1) into the feature value format. The section consists of three parts. In
Section 3.1.1 we describe the original data format of the Penn Treebank. This gives an idea
of what information is present and how it is annotated. In Section 3.1.2 we explain how we
convert this information from the original phrase structure trees into a dependency-based
intermediate format which explicitly represents chunks, heads and grammatical relations
between them. Finally, in Section 3.1.3, we describe how we construct machine learning
instances from the intermediate format.

3.1.1 The original data: trees in the Penn Treebank II

As was already briefly described in Section 2.3.1, the Penn Treebank features parse trees
expressed by labeled brackets. The labels of the leaf nodes are the parts-of-speech. The
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( (s
(NP
(NP (NNP Pierre) (NNP Vinken) )
G o)
(NP
(NP (CD 61) (NNS years) )
(ADJP (JJ old) ))
Gy
(MD will)

(VP (VB join)
(NP (DT the) (NN board) )
(PP (IN as)
(NP (DT a) (JJ nonexecutive) (NN director) )))
(NP (NNP Nov.) (CD 29) ))
. D)

Figure 3.1: The first sentence of the WSJ Corpus annotated in Penn Treebank I style. The
sentence reads “Pierre Vinken, 61 years old, will join the board as a nonexecutive director Nov.
29.”. See Appendix A.1 for the list of PoS tags.

( (s
(NP-SBJ
(NP (NNP Pierre) (NNP Vinken) )
G o)
(ADJP
(NP (CD 61) (NNS years) )
(JJ 01d) )
Gos) )
(VP (MD will)
(VP (VB join)
(NP (DT the) (NN board) )
(PP-CLR (IN as)
(NP (DT a) (JJ nonexecutive) (NN director) ))
(NP-TMP (NNP Nov.) (CD 29) )))
. )

Figure 3.2: The first sentence of the WSJ Corpus annotated in Penn Treebank II style. The
function tags are: —-SBJ: subject, ~CLR: closely related, and -TMP: temporal. NPs without function
tags under VP or PP are objects.

non-leaf node labels of the first release (Treebank I) just denoted syntactic constituents,
like NP, VP or PP.! In general only maximal projections are annotated, i.e. there are no
intermediate bar levels.? The distinction between complements and adjuncts of verbs is in-
dicated by the fact that complements attach under the VP whereas adjuncts attach under

!Lists of all part-of-speech tags and syntactic labels are included in Appendix A.1 and A.2.
2The exception is NX which is used to annotate structure below the NP level in case of shared and
unshared prenominal modifiers in coordinated noun phrases. See Bies et al. (1995, p.140).
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(NP the right (S (NP-SBJ x*) (VP to (VP ...))))

(NP the fact (SBAR that (S (NP-SBJ the Navy) (VP ...))))

(NP (NP a project) (SBAR (WHNP-1 that) (S (NP-SBJ *T*-1) (VP ...))))
(NP (NP conversations) (PP-CLR with (NP people)))

(NP (NP Editorials) (PP-LOC in (NP the Greenville newspaper)))

Figure 3.3: In NPs, S and SBAR complements are attached under NP (first two examples), all
others are adjoined to NP. Function tags can indicate the function of these adjoined constituents
(-CLR: closely related, -LOC: locative).

S. In the example in Figure 3.1 “the board” and “as a non-erecutive director” are com-
plements of “join” whereas “Nov. 29”7 is an adjunct. However, this structural annotation
of the complement/adjunct distinction did not allow for a satisfactory solution in cases of
adjuncts appearing between the verb and one of its complements as in “He was previously
president of the company’s Eastern Edison Co. unit.”.> We cannot attach “previously”
under S while at the same time attaching president under VP in the context-free parse
trees of the Treebank I.

This problem was solved in the second release by attaching function tags to the syntactic
labels (Marcus et al., 1994). There are 20 function tags, belonging to four groups (Bies
et al., 1995), as shown in Appendix A.3. Figure 3.2 shows the sentence annotated in
Treebank II style. Complements as well as adjuncts are now attached under the VP and
the difference is made by the function tags: NP is a direct object, thus a complement,
whereas NP-TMP (temporal) is clearly an adjunct; “~-CLR marks constituents that occupy
some middle ground between argument and adjunct of the verb phrase” (Bies et al., 1995).
In this case, the verb is a prepositional ditransitive (Quirk et al., 1985). In NPs and
ADJPs, attachment is still used to indicate the complement/adjunct distinction for S and
SBAR but function tags might further differentiate adjoined constituents (cf. Figure 3.3).

In addition to function tags, the Treebank II annotation style also “provides a set of
coindexed null elements in what can be thought of as “underlying” position for phenomena
such as wh-movement, passive, and the subjects of infinitival constructions” (Marcus et
al., 1994), see Figure 2.5, p. 20.

3.1.2 From phrase structure trees to the dependency-based in-
termediate format

In the previous section we described the phrase structure trees in the treebank which are
the basis for our training and test material for the task of predicting grammatical relations
between heads of verb chunks and heads of other chunks. However the treebank does
not explicitly represent chunks, heads and relations between them. Therefore we first
convert the trees into an intermediate format which makes these concepts explicit. It is

3See wsj-0019.mrg
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from this format that we will derive our machine learning instances. Conceptually the
intermediate format resembles a dependency structure, but note that multiple heads are
allowed. The structure does not only represent syntactic dependencies but also semantic
ones. As was explained in Section 2.1.2.1, in order to convert a phrase structure tree into a
dependency structure, we have to identify heads of constituents and develop a convention
for dependency labels. These two steps will be explained in the next two sections. The
transformation from parse trees to dependencies between words is performed by the Perl
script chunklink.pl.* Figure 3.4 shows a sentence in Penn Treebank II style, graphically
as a tree and as a dependency structure. Figure 3.5 finally shows it in the intermediate
format. The next sections explain the details of the conversion process and of the output
format.

3.1.2.1 Identifying heads

The treebank annotation does not always follow X conventions. Therefore identifying heads
is more complicated than just following the projection line. The lexical head of a VP for ex-
ample does not need to have a V PoS tag, it might also have MD (modal auxiliary) or TO (%0).
The head child of a small clause S might be some constituent with the function tag —-PRD
(predicative). NPs which do not contain an N are a well-known problem (cf. Section 2.3.2).
Constituents like fragments (FRAG), parentheticals (PRN) and unclear cases (X) do not
have any fixed type of head. And finally the treebank also contains many tagging errors
like “(S (NP-SBJ (PRP$ their) (JJ exclusive) (NN agreement) ) (VP (NNS ends)
(PP-TMP (IN in) (NP (NNP March) (CD 1990) ))))” in which “ends” is tagged as a
noun although it is the head of a VP. All these cases are dealt with in the head table of
the chunklink.pl program.’® The table is used to determine which of the children of a
non-terminal node are head children. The first respectively second half of the table lists
which pre-terminal (PoS) respectively non-terminal (syntactic category) symbol can be the
head child of which non-terminal by giving regular expressions that have to match from
the start. It is applied as follows:

1. If a parent node X has some pre-terminal children that match the list entry for X,
the rightmost of these children is the head child.

2. If no pre-terminal matches, any non-terminal that matches the list entry for X is a
head child (cf. Section 3.1.2.5 about multiple heads).

3. If no matching pre-terminal or non-terminal can be found, X has no head child.

According to the first rule, (NNP Vinken) in Figure 3.4 is the head child of the first NP,
(JJ 01d) that of the ADJP, (VBD joined) that of the VP, and so on. According to the
second rule, the VP is the head child of the S and the first NP is the head of the NP-SBJ.

4chunklink.pl can be downloaded from the software section of http://ilk.kub.nl/.
5The table is reproduced in Appendix A.5.
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( (s
(NP-SBJ
(NP (NNP Pierre) (NNP Vinken) )
G o)
(ADJP
(NP (CD 61) (NNS years) )
(JJ o1d) )
G L))
(VP (VBD joined)
(NP (DT the) (NN board) )
(PP-CLR (IN as)
(NP (DT a) (JJ nonexecutive) (NN director) ))
(NP-TMP (NNP Nov.) (CD 29) ))
. )

PP-CLR

NP CD NNS JJ VBD DT NN IN DT NV NN NNP CD

Rerre mGen 61 years old Jomed the board as a nonexecutive director Nov. 29

NNP NNP , CD NNS J , VBD DT NN IN DT NY) NN NNP CD
A - )
Pierre mGen 61 years old joined the board Wor Nov. 29
{rR NP-OB
ADJP NP-TMP

NP-SBJ
EndOf Sentence

Figure 3.4: A slightly simplified version of the sentence in Figure 3.2 annotated in Penn Tree-
bank II style , the same annotation graphically, and the corresponding dependency structure
graphically.

The third rule should never apply in theory, but in practice it does, due to tagging errors in
the treebank. Some tagging errors are so frequent that we decided to include the erroneous
PoS tag in the head table but less frequent ones will result in headless constituents. This
is somewhat arbitrary and we would prefer the treebank to indicate heads explicitly (e.g.
along the lines of the NEGRA treebank, cf. Section 2.3.2) which would probably also enforce
tagging consistency and prevent different researchers from using different head definitions.
The left part of Figure 3.6 shows the result of the first step of head identification on our
example: H marks a head child.

In the second step, pointers that indicate the head of the parent node are introduced into
the tree. Initially each leaf has a pointer that points to itself (right part of Figure 3.6).
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NNP
NNP

CD
NNS
JJ

VBD
DT
NN
IN
DT
JJ
NN
NNP
CD

6

Pierre
Vinken

3

61

years
old
joined
the
board

as

a
nonexecutive
director
Nov.

29

7

NOFUNC
NP-SBJ
NOFUNC
NOFUNC
NP
ADJP
NOFUNC
VP/S
NOFUNC
NP-0BJ
PP-CLR
NOFUNC
NOFUNC
NP-0BJ
NOFUNC
NP-TMP
NOFUNC

8

Vinken
joined
Vinken
years
old
Vinken
Vinken
board
joined
joined
director
director
as

29
joined
joined

9

~NO R, RO RN

Figure 3.5: The dependency structure in the intermediate format. The columns contain: the
file number, the sentence number, the (source) word number, its IOB tag, its PoS, the (source)

word, the dependency label, the target word and the target word number.

NNP NNP , CD NNS X

, VBD DT NN IN DT Ny

Pierre Vinken , 61 years old , joined the board as a nonexecutive director Nov. 29

NN NNP CD

NN
|

, VBD DT NN IN DT

‘ Pierre Vinken, 61 years old, joined the board as a nonexecutive director Nov. 29
VIV V] ] ¥ ]

VARV IRV

Figure 3.6: The process of percolating head pointers up (part one). First, the head child of

each constituent is marked by H. Then, each word gets a pointer to itself.

The algorithm then proceeds bottom-up, at each non-terminal determining the head child
according to the annotation added in the previous step, changing the pointers from each
child and placing a pointer from the parent to whatever the head child’s pointer is pointing
at (see Figure 3.7). Conceptually the process is identical to lexicalization of the tree as
performed e.g. by Collins (1996).
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Figure 3.7: The process of percolating head pointers up (part two). At each percolation step,
new pointers are introduced that point from a constituent to whatever word its head child is
pointing at. Then all the constituent’s immediate children are also made to point at this word.
The introduction of the special tag -0BJ is described on page 59.

3.1.2.2 Percolating functions down: dependencies between words

The pointers introduced in the previous conversion step indicate dependency relations
between syntactic constituents and headwords. Thus there is e.g. an NP-SBJ relation
between the constituent Pierre Vinken, 61 years old, and the verb joined. As we are not
interested in dependencies between constituents and words, but between pairs of words,
the algorithm goes through the tree a last time, top-down, and pushes the labeled pointer
of the parent down to the head child. The process is represented graphically in Figure 3.8.
If the syntactic part of the pointer label and of the non-terminal head child are identical,
the pointer label stays the same (cf. NP-SBJ with head child NP). If however the syntactic
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Figure 3.8: The process of percolating functions down. At each step the pointer from a con-
stituent is “pushed down” to its head child. If parent and head child have a different syntactic
category, the categories are concatenated.

part is different, the head child label is prefixed to the pointer label (e.g. S with head child
VP results in a VP/S label).

At the end of the process just described, the main verb of a sentence carries a pointer
to itself. We therefore added an extra step that redirects this pointer to a special token
(depicted as EndOfSentence in Figure 3.4).° The effect can be seen in the third part of
Figure 3.4.

6 A similar end-of-sentence token was used by Eisner (1996b).
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¢ (s
(ADVP-TMP (RB Previously) )
G oY)
(NP-SBJ (NNS regulators) )
(VP (VBD insisted)
(SBAR (IN that)

(s
(NP-SBJ (NNS franchisers) )
(vp
(VP (VB pre-register)
(NP (JJ such) (NNS changes) )
(PP-CLR (IN with)
(NP (DT the) (NN state) )))
G -
(NP
(NP (DT a) (JJ costly) (NN process) )
(VP (VBG taking)
(NP-TMP
(ADVP (IN at) (JJS least) )
(CD six) (NNS weeks) )))))))
. )

Figure 3.9: The level of attachment of NPs without function tags determines its grammatical
relation to the head verb: the NP “such changes” is a sibling of the verb and thus an object. The
NP “a costly process ...” is a sibling of VP and thus an adjunct.

When “pushing down” the function pointers, we lose the information about the level at
which they were originally attached. In most cases this information is not relevant as the
function is defined by the combination of syntactic category and function tag. However,
in the case of NP without function tag for example, the level of attachment makes the
difference between a complement (object) and an adjunct (cf. Figure 3.9).

In order to preserve this distinction, we add the new function tag -0BJ to the following
constituents if they occur without function tags and as siblings of lexical heads: NP, VP,
ADJP, S, SBAR, SINV, SQ, SBARQ. This is done during the upward percolation of head
pointers.

The final dependency structure is output by the chunklink.pl program in what we call
the intermediate format (cf. Figure 3.5). In this format each non-empty line corresponds
to one word in the input.” The information about the words is organized into columns.
The first column contains an identifier for the file the sentence came from (e.g. 0001 for
file wsj_0001.mrg). The second contains the number of the sentence (unique per input
file), the third the word number (by default unique per output file; one output file may
correspond to many input files). The fourth column contains the chunk tag which will be
explained in more detail in the next section. The fifth and sixth column show the PoS

"Except lines starting with # which contain documentation about parameter settings
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NNP  NNP s CD NNS RV s VBD DT NN IN DT RV NN NNP CD

[NP Pierre Vinken ], [NP 61 years ] [ADJP old ] , [VP joined ] [NP the board ] [PP as ] [NP a nonexecutive director ] [NP Nov. 29 ] .
\
NP

ADJP

Figure 3.10: The chunks

and word, respectively. The seventh column contains the dependency label. “NOFUNC?”
marks unlabeled dependencies. The eighth and ninth column represent the target of the
dependency arrow originating at the word, i.e. the word’s head. The eighth column contains
the target word and is intended for humans. The other column contains the target’s unique
word number and should be used by programs. If the word is the head of the sentence, the

w»

two columns contain “” and —1, respectively.

3.1.2.3 Chunks

Our task is to find grammatical relations between head words of chunks. Like heads,
chunks are not explicitly indicated in the treebank. We define a chunk to consist of a head
(i.e. any word that has a labeled pointer) plus the continuous sequence of all words in front
of it that have an unlabeled pointer to this head. This definition guarantees that the last
word in a chunk is always a head and that we can thus disregard all non-last words of a
chunk when searching for grammatical relations between heads. The type of a chunk is
equal to the first syntactic part of the head’s pointer label.® The above definition results
in the chunks shown in Figure 3.10. Note that not all tokens are parts of chunks. Typical
tokens outside any chunk are punctuation symbols, coordinating conjunctions, negation
and auxiliaries in questions. In some cases, the above definition results in chunks that are
slightly different from the chunks in e.g. Ramshaw and Marcus (1995) (cf. Section 2.4.1.1).
The chunks are represented in the fourth column of the intermediate format by means of
IOB tags. B here means “Between”. I and B tags have a second part which indicates the
type of chunk the word is in (e.g. I-VP, B-NP).

3.1.2.4 Pruning

The previous sections explained our general method for converting parse trees to chunks
and dependencies. In some specific cases however, the method would yield unwanted
chunks. According to the above rules, the partial tree (NP (QP 10 billion) yen) would
be converted to the following chunks: [gp 10 billion ] [np yen ]. Previous work on

8 An exception are labels starting with WHNP, WHPP, WHADJP, or WHADVP. The corresponding chunks are
of types NP, PP, ADJP and ADVP.
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(VP (VBP make) (VP (VBP make)
(s (NP (PRP them)
(NP-SBJ (PRP them) (ADJP-PRD (JJ fearful) )))

(ADJP-PRD (JJ fearful) ))))

Figure 3.11: Pruning of predicative small clauses results in the NP and the predicative ADJP
becoming objects of the verb.

NP chunks however (cf. Section 2.4.1.1) always defined this whole phrase as one NP chunk
(also called baseNP). To achieve a similar result, we introduced a pruning step before the
actual conversion in which constituents like QPs are deleted and its children attached to
its parent. From the resulting simpler tree (NP 10 billion yen) we get the NP chunk
we wanted. The constituents that have to be pruned this way are listed in the beginning
of the chunklink.pl script.’

A similar but slightly more complicated case arises if the NP contains an ADJP, e.g.
(NP (ADJP publicly listed) bonds). Again, previous NP chunk definitions regard the
whole phrase as one chunk. Again the solution is to prune the ADJP. However there are
two conditions: we only prune ADJPs in NPs (and not e.g. as children of VPs) and only if
they precede the NP’s head. Without the latter condition, the ADJP in Figure 3.4 would
incorrectly be pruned. The constituents to be pruned are listed in chunklink.pl.!

The third group of pruning concerns VPs and Ss. The example in Figure 3.4 we used for
illustration contains only one verb. The original sentence however contains two verbs (a
modal and a main verb) and thus two VPs (cf. Figure 3.2). This would result in two VP
chunks. Intuitively however the two verbs should go together into one chunk. The modal
is the syntactic head of this chunk but the main verb is the semantic head. This is also
the case in the original chunking work of Abney (1991). Also from the engineering point
of view it is more efficient to have only one VP chunk [yp will join ] instead of two.
To achieve this, we prune VPs as children of VPs if the corresponding flag is set in the
beginning of chunklink.pl!! and if some potential head or adverbial phrase and nothing
else precedes the child VP. The latter conditions prevent pruning in cases like (VP (VP

..) and (VP ...)) or (VP permit (NP portfolio managers) (VP to (VP retain
..))).

Parallel to ADJPs in NPs and ADVPs in ADJPs we also prune ADVPs in VPs. Due to
possible interactions with the VP pruning, the ADVP-in-VP pruning has its own flag and
procedure in chunklink.pl.

There are two cases in which we prune S: predicatives and control verbs. If an S contains
a subject and a child with the function tag -PRD (predicative), the S is pruned and the

9¢prune_always
10¢prune_if_infrontof_head
Hgprune vp_in vp_flag
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(s (s
(NP-SBJ-1 (PRP it) ) (NP-SBJ-1 (PRP it) )
(VP (VBZ is) (VP (VBZ is) (VBN expected) (TO to) (VB take)
(VP (VBN expected) (NP (DT another) (JJ sharp) (NN dive) )))
(s
(NP-SBJ (-NONE- x*-1) )
(VP (TO to)

(VP (VB take)
(NP (DT another) (JJ sharp) (NN dive) )))))))

(s (s
(NP-SBJ-2 (PRP we) (NP-SBJ-2 (PRP we)
(VP (VBD evaluated) (VP (VBD evaluated) (VBG raising)
(s (NP (PRP$ our) (NN bid) ))))

(NP-SBJ (-NONE- *-2) )
(VP (VBG raising)
(NP (PRP$ our) (NN bid) ))))))

Figure 3.12: Two examples of pruning to join several VPs into one. The left side shows the
original trees, the right side the result of pruning. “*” is the trace used for annotating control.

subject tag deleted,'? see Figure 3.11. This makes both children directly dependent on
the verb which is necessary because our shallow parser predicts only relations to verbs.
Figure 3.12 shows two control examples before and after pruning. In a VP, there is an
S without function tag'® which contains an empty subject and another VP (infinitive or
gerund). We prune the NP-SBJ and the S node.'* The inner VP then becomes a direct
child of the outer VP and will be pruned due to the previously discussed VP-in-VP rule.
The result is just one verb chunk, which is more efficient for finding GRs. To restore the
original information, we need to make the distinction between auxiliaries and main verbs
and generate a predicate for every main verb in a chunk.!® See Section 6.2.2 for more
details.

As a concluding remark to this section about pruning in VPs we note that it is still possible
to have two adjacent VP chunks, e.g. (S (NP-SBJ The object) (VP is (S-PRD (NP-SBJ
*) (VP to (VP (VB capture) (NP (NP profits) ...)))))) results in [yp The ob-
ject 1 [yp is ] [yp to capture ] [yp profits ]. S-PRD is not pruned because it
carries a tag. The relation finder then has to determine the type of relation between is
and capture.

12$p:rune_s_in_vp_predicative_'flag

13This condition prevents pruning in cases like S-PRP (purpose and reason), S-ADV (adverbial) etc.

14 $prune_s_in vp_empty_subject_flag

15The distinction between subject and arbitrary control (coindexed and non-coindexed trace) is lost
however. See also Section 3.1.2.6 on how to preserve the information of coindexed empty constituents.
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3.1.2.5 Coordination

In the previous sections we explained the general method for the conversion of Penn Tree-
bank trees to chunks and dependencies. In the current and the next section, we have
a more detailed look at two of the most difficult problems in parsing: coordination and
long-distance dependencies, and their interaction with the conversion. These phenomena
deserve special attention as they touch upon the notion of head which is central to the
conversion algorithm. Coordination introduces multiple heads, whereas long-distance de-
pendencies are annotated in the treebank through traces and therefore have empty heads.

We already saw in Chapter 2 that coordinated structures need a special treatment in most
theoretical and practical NLP work. Figure 3.13 and the first part of Figure 3.15 show some
examples of constituent coordination from the treebank. Most syntactic categories can be
coordinated and we see that the coordinating conjunction can consist of one or more, even
discontinuous words (either ... or), that two or more constituents can be coordinated
and that even two different syntactic categories can be coordinated (together forming a
UCP, i.e. “unlike coordinated phrase”). In all cases the constituents are coordinated in
the sense that neither of them is more important than the other, neither syntactically
nor semantically. It is for this reason that we do not want to attribute the head child
property to only one of them. Instead, all coordinated constituents are marked as head
children. This in turn results in the coordinated constituent having multiple heads. When
the pointers are percolated down the tree, they are copied onto each head child. This
results in several chunks having the same relation to one verb (e.g. unit and critics to
complain) or conversely one chunk having the same relation to several verbs (e.g. trading
to causes and increased) (see Figure 3.14).

In addition to constituent coordination, the treebank also contains cases of coordinated
words inside a constituent (see “Oct. 13 and 16” in Figure 3.13 and the last example
in Figure 3.15). According to our head finding algorithm, only the rightmost of these
coordinated words will be marked as head. This in turn yields chunks like [yp N and N ].
This result is in line with previous work on baseNPs. We have to deal with intra-chunk
coordination when we compare MBSP to the GR extraction system of Carroll, Minnen,
and Briscoe (1998), see Section 6.2.2.

3.1.2.6 Non-local dependencies

The treebank annotation provides different kinds of traces for different syntactic phenom-
ena, e.g. : “*T* for wh-movement and fronting and “*” for passives and control (see
Bies et al. (1995, p.59ff.) for a full list). A constituent that only contains a trace is an
empty constituent. Like any other constituent, it can have a relation indicated by function
tags attached to the syntactic label. Grammatical relations hold between heads. Empty
constituents also have empty heads. This is why they constitute a special case for our
approach.
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( (s
(NP-SBJ
(NP (DT The) (NNP Kemper) (NNP Corp.) (NN unit) )
(CC and)
(NP (JJ other) (NNS critics) ))
(VP (VBP complain)
(SBAR (DT that)
(s
(NP-SBJ (NN program) (NN trading) )
(vp
(VP (VBZ causes)
(NP
(NP
(NP (JJ wild) (NNS swings) )
(PP-LOC (IN in)
(NP (NN stock) (NNS prices) )))
G o)
(PP (JJ such) (IN as)
(PP-TMP
(PP (IN on)
(NP (NNP Tuesday) ))
(CC and)
(PP (IN om)
(NP (NNP Oct.) (CD 13)
(CC and)
(CD 16) )))))
Goy))
(CC and)
(VP (VBZ has)
(VP (VBN increased)
(NP
(NP (NNS chances) )
(PP (IN for)
(NP (NN market) (NNS crashes) )))))))))
(G ED))

Figure 3.13: A treebank sentence featuring four coordinated structures.

Some traces are not coindexed with another constituent in the sentence. Examples in-
clude reduced relative clauses (Bies et al., 1995, p.21), arbitrary control, some raising
constructions, and some unannotated control cases, as shown in Figure 3.16. Other traces
are coreferent with another constituent (the filler), see Figure 3.17. Thus the relation
indicated on the label of the empty constituent holds between the head of the filler and
whatever is the head of the parent of the empty constituent. A head can have several
relations, at most one local relation and one or more non-local relations.

During the conversion process from trees to dependencies, traces are treated like ordinary
words. The relation that holds for the trace is copied onto the filler and indicated by
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0000

1 3 I-NP NN unit NP-SBJ complain 7
0000 1 40 cC and NOFUNC unit/critics 3/6
0000 1 5 I-NP JJ other NOFUNC critics 6
0000 1 6 I-NP NNS critics NP-SBJ complain 7
0000 1 7 I-VP VBP  complain VP/S _ -1
0000 1 8 I-SBAR DT that SBAR-0BJ complain 7
0000 1 9 I-NP NN program NOFUNC trading 10
0000 1 10 I-NP NN trading NP-SBJ causes/increased 11/31
0000 1 11 I-VP VBZ causes VP/S-0BJ that 8
0000 1290 cC and NOFUNC causes/increased 11/31
0000 1 30 I-VP VBZ  has NOFUNC increased 31
0000 1 31 I-VP VBN increased VP/S-0BJ that 8
Figure 3.14: Parts of the sentence from Figure 3.13 in the intermediate format.
(NP-SBJ (CC either) (NP
(NP (DT the) (NNP CFC) (NN gas) ) (NP (NNP Bloomingdale) (P0OS ’s) )
(CC or) G o)
(NP (DT the) (NN insulation) )) (NP (NNP Bon) (NNP Marche) )
G o)
(ucp (CC and)
(ADJP (NP (NNP Jordan) (NNP Marsh) ))
(NP (CD 55) (NNS years) )
(JJ 0ld) )
(CC and)
(NP
(NP (JJ former) (NN chairman) )
(PP (IN of)

(NP (NNP Consolidated) (NNP Gold) (NNP Fields) (NNP PLC) ))))

(PP-DIR (TO to)
(CC and)
(IN from)
(NP (DT the) (NN airport) ))

Figure 3.15: Examples of constituent (top) and non-constituent coordination (bottom) from
the treebank.

additional columns in the intermediate format. A special case arises if an empty constituent
that is coindexed and also contains a coindexed trace is pruned like (NP-SBJ-3 (-NONE-
*x=2)). The two indices are then unified before pruning. The right upper part of Figure 3.17
shows the tree after pruning and index unification. The lower part shows the resulting
intermediate format.

In contrast to our parser, most full parsers (cf. Section 2.4.2) ignore traces by just deleting
them in the training material. Consequently they are never predicted in test material.
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(NP
(NP (NN home) (NNS loans) )
(VP (VBN insured)
(NP (-NONE- *) )
(PP (IN by)
(NP-LGS (DT the) (NNP Federal) (NNP Housing) (NNP Administratiomn) ))))

(s
(NP-SBJ
(NP (DT the) (JJ mere) (NN existence) )
(PP (IN of)
(NP (DT a) (JJ market-stabilizing) (NN agency) )))
(VP (VBZ helps)
(s
(NP-SBJ (-NONE- *) )
(VP (TO to)
(VP (VB avoid)
(NP (NN panic) ))))))

(s
(NP-SBJ (EX there) )
(VP (VBZ appears)
(s
(NP-SBJ (-NONE- *) )
(VP (TO to)
(VP (VB be)
(NP-PRD
(NP (DT a) (NN market) )))))))

(s
(NP-SBJ (PRP he) )
(VP (VBZ has)
(NP (DT no) (NN inclination)
(s
(NP-SBJ (-NONE- *) )
(VP (TO to)
(VP (VB eliminate)
(NP (NN program) (NN trading) )))))))

Figure 3.16: Examples in which the trace (-NONE- *) is not coreferenced with anything. In
order: a reduced relative clause, arbitrary control, a raising construction, and an unannotated
control case.

The only exception is Collins’s model 3 which predicts traces from NP extraction in SBAR
relative clauses.
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( (SBARQ (WHNP-1 (WP Who)) ( (SBARQ (WHNP-1 (WP Who))
(SQ (VBD was) (SQ (VBD was)
(NP-SBJ-2 (-NONE- *Tx-1)) (NP-SBJ-2 (-NONE- x*Tx-1))
(VP (VBN believed) (VP (VBN believed)
(S (NP-SBJ-3 (-NONE- *-2))
(VP (TO to) (TO to)
(VP (VB have) (VB have)
(VP (VBN been) (VBN been)
(VP (VBN shot) (VBN shot)
(NP (-NONE- *-3))))))))) (NP (-NONE- %-2))))
. 7)) . 7))

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0000 1 O I-NP WP Who WHNP/SBARR _ -1 NP-SBJ *Tx* 6 NP-0BJ * 6
0000 1 1 O VBD was NOFUNC shot 6
0000 1 2 1I-VP VBN believed NOFUNC shot 6
0000 1 3 I-VP TO to NOFUNC shot 6
0000 1 4 1I-VP VB have NOFUNC shot 6
0000 1 5 I-VP VBN been NOFUNC shot 6
0000 1 6 1I-VP VBN shot VP/SQ Who O
0000 1 7 O 7 NOFUNC Who O

Figure 3.17: Groups of three extra columns are used in the intermediate format to indicate non-
local dependencies, which the treebank annotates by traces. The first of each group indicates the
non-local dependency label, the second the kind of trace and the third the target number. Note
that this is not an actual treebank sentence, the number 0000 is a dummy. -1 represents the
EndOfSentence token.

3.1.2.7 Possessives

Like PPs and SBARs, possessive constructions (like “Peter’s house”) are an example of a
mismatch between the syntactic and the semantic head. The possessive ’s is the syntactic
head as it enables the NP to function as a prenominal modifier. The rest of the NP however
determines the content (i.e. whose house it is) and is therefore the semantic head. Possessive
NP constructions are annotated in the treebank like (NP (NP (NNP Peter) (POS ’s) )
(NN house) ). When applying our standard rules for conversion from trees to chunks we
would get [yp Peter ’s ] [nyp house ] if we allow the part-of-speech POS to be the
head of an NP, or [yp Peter ] ’s [yp house ] if we do not. The former solution would
yield a semantically empty head ’s whereas the latter yields one extra element, i.e. less
reduction. The approach taken in Ramshaw and Marcus (1995) (cf. Section 2.4.1.1) and
followed here is to define the chunks as [yp Peter 1 [yp ’s house ]. This is done by
a special condition in the chunks procedure in chunklink.pl.
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3.1.2.8 Comparison of head tables

The idea of the head table comes from Magerman (1995). Collins used a similar table.
The application of their tables is somewhat different from ours however. In our algorithm,
the head is either the rightmost pre-terminal child that matches the (regular expression)
PoS list in the table, or all non-terminal children that match the (regular expression)
constituent list. Thus there is a preference for lexical over non-lexical head children but
no preference within these groups. In their approach, by contrast, the list is ordered by
preference and also has an associated direction (starting left or right). The head finding
algorithm first tries to find a child of the kind indicated by the first element of the list in
the direction indicated. It stops at the first one it finds. If no child of this kind can be
found, the algorithm next looks for a child of the kind of the second element of the list,
and so on, down to the last. If even the last kind of child cannot be found, the algorithm
takes the left/rightmost child (of any kind) to be the head. There are special rules for
finding the head of NPs and for coordinated constructions. It is hard to understand the
practical consequences of the different approaches by their theoretical descriptions, so we
will give some examples in which the head tables and algorithms yield different results. The
biggest difference occurs with coordinated structures. Neither Collins nor Magerman allows
for multiple heads, so their algorithms will take only the leftmost respectively rightmost
coordinate as head. Our algorithm will always take all coordinates as heads. It is for this
reason that we did not implement any preferences among non-terminal children.

Another difference occurs with tagging errors. Collins’s algorithm always returns a head
as the model needs heads to condition the probabilities on, whereas ours will assign no
head if none of the elements in the head table matches. This feature can be used to point
out tagging errors by using a very strict head definition and checking all cases where the
algorithm could not find any head child.

Apart from the possibility to have multiple heads in coordinated structures, we do not think
that the differences between Collins’s and our head tables and algorithms are important.
The precise definition of the head in case of erroneous tags or rare constructions presumably
does not matter, as long as it is done consistently.

3.1.3 From the intermediate format to instances for machine
learning

The intermediate format explicitly represents all the concepts that are essential for our
task definition: chunks, heads and grammatical relations. However it does not constitute a
format that is suited for a machine learning algorithm. Therefore we use another program?!®
that takes the intermediate format as input and outputs instances. Classification is done
per instance. When applying machine learning to a problem, the first decision always has
to be “To what unit in our data does an instance correspond?” Sometimes the answer is

16 chunklink_inst.pl can be downloaded from http://ilk.kub.nl/.
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obvious, e.g. for the task of assigning one part-of-speech tag to each word, the obvious unit
is the word. For our task, we define an instance to correspond to a pair of chunks: a verb
chunk and another chunk.'”

The “other chunk” will henceforth be called the focus chunk. As punctuation is outside
any chunk, no instance is created for it. Likewise, negation and some auxiliary verbs in
questions do not belong to any verb chunk and therefore do not give rise to instances. One
restricting definition that might seem trivial is that the verb chunk and the focus chunk
have to be in the same sentence. This is not a principled restriction of our method, in fact
one could imagine using a similar kind of instances and a memory-based learner to decide
about coreference, e.g. are “Pierre Vinken” and “He” coreferent in the sentence pair “This
is Pierre Vinken. He is 61 years old.” For grammatical relations however, the common
definition is that they do not cross sentence boundaries.

Having decided that an instance represents a pair of verb and focus chunks, we now need
classes which encode the task. In our case, the functions from the seventh column of the
intermediate format are a natural choice. We will first ignore the non-local dependencies
(from the tenth column onwards) and come back to them in Section 6.1.1. The last and
most complex decision concerns the features. In principle all the information in columns 3,
4 and 5 of the intermediate format for one sentence could be represented in features of the
instance (i.e. this information constitutes the history). However this intuitively seems to
be too much information. In addition sentences vary in length so we would need very many
features to accomodate the longest sentence. For short sentences most of these features
would then be empty as the learner requires all instances to have the same number of
features. This is inefficient.

Choosing among the possible features (and their representation) already touches on our
central research question of what information is important for relation finding. Therefore
the selection introduced here is only preliminary. We will explore other features in Chap-
ter 5. The preliminary feature selection and representation is largely based on Buchholz,
Veenstra, and Daelemans (1999) (see Section 2.4.4.1). It contains the following features:

e The distance from the verb chunk to the focus chunk, counted in elements (i.e. chunks
or “outside” words or punctuation tokens). A negative distance means that we have
to “go backwards” from the verb chunk to find the focus chunk, i.e. the focus chunk
is to the left of the verb chunk. A distance of (—)1 means that the focus chunk is
directly adjacent to the verb chunk. Collins (1996) already used a distance measure
that combines, among other things, a binary direction feature and a binary adjacency

17Tf we did not restrict ourselves to the task of finding grammatical relations of verbs, we would have to
make an instance for each pair of two (different) chunks. The alternative would be to create one instance
for each word and to have the algorithm predict the relation type and the target, either in one single step
or in two subsequent ones. The latter option is chosen in Ait-Mokhtar and Chanod (1997b). Van den
Bosch and Buchholz (2002) describe a system that performs only function tagging, which is the first step
in the two step approach. The two alternatives (given source and potential target, predict relation, or
given source, predict relation and target) are similar to Models A and B of Eisner (1996b), respectively.
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feature because “conditioning on the exact distance between two words ... leads to
severe sparse data problems”. Eisner (1996a) also has a binary direction feature, and
a distance feature with the four possible values 1, 2, 3-6, and 7—o0.

e The number of other verb chunks between the verb chunk of interest and the fo-
cus chunk (intervening verb chunks). The distance measure of Collins (1996) also
contains a binary feature indicating whether there are any verbs between the two
words.

e The headword of the verb chunk. This feature should enable the algorithm to learn
e.g. subcategorization preferences.

e The focus chunk itself. This chunk is described using four features:

— The head word. If the element is a PNP chunk, this means the nominal head-
word. Most work in parsing and grammar theories agrees that the head carries
important information.

— The part-of-speech of the headword. Magerman, Collins, Eisner and Charniak
(1999) all use this information.

— The chunk type of the element. In our chunk-based shallow parser, this infor-
mation corresponds to the syntactic category information used by full parsers.

— The prepositional headword in case the element is a PNP chunk. Otherwise
this feature is empty (i.e. the value is some special value, here: “-7). As we
saw in the PP attachment literature (Section 2.4.1.2), both the preposition (the
syntactic head) and the head noun (the semantic head) are useful for attachment
decisions.

e The element directly preceding the focus chunk (henceforth called the context-1). It
is common in parsing to use some information from the local context, cf. Ratnaparkhi
(1998), Collins (1999). As a starting point we represent the context by the same four
features as the focus. If the element is not a chunk (but e.g. punctuation) the chunk
type feature is empty (i.e. “7).

e The element immediately following the focus chunk (context+1), again with the same
four features.

Figure 3.18 shows the history (in the sense of history-based grammar, cf. Section 1.2) of
our example sentence and illustrates the above features for it.

In addition to these features used for classification, we also use two “administrative” fea-
tures. Each word in our data has a unique word number. Every instance then has one
feature for the word number of the head of the focus chunk and one for the word number
of the head of the verb chunk. During training and classification these features are ignored
by the learning algorithm. However they are handy for evaluation and error analysis (e.g.
to retrieve the original sentence).
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PNP
NP NP ADJP VP NP PP NP NP
NNP NNP , CD NNS J , MD VB DT NN IN DT JJ NN NNP CD .
Pierre Vinken , 61 years old , will join theboard as a nonexecutive director Nov. 29 .
tokens 0 1 2 3 4 5 6 7 ji 9 10 11 12 13 14 15 }§ 17
elements 1 2 3 4 5 6 7 8 9 10
\ |
+3
verb
ehunk? 0 0 0 0 O 1‘ 0 0 ? 0
0

Figure 3.18: Our example sentence with parts-of-speech and chunks annotated, which is the
conceptual input format to the relation finder (the history). The underlined parts are used as
feature values of the instance that corresponds to the decision about the relation (marked by the
question mark) between the verb and the “Nov. 29” chunk (cf. column 6 in Table 3.1).

Table 3.1 shows all the instances derived from the sentence in Figure 3.18. There is one
exception to the rule that the classes correspond to the seventh column of the intermediate
format. This is for the by-phrase of passives which in the treebank is annotated as:

(VP (VBN seen) (NP (-NONE- *-1)) (PP (IN by) (NP-LGS (NNP Peter))))

The -LGS function tag marks logical subjects. In the intermediate format, this corresponds
to:

0000 1 9 I-VP VBN seen VP/S _ -1
0000 1 10 I-PP IN by PP seen 9
0000 1 11 I-NP NNP  Peter NP-LGS by 10

We internally change this to:

0000 1 9 I-VP VBN seen VP/S _ -1
0000 1 10 I-PP IN by PP-LGS seen 9
0000 1 11 I-NP NNP Peter NP by 10

before creating instances as it is the preposition that has a grammatical relation to the
verb and therefore needs to carry the -LGS information.
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features 6 instances
focus # | 1 1 4 5 10 11 16
verb # | 2 8 8 8 8 8 8
dist. 3 -5 -3 —2 +1 +2 +3
VCs 4 0 0 0 0 0 0
verb 5 join join join join join join
prep. 6 - - - - - as
context word 7 - , years join board director
—1 (left) PoS 8 - , NNS VB NN NN
chunk | 9 - - NP VP NP PNP
prep. 10 - - - - as -
focus word | 11 | Vinken | years old board director 29
chunk PoS 12 NNP NNS JJ NN NN CD
chunk | 13 NP NP | ADJP NP PNP NP
prep- 14 - - - as - -
context word | 15 , old , director 29
+1 (right) | PoS |16 , JJ , NN CD .
chunk | 17 - ADJP - PNP NP -
class NP-SBJ - - NP-OBJ | PP-CLR | NP-TMP

Table 3.1: The instances for the first sentence of the WSJ Corpus.

3.2 Experimental setup

The data described in the previous section is used in the machine learning experiments
that will be reported in the next chapters. This section explains the general experimental
setup.

3.2.1 Size of data set

Unless otherwise indicated, experiments are performed on sections 10 to 19 of the WSJ
Corpus of the Penn Treebank II. These sections contain 515,390 tokens (words and punc-
tuation) in 21,747 sentences (average of 23.7 tokens per sentence). This results in 555,539
instances, with 320 different classes (for local relations only). The 15 non-administrative
features have between 2 and 20,809 feature values.

When trying to optimize the settings of the learning algorithm and the feature represen-
tation, the search space is huge. The various options of the algorithm alone combine to a
nearly infinite number of settings. In addition, a nearly unlimited number of features can
be extracted from the sentences and the linguistic structure built in previous stages (the
history). A strategy followed in Veenstra et al. (2000) is to run an automatic large-scale
search through a lot of algorithmic and representational parameters. This is possible if the
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Figure 3.19: Zipf distribution of classes: x-axis is rank of class, sorted by frequency, y-axis is
frequency (logarithmic scale) in the data set.

data sets are comparatively small. In the present research, we could have chosen to restrict
our development set for parameter tuning to a small part of the training data. However,
the frequencies of classes have a typical Zipf distribution (see Figure 3.19). Of the total
of 319 non-default local classes in our standard data set there is one class (NP-SBJ) with
frequency 38,100 and one (NP-0BJ) with frequency 20,898, but 40 with frequency 2 and
106 with frequency 1. We felt that due to this uneven distribution, restricting ourselves
to a small development set would mean excluding most of the challenging cases, maybe
not from the engineer’s point of view but more from the point of view of the linguist. In
addition, the smaller the development set, the higher the risk that the best settings found
do not carry over to the much larger data set we are ultimately interested in. We therefore
preferred to use a large development set and to restrict the number of tested parameter
combinations.

3.2.2 Performance measures

In many machine learning experiments, “best” performance means the one with the best
generalization accuracy on previously unseen test instances, i.e. with the highest number
of correctly classified instances divided by the total number of instances. When applying
machine learning to language data however, we frequently see that other measures are used
in addition to or instead of accuracy.
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For evaluating grammatical relations, precision and recall'® have been used by e.g. Lin
(1995), Carroll, Minnen, and Briscoe (1998) and Ferro, Vilain, and Yeh (1999). (Labeled)
relation precision then means the number of correctly predicted relations divided by the
total number of predicted relations whereas (labeled) relation recall means the number of
correctly predicted relations divided by the total number of relations as given by the gold
standard, i.e. in our case the relations derived from the treebank parse.

When comparing performance (for example with different parameter settings) it is useful
to have only one figure to compare instead of two, precision and recall, which usually show
a trade-off. For this reason, we also use the Fjs measure (van Rijsbergen, 1979) which
combines precision (P) and recall (R): F = %

As is also common in the chunking literature we use § = 1 which gives no preference to
either precision or recall.

3.2.3 Tenfold cross validation and significance

We randomize the sentences in our data set and split them up into ten folds of 2175
sentences each (one with only 2172) from which we extract ten folds in the intermediate
format as explained in Section 3.1.2. We then construct instances for our machine learner
from each intermediate format fold (cf. Section 3.1.3). We use these folds to conduct tenfold
cross validation experiments: in each of ten learning runs, a different one of the folds is
the test data whereas the other nine constitute the training data (Weiss and Kulikowski,
1991). This way we get ten sets of precision, recall and Fj scores. In reporting the results,
we will use the average of these ten values.

As precision denotes a percentage of the number of relations predicted, which varies slightly
per fold, the average of ten precision values is slightly different from the precision we would
get if we merged all ten folds and computed precision over the total. The same holds for
recall because each fold is based on the same number of sentences which does not necessarily
translate into the same number of relations. However, as variance is low (typically 1-2%),
this difference is small.

To test the difference in results of two tenfold cross validation experiments for statistical
significance, we will use a one-tailed t-test on the two sets of ten Fj scores. Yeh (2000b)
discusses alternative tests and proposes computationally-intensive randomization tests, re-
ferring to Cohen (1995) and Noreen (1989). These tests involve shuffling and reassigning
the differing responses from the two (variants of) systems. If there are n different re-
sponses, there are 2" different ways to do this. Given that our test sets contains hundreds
of thousands of instances, and that variants of our learner often predict different classes
for thousands of them, exhaustive enumeration is not feasible. It can be approximated by
randomized sampling but even a representative sample would be huge.

18These or similar measures (sometimes under different names) are also used in other fields, e.g. Infor-
mation Retrieval or medical tests (sensitivity /predictive value).
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‘ ‘ accuracy ‘ precision ‘ recall ‘ Fg ‘
always predict “no relation” 78.42 100 0 0
always predict NP-SBJ 6.85 6.85 | 30.73 | 11.20
most probable class for focus chunk type/PoS 78.42 100 0 0
most probable class for focus word 78.20 31.21 | 1.07 2.07
most probable class for distance 82.81 49.43 | 37.30 | 42.51

Table 3.2: Some possible baselines. The simple heuristic to predict NP-SBJ for every chunk
at distance —1 and NP-OBJ for every chunk at distance 1 (“most probable class for distance”)
already yields an F-score of 42.51.

3.2.4 Baselines

An important concept in machine learning is the baseline. This is the performance of the
simplest classifier one can think of. For part-of-speech tagging for example the baseline is
usually taken to be the accuracy achieved when predicting always the most probable tag
of a word. It is only with respect to this baseline value that performance results of learners
are meaningful. For grammatical relation finding, the definition of the baseline is less clear
than for PoS tagging. The most probable class of an instance is “no relation”. Always
predicting “no relation” would already result in an accuracy of 78.42% on the data set
described in Section 3.2.1. However, precision would be undefined or 100%, recall would
definitely be 0% and thus Fz would be zero too. A more reasonable baseline is achieved
when always predicting the most frequent relation (NP-SBJ: subject). Fjz would then be
11.20 (cf. first two rows of Table 3.2). Parallel to the PoS tagging baseline, one could
also predict the most probable relation for each chunk type. However, as this is always
“no relation”, it would again result in Fg = 0. Predicting the most probable relation
for each focus word results in Fg = 2.07. The precision of 31.21% seems partly due to
the strategy to assign capitalized common nouns (like “Revenue” or “Sales”) the subject
relation. Capitalization here implies that the word occurs at the beginning of a sentence.
Predicting the most probable relation for each distance yields Fj = 42.51. This strategy
follows three simple rules: predict “NP-SBJ” for every chunk at distance -1, “NP-OBJ”
for every chunk at distance 1 and “no relation” for all other chunks.

3.3 Summary

In this chapter we introduced the data set and the experimental setup that will be used in
most experiments reported in the main part of this thesis. We described the original tree-
bank data, explained the complex conversion from phrase structure trees to dependencies
between chunk heads and motivated the choices we made for this conversion. We likewise
described the intermediate format and introduced the preliminary form of our instances.
Finally we explained the experimental conditions (size and origin of data set, tenfold cross
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validation), performance measures (precision, recall and F-score), and statistical signifi-
cance test and computed several baselines. In the following chapter we will introduce the
Memory-Based algorithm that we will use for our experiments and we will report on first
experiments conducted with the setup just described.



Chapter 4

Memory-Based Learning and
optimization of its parameters

This chapter consists of two main parts. In the first part, we will describe the Memory-
Based Learning algorithms and their implementations that are used for the experiments
reported in this thesis. In the second part, we will apply these algorithms to our data
in order to find out which algorithm with which parameter setting performs best. In
addition to these two main parts this chapter also contains an in-between section in which
we develop a preprocessor to speed up subsequent experiments.

4.1 Memory-Based Learning: theory

The central idea of Memory-Based Learning (MBL) is to store all training instances in
memory during learning. This memory is called the instance base. For testing, those
training instances that are most similar to the test instance are retrieved from memory
and their labels are used to assign a label to the test instance. This direct use of all
training instances (lazy learning) contrasts with the eager learning of e.g. decision tree or
rule learning algorithms which derive an abstract representation from the training instances
and then use only this representation when processing test instances.

MBL is also known as similarity-based, exemplar-based, example-based, analogical, case-
based, and instance-based learning (Stanfill and Waltz, 1986; Cost and Salzberg, 1993;
Kolodner, 1993; Aha, Kibler, and Albert, 1991; Aha, 1997). All details of algorithms and
available parameters described in this section and used in the next ones are based on the
TiMBL' software package (Daelemans et al., 2001) version 4.1 unless noted otherwise.

!Tilburg Memory-Based Learner. See http://ilk.kub.nl/ under “Software”.

7
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4.1.1 The IB1 algorithm

In the classic k-Nearest Neighbor (k-NN) algorithm (Cover and Hart, 1967), an instance
can be thought of as a vector defining a unique point in a high-dimensional space. Similar
instances are close together in this space. When a test instance needs to be classified, the
algorithm looks for its & closest training instances (the & Nearest Neighbors) and assigns
the class with the highest frequency in this Nearest Neighbor set (majority voting). If
all features are numeric, distance between two instances can be computed as Euclidean
distance (possibly after normalization of features). The distance A(X,Y’) between two
instances X and Y which have only numeric features is shown in Equation 4.1. n is the
number of features and z; is the value of the ¢th feature of instance X.

n

AXY) = | > (@i — vi)? (4.1)

=1

However in NLP most features are symbolic. In the IB1 algorithm (Aha, Kibler, and
Albert, 1991), distance (or conversely, similarity) is measured as the number of features
on which two instances differ (or conversely, for which they have the same value). The
distance between two instances which have only symbolic features is formally defined in
Equations 4.2 and 4.3 where §(z;,y;) is the distance in the ith feature of the instances.
This metric is called the overlap metric.

n

AX,Y) =3 6(i, 1) (4.2)

=1

1 otherwise

6(xi, yi) Z{

4.1.1.1 The number k£ of Nearest Neighbors and the resolution of ties

In the original k-NN algorithm the parameter k referred to the number of Nearest Neighbors
that should contribute to the classification of a test instance. If features are numeric,
values are real numbers and distance is Euclidean, it rarely happens that two neighbors
have the same distance. With integer values or with symbolic features and the overlap
metric, however, this happens regularly. Therefore in the TiMBL implementation of IB1,
k refers to the number of distances from which the elements of the Nearest Neighbor set
are gathered. If e.g. there are three training instances at a distance of 0 to the test instance
and four at a distance of 1, the NN set would contain three instances if £ = 1 and seven
if K = 2. According to majority voting, the final classification of the test instance is the
class that is most frequent in this NN set. In case of a tie (i.e. two or more classes are
equally frequent), the tied class that has the highest frequency in the complete training set
is taken. If this still does not solve the tie, the tied class that was first seen in the training
material is chosen. In general, odd values of k£ help preventing ties if most of the distances
are associated with only one instance.
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4.1.1.2 Feature weights and the IB1-1G algorithm

Especially for tasks with many features, a common intuition is that some features are more
important than others for classification. To capture this intuition, features are assigned
weights in the IB1-IG algorithm (Daelemans and Van den Bosch, 1992) and the distance is
computed as in 4.4 where w; is the weight of the ith feature. This metric is called weighted
overlap.

i=1
There are many possible ways to determine the weights of the features. Four of them are
implemented in the TiMBL software package and will be described here.

Quinlan (1986) proposes Information Gain (IG) for feature ordering in a decision tree.
Daelemans and Van den Bosch (1992) use it for feature weighting in IBI-IG. IG is a
concept from Information Theory. It is based on entropy (defined in Equation 4.5), in our
case on the entropy of the class distribution, which expresses the uncertainty of the learner
about which class to predict for an instance. If there is less uncertainty if we know the
value of a feature than if we do not know it, the feature contains information. Thus the
Information Gain that a feature brings about is defined as the difference in entropy with
and without knowledge of the feature value (see Equation 4.6). C denotes the set of class
labels and V; are the values of the 7th feature.

— > P(z)log.P() (4.5)
w; Z P(v) x H(Cv) (4.6)

Quinlan (1993) claims that IG overestimates the importance of features with many values
and introduces the variant Gain Ratio (GR) in which IG is normalized by dividing by the
entropy of the feature’s values, the so-called split info. GR is defined in Equation 4.7. This
normalization is relevant for many NLP tasks in which words are used as feature values,
as there are many different words.

H(C) = Yvey, P(v) x H(Clv)
H(V;)

w; =

(4.7)

An alternative to IG and GR is the Chi-squared weighting (x?) and its normalized version
Shared Variance (SV), proposed by White and Liu (1994). x? is defined in Equation 4.8.
Onm and E,,,, are the observed and expected frequencies from a contingency table ¢ which
records how often each feature value occurred with each class.

Y190 (B — Opn)?

_y & e (4.8)

n=1m=1
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Opnm is just the content of the cell ¢,,,. E,,, is the number of cases which one would expect
in cell ., if the null hypothesis (of no predictive association between feature and class)
were true. It is defined in 4.9. t,, is the sum over column m of the table. This is equal
to the number of instances with class ¢,,. t,. is the sum over row n of the table, i.e. the
number of instances with value v,,. t_ is the sum over all the cells of the table, i.e. the total

number of instances.
tmlin.

t.

B = (4.9)

SV normalizes x? by correcting for the degrees of freedom. N is the number of instances.

X

Wi =SV = N Gin((CT V) — 1)

(4.10)

A problem with all of the above feature weighting schemes is that they compute the weight
of a feature independently from all the other features. In real tasks however, features are
often not independent, so that the computed weights do not reflect feature informativity
in context.

4.1.1.3 Numeric features and the Modified Value Difference Metric

The overlap metric and the weighting schemes as introduced above can only be applied to
symbolic features. As some learning tasks are best described by a mixture of symbolic and
numeric features, the following addition is implemented to deal with numeric features:

O(xi, yi) = ﬁ if z; and y; numeric, else see 4.3 (4.11)
For weight computation, numeric features are first discretized into a number of bins,? and
each bin is then treated like one symbolic value.

In the standard overlap metric, two symbolic feature values are either identical or different.
However one frequently has the intuition that some values are more (dis)similar than others.
For example although “Monday” is not identical to “Tuesday”, the two are less different
than e.g. “Monday” and “horse”. To capture this intuition, Stanfill and Waltz (1986)
and Cost and Salzberg (1993) developed the (Modified) Value Difference Metric (MVDM)
which computes the difference between two feature values by comparing the associated
class distributions, as defined in Equation 4.12 where vy, vy € V.

§(v1,v2) = Y |P(c|v1) — P(c|va)] (4.12)

ceC

2Tn TiMBL 4.1, the space between the largest and the smallest value of a feature, as seen in training
data, is split into 20 equally-sized subspaces (bins). If values are not equally distributed, this results in
some “full” and possibly some empty bins. In TiMBL 4.2 bins are chosen in such a way that they contain
equally many values (as far as possible). The number of bins is a parameter. Note that in any case, the
discretization is used only for weight computation, not for classification.
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A known problem is that the MVDM value of rare feature values is based on very little
evidence. In the extreme case of values that occur only once, the modified value difference
is either minimal (0: values are treated as identical) or maximal (2: completely different)
depending on whether the values occur with the same class or not.

One of the effects of MVDM is that possible distances between instances get much more
diversified. This in turn means that the number of instances in the Nearest Neighbor
set is usually lower, so that classifications are based on less evidence. To counteract this
effect, it is normally advantageous to use a larger number of £ with MVDM. In the TiMBL
implementation, it is possible to indicate per feature which metric (overlap, numeric or
MVDM) should be used.

4.1.1.4 Distance weighted class voting

If £ is large, many training instances influence the classification through their vote in the
majority voting. On the one hand this might increase robustness against e.g. annotation
errors. On the other hand, it ignores the fact that some NN are more similar/closer to the
test instance than others and thus their vote should be more important. This intuition
is implemented by distance weighted class voting. Each NN gets assigned a weight that
decreases with increasing distance to the test instance. Classification is then determined
through a weighted voting. There are many monotonously decreasing functions that could
be used for distance weighted class voting. Three of them are implemented in TiMBL:
Inverse Linear (Dudani, 1976), Inverse Distance (Dudani, 1976) and Exponential Decay
(based on Shepard (1987)). The weight functions are defined in Equations 4.13, 4.14 and
4.15, respectively. w; is the weight of the neighbors at the jth distance (1 < j < k) and d;
denotes the distance from these neighbors to the test instance. € is a small constant® which
avoids division by zero, « is a parameter that influences the slope of the decay function
and [ is set to 1 in the TiMBL implementation.

Gdi if dy, £ d
) dp—d k 1 4.1
i {1'“ it dy = dy (4.13)
1
= 4.14
'U)] dj =+ € ( )
w; = e*adf (415)

4.1.2 The IGTree algorithm

As the previous sections showed, the IB1-IG algorithm is a very flexible tool. However it
has the disadvantage that while learning is relatively fast (as it just consists of storing all

3¢ is defined by the C compiler as the smallest number for which 1+ € # 1.
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1 2 3 4 5 class
-1 arrived - John NP NP-SBJ John arrived on Friday.
1 arrived on Friday PNP PP-TMP
-1 depends - Peter NP NP-SBJ Peter depends on Mary.
1 depends on Mary PNP PP-CLR
-1 saw - Mary NP NP-SBJ Mary saw John on Monday.
1 saw - John NP NP-0BJ
2 saw on Monday NP PP-TMP
-1 left - Peter NP NP-SBJ Peter left at midnight.

1 left at midnight PNP PP-TMP

Figure 4.1: Some toy instances for finding GRs and the sentences they are derived from.

instances and computing the feature weights), testing is rather slow. Although internally,
testing is implemented more efficiently than a sequential comparison of the test instance
to all training instances (Daelemans et al., 2001), it might still be too slow for practi-
cal applications. Therefore Daelemans, Van den Bosch, and Weijters (1997) introduced
[GTree, a fast approximation of IB1-IG. The training instances are stored in an oblivious
decision tree. An oblivious decision tree is one in which each level contains tests on the
same feature (as opposed to e.g. C4.5 (Quinlan, 1993) in which different branches of the
tree can test different features at the same level). In IGTree, features are associated with
levels in the tree according to one of the weighting schemes introduced in Section 4.1.1.2,
with the highest-weighted feature at the top. However while in IB1-IG the relative differ-
ences between the weights are important, IGTree only uses the ordering they induce. As
in all decision trees, branches in the tree are annotated with a feature value. Every path
in the tree from the root to some node represents the subset of all the training instances
for which the features corresponding to the levels have these values. Each node in the tree
carries the class distribution of the training instances it represents. The class with the
highest frequency in this distribution is the node’s default class. Figures 4.1 and 4.2 show
an example.

During testing, the tree is traversed from the root downwards, following the branches
that match the test instance’s feature values. If a leaf node is reached or all branches
downwards mismatch (e.g. due to a previously unseen feature value), the node’s default
class is returned as classification of the test instance. The tree can be made smaller
without effect on classification by recursively pruning each leaf node whose default class
is the same as its parent’s default. Especially for large data sets, IGTree can be orders
of magnitude faster in testing than IB1-IG, as testing time is maximally proportional
to the number of features times the (average) branching factor, whereas testing time of
IB1-1G is proportional to the number of features times the number of instances. The
downside is that IGTree usually performs worse than IB1-IG if there are several features
with similar weights, or if the features with the highest weights regularly have values or
value combinations in test instances that did not occur in training.
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Figure 4.2: The IGTree for the toy instances. The feature order is 1, 3, 5, 4, 2. The class
distributions on nodes are suppressed, only the default class is shown. All the dashed parts are
deleted during the pruning phase.

4.1.3 The hybrid TRIBL

As a compromise between classification speed and classification accuracy, Daelemans, Van
den Bosch, and Zavrel (1997) introduced the hybrid TRIBL. This algorithm has an extra
parameter q. For the ¢ highest weighted features, an IGTree is built. Each leaf of the tree
points to an instance base of all the instances that are represented by this node. During
testing, first the IG'Tree part is traversed, then an IB1-IG-style search is performed on the
instance base belonging to the node that was reached, if any. All extra options that can be
applied to IB1-IG (like MVDM, distance weighted class voting etc.) can also be applied
to this part of the TRIBL data structure. However the problem of unseen values/value
combinations in testing remains for the IGTree part. A rule of thumb is to set ¢ to the
level where the relative difference between feature weights starts to become small.

4.1.4 Summary

We introduced the MBL algorithms that are implemented in the TiMBL software package.
IB1-1G is the most flexible one, supporting four feature weighting and four class voting
schemes, three similarity metrics, including one for numeric features, and the k£ parameter
to control the amount of evidence considered. IGTree is the fastest algorithm of the three
but supports only feature ordering. The hybrid algorithm TRIBL allows the user to control
the trade-off between performance and speed. Previous applications (e.g. chunking) have
shown that the algorithms can handle large number of instances with many features, feature
values and classes in reasonable time and with manageable memory requirements. This is
an important prerequisite for our task. We saw in Chapter 2 that there are many possible
information sources for finding GRs (which translates into many features), that words
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are one of them (which translates into many values for at least some features) and that
there are many different types of GRs (see e.g. Section 2.2.1 for semantic (sub)types of
adjuncts, and Section 2.6.6 for types of complements), which translates into many classes.
In addition it is important that our algorithm can handle many instances because only in
that case will we be able to observe a statistically significant effect of the less important
information sources.

Due to a different bias, different learning algorithms are known to perform differently on
the same data. However we hope that, in general, addition of an informative feature would
increase performance for all algorithms, although probably by different amounts. Therefore
the conclusions that we draw from experiments with the MBL algorithms introduced above
should also be of interest to researchers working with other learning paradigms.

4.2 Preprocessing: restricting the search space

In Chapter 3 we described the data and the experimental setup. In the previous section,
we introduced the MBL algorithm. To give an example of the way MBL classifies new
instances, Table 4.1 shows the Nearest Neighbors of the six instances from Table 3.1 (for
our example sentence) when training on our data set (which does not contain this sentence)
using the TiMBL default setting (IB1-IG, Gain Ratio weights, & = 1, overlap metric,
majority voting). The last three rows show the distance from the test instance to the NN,
their class distribution and the classification resulting from majority voting (which in this
case is simple as all NN agree on the class).

The first row of Table 4.2 shows results if we apply TiMBL with the default settings to
the data in a tenfold cross validation experiment. The sixth and seventh column show the
amount of RAM and the CPU time (in hours and minutes) needed. TiMBL allows to save
the instance base in its compressed internal format to disk after training and to read it
back into RAM for testing. This option was used and the maximal amount of RAM needed
for any of the ten folds during testing was noted (using the UNIX command ps). This
information is useful if one wants to design practical applications, to get an idea of the
hardware needed. Time is the time needed on a Pentium III, 733 MHz, 1024 MB RAM,
133 MHz SDRAM, for the complete tenfold cross validation experiment and was measured
with the UNIX command time.* The precise values are less relevant but what is important
is the proportional increase or decrease in time when testing various non-default settings
or new features.

The eighth to tenth column of Table 4.2 show the performance of the experiment. The Fjy
score is already much higher than any of the baselines from Table 3.2. Precision is slightly
higher than recall. This is due to the overwhelming majority of instances with the default
“no-relation” class. As we can see in the second and fourth column of Table 4.2, only about

4This time includes system and user time. Note that it also contains the time for saving and reading
back the instance base which is not strictly necessary.
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features | Nearest Neighbors |
focus # | 1 104144 272606/... | 272607/... 289015 182360/ ... 494881/...
verb # | 2 104158 272610/... | 272610/... 289013 182356/... 494873/...
dist. 3 -5 -3 -2 +1 +2 +3
VCs 4 0 0 0 0 0 0
verb 5 join elected/ elected/ join viewed/ vote/
succeeds/ | succeeds/ touts/ redeem/
describes/ take
defines
prep. 6 - - - - - at/of/
from
con- word 7 - , years join offering/ meeting/
text service/ stock/
-1 flunky/ steelmaker
failure
PoS 8 - , NNS VB NN NN
chunk 9 - - NP VP NP PNP
prep- 10 - - - - as -
word | 11 Kemper years old sort defense/ 13/
focus hour/ 8/
chunk one/ 31
company
PoS 12 NNP NNS JJ NN NN CD
chunk | 13 NP NP ADJP NP PNP NP
prep. 14 - - - of - -
word | 15 , old , club that/
you/
con- who/
text that
+1 PoS | 16 , 77 : NN WDT]
PRP/
WP/
wDT
chunk | 17 - ADJP - PNP NP -
NN distance 0.084703 0.046646 | 0.046646 0.183440 0.328053 0.258882
NN distribution NP-SBJ: 1 -1 25 -1 29 NP-OBJ: 1 | PP-CLR: 4 | NP-TMP: 3
classification NP-SBJ - - NP-OBJ PP-CLR NP-TMP

committee
of Manhattan Life Insurance Co. ...
investment club

Table 4.1: The Nearest Neighbors of the instances in Table 3.1, their distance, their class
distribution (by coincidence always unanimous) and the resulting classification (which in these
cases is also the correct class). Mismatching feature values are marked in italics. Some of the
sentence parts from which these neighbors are derived (verb and focus head marked in bold
face): Kemper, the biggest holder of senior SCI TV bonds, has refused to join the bond-holders
... Mr. Conway, 42 years old, was elected chairman, president and chief executive
he also gave Mr. Peterson $50,000 to join a sort of
, analysts have viewed the rights offering as a takeover defense that ...
Stockholders will vote on the proposal at a meeting Dec. 13.
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120.000 of the 556.000 instances actually encode a relation. This makes the learner rather
cautious about predicting relations. It also means that most of its work (as measured by
the time and memory requirement) is invested into instances which do not really count for
the final performance. In the following we therefore develop a preprocessor to reduce this
work.

On the algorithmic level, the learner classifies instances. On the conceptual level however,
the task is a search task: the search for grammatical relations of verbs in a sentence. The
instances define the search space. As there is only one verb chunk in our example sentence
from Figure 3.18 and the sentence is relatively short, the number of instances in Table 3.1
is rather low. But in general, in a sentence of n chunks, of which m are verbs, we would
need to generate m x (n — 1) instances. On average a sentence of k tokens (words plus
punctuation) contains 0.5 X k chunks, of which 0.1 x k£ are verb chunks. Thus we would
generate 0.05k? — 0.1k instances. Although this is quadratic, it does not sound too bad:
for the average sentence length of 23.7 tokens, we would generate 25.7 instances. Still, the
further apart two chunks are, the less likely it is that they are related. And the further
apart two chunks are which have a relation, the less likely it is for the learner to find
it. Thus using more instances might in fact not even increase performance. Therefore
we tested whether we could ignore the instances with the most “distant” chunk pairs (i.e.
restrict the search space) without hurting performance. The first question then is: what
is “distant”? The preliminary feature representation in Section 3.1.3 already contains two
distance measures: distance in elements (1 meaning adjacent) and distance in number of
intervening verb chunks.

Table 4.2 shows results for various values of both distance measures. A restriction on
elements of i/j means that the focus chunk may maximally be the ith element to the left
or the jth to the right of the verb chunk. A restriction on verb chunks of i/j means that
there may be maximally 7 intervening verb chunks between a focus chunk to the left of the
verb, and j between a focus chunk to the right of the verb chunk. Table 4.2 shows how
severely various values restrict the search space in terms of instances, absolute (column 2) as
well as in percents (column 3) of the number of instances when not applying any restriction
and in terms of relations that are covered by the (restricted) search space, absolute (column
4) as well as in percents (column 5). The number of instances is correlated to memory and
time requirements (columns 6 and 7). The number of relations covered corresponds to the
upper bound on the theoretically possible recall.

We see that the distance in elements places a much more severe restriction on the search
space than the distance in verb chunks. It is for this reason that we tested only sym-
metrical restrictions (i = j) for the former but also asymmetric ones for the latter. In
general, a smaller search space leads to a higher precision but a lower recall. This is the
precision/recall trade-off known from many problems. The best Fj; values are reached with
a 6/6, 7/7 or 8/8 restriction on elements or a 1/0 restriction on verb chunks respectively.
The latter achieves F = 74.40 which is a significant improvement (p < 0.01, ¢ = 2.954)
over the performance without any restriction. The percentage of instances fulfilling the
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‘ H # inst. ‘ % inst. ‘ # rel. ‘ % rel. H MB ‘ h:m H precision ‘ recall ‘ Fj ‘
no restriction (baseline)
| 555539 | 100.00 | 119836 [ 100.00 || 154 [ 2:30 | 75.77 | 72.19 | 73.94
restriction on elements
1/1 || 90423 16.27 | 70139 | 58.52 | 31| 0:07 86.98 51.24 | 64.49
2/2 || 155545 | 27.99 | 91603 | 76.44 || 48 | 0:15 83.66 62.98 | 71.86
3/3 | 215738 | 38.83 | 100785 | 84.10 | 64 | 0:24 81.39 66.81 | 73.38
4/4 | 270769 | 48.73 | 106169 | 88.59 | 78 | 0:32 80.03 68.74 | 73.95
5/5 || 319245 | 57.46 | 109928 | 91.73 || 91 | 0:39 79.15 70.03 | 74.31
6/6 || 360716 | 64.93 | 112581 | 93.94 || 101 | 0:48 78.43 70.83 | 74.44
7/7 || 396287 | 71.33 | 114545 | 95.58 || 111 | 0:56 7787 | 71.31 | 74.45
8/8 || 426206 | 76.71 | 115935 | 96.74 | 119 | 1:05 77.49 71.65 | 74.45
restriction on verb chunks

0/0 || 285587 | 51.40 | 110630 | 92.31 83 | 0:49 78.40 70.56 | 74.27
0/1 | 364611 | 65.63 | 112512 | 93.88 | 104 | 1:08 77.92 70.78 | 74.17
1/0 || 361342 | 65.04 | 115650 | 96.50 || 103 | 1:06 77.20 71.79 | 74.40
1/1 || 440366 | 79.26 | 117532 | 98.07 || 123 | 1:27 76.71 71.99 | 74.27
1/2 || 476005 | 85.68 | 117860 | 98.35 || 134 | 1:41 76.59 71.98 | 74.21
2/1 || 475892 | 85.66 | 118922 | 99.23 || 133 | 1:40 76.24 | 72.13 | 74.13
2/2 || 511531 | 92.07 | 119250 | 99.51 || 143 | 1:52 76.20 72.15 | 74.12
3/3 || 540075 | 97.21 | 119693 | 99.88 || 151 | 2:11 76.00 72.18 | 74.04

87

Table 4.2: Different ways of reducing the search space. All experiments use TiMBL’s default

setting (IB1-IG, Gain Ratio, overlap, k = 1, majority voting).
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[vp PACIFIC GAS & ELECTRIC CO. |, [yp San Francisco | , [yp electric , gas
and water supplier | , [vp annual sales | [yp $ 7.6 billion | , [vp some minor damage |
{pnp to headquarters } , [yp undetermined damage | {pnp to four nearby substations }
, [vp severe structural damage | {pyp to a major power plant } {pyp at Moss Landing }
, [vp extensive damage | {pyp to gas lines and electric lines } , [xp 400,000 residences |
{pnp without electricity } and [yp 69,000 ] { pxp without gas } , [y can not reconnect |

[vp electricity | [spag until | [xp it | [vp is | [apsp certain | [yp there | [yp are | [yp no
gas leaks | , [yp no predictions | [pp on | [apyp when | [yp this | [yp will happen | .

[vp Other technology stocks | [yp that | [yp were | [apsp weaker | [yp included | [yp Intel |
y [NP which ] [VP fell ] [NP 1 ]_/4 ] {PNP to 33 1/2 } {PNP on 1.9 million shares } y
[vp Mentor Graphics | , [apvp down | [vp 3/4 ] {pnp to 16 1/4 } {pnp on 1.6 million
shares } , [yp Sun Microsystems | , [yvp which | [yp slipped | [vp 3/8 ] {pnpto 18 1/4 } |
and [yp MCI Communications | , [4pyp down | [vp 1] {pyp to 42 3/4 } .

Figure 4.3: Between the bold face chunks: A subject relation spanning 28 elements and an
object relation spanning 24.

restriction is nearly the same for 6/6 and 1/0 (64.93% vs. 65.04%). The percentage of
relations included in these instances however is more similar between 8/8 and 1/0: 96.74%
vs. 96.50%. This means that the restriction on verb chunks is slightly more effective in
excluding non-relation instances. As its time and memory requirements are also within
the range of the 6/6 to 8/8 restriction, we chose to use the 1/0 verb chunk restriction for
all following experiments. It can be thought of a preprocessor that classifies all instances
that do not fulfill the requirement directly as “no relation” and invokes the real machine
learning classifier for the others. This decreases the memory needed from 154 to 103 MB
and the time from two and a half to one hour, which is clearly worthwhile.

For the following sections, readers should keep in mind, first, that the upper bound on recall
is 96.50%, and second, that this is not a principled but a practical decision. Indeed we could
always return to more/all instances, although using all data slightly decreases performance
(from 74.40 to 73.94). In fact, it is a good sign that performance decreases only this little,
given that most of the additional data is “useless” in the sense that very few of its instances
(2.16%) indeed encode relations. As a concluding remark on “distant” relations, let us have
a look at three extreme examples from the Wall Street Journal Corpus. Figures 4.3 and
4.4 show relations spanning many elements (chunks plus isolated words/punctuation) or
many verb chunks respectively. As the relations in the second and third example span
too many verb chunks, they are handled by our preprocessor and (incorrectly) classified as
“no relation”. The first example is classified by the Memory-Based Learner as a subject
relation, which is correct.
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[vp The man | [yp who | [vp wore | [prr out | [vp his shoes | [y p wandering | { pyp around
Guadalajara } {pyp in 1958 } , [y p describing | {pnp in his travel book } “ [yp Viaje a la
Alcarria | 7 [apyp how | [vp he | [yp scrounged | {pnp for food } and [y p stayed | {pnp in
squalid inns } , [4pvp now | [yp tours | [yp Spain | {pyp in a Rolls-Royce } .

Figure 4.4: Between the bold face chunks: A subject relation spanning 5 verb chunks (in italics).

4.3 Memory-Based Learning: practice

In this section we will test the algorithms and parameters that we introduced in Section 4.1
on our data (restricted to a distance of 1/0 verb chunks, as explained in the previous
section). We will start with the default setting that was also used in the previous section.
This is: IB1-IG, Gain Ratio weights, the overlap metric, £ = 1 and majority voting. We
will then change one parameter at a time (Sections 4.3.1 to 4.3.6) to find its optimal
value, which will be used in subsequent experiments. It is clear that this might not result
in the overall best parameter setting, as some parameters are known to interact (e.g. k&
and MVDM, or k and distance weighted class voting). However an exhaustive search
for the best setting is infeasible (cf. Section 3.2.1). The best setting found will be used
in subsequent chapters in which we try to answer our central research question: what
information is important for finding grammatical relations and why?

There are three reasons for approaching this question with the best parameter setting
instead of the default one. First, we want our results to be also of practical value. Next to
the data representation, parameter settings are a factor that influences performance and
thus needs to be optimized. Second, using a suboptimal parameter setting means that the
learner is not using the information contained in the data in an optimal way. Then there
is a high probability that the new features (i.e. information) we add will also not be used
optimally and that this influences our judgement about them.® Third, finding out why
certain parameter settings perform better than others is also interesting from a theoretical
point of view. This analysis is carried out in Section 4.3.7.

4.3.1 Feature weights

As explained in Section 4.1.1.2, all features have equal weights in IB1, but for IB1-IG,
TiMBL implements four different weight schemes. Table 4.3 shows the performance of
each of the weightings. Gain Ratio (the default) is best but, perhaps surprisingly, using
no weights performs second best. The difference (74.40 vs. 74.03 Fj) is significant however
(p < 0.05, t = 2.288). The other three weightings perform even worse. Chi-square is worst
(59.81), Shared Variance is second worst (67.45) and Information Gain is in the middle
(72.00).

5Tt is clear that there might still exist informative features that the algorithm is unable to exploit but
using optimal parameters at least reduces this risk.
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‘ algorithm ‘ weights H MB ‘ h:m H precision ‘ recall ‘ Fp ‘
IB1 none 103 | 8:33 77.66 | 70.72 | 74.03
Info Gain 103 | 38:10 72.48 | 71.54 | 72.00
IB1-IG | Gain Ratio (default) | 103 | 1:06 7720 | 71.79 | 74.40
Chi-square 103 | 69:09 59.38 | 60.24 | 59.81
Shared Variance 103 | 5:01 67.98 | 66.93 | 67.45

Table 4.3: Performance with different feature weightings. The default, Gain Ratio, performs
best. (1/0 restriction on intervening verb chunks, IB1(-IG), overlap metric, & = 1, majority
voting)

‘ global metric ‘ weights H MB ‘ h:m H precision ‘ recall ‘ Fg ‘
overlap (default) | Gain Ratio (default) || 103 | 1:06 || 77.20 | 71.79 | 74.40
MVDM none (default) 107 | 9:56 78.74 | 73.73 | 76.15
Gain Ratio 107 | 3:18 79.32 | 74.20 | 76.67

Table 4.4: Performance with different global metrics. As the default weighting for MVDM is
different from that for overlap, we tried two different weightings in that case. (1/0 restriction on
intervening verb chunks, IB1-IG, k£ = 1, majority voting)

The fourth column of Table 4.3 shows that the run times with the five weightings differ
dramatically. However this is due to the implementation in which the internal organization
of the instance base is based on a feature order according to the Gain Ratio divided by the
number of feature values (see Daelemans et al. (2001) for details). This means that the
more similar a weight ordering is to this internal order, the faster testing is performed. In
following experiments we will continue to use Gain Ratio weights.

4.3.2 Global metric

We tested two global metrics: overlap and MVDM.% Table 4.4 shows the results. MVDM
without weighting (which is the default for MVDM) performs significantly (p < 0.001, t =
10.793) better than the default overlap metric (76.15 vs. 74.40). MVDM with Gain Ratio
performs even better (76.67, p < 0.001, ¢ = 3.886). We will therefore use MVDM (with
Gain Ratio weights) in all following experiments unless noted otherwise. Unfortunately
this triples the run time of the experiment. Memory requirement rises only slightly, due
to storage of MVDM tables.

4.3.3 The number k of Nearest Neighbors

As Table 4.5 shows, using larger values for £ dramatically improves precision and therefore
Fz on our data set (from 76.67 to 79.62). We will therefore use & = 9 in all following

6See Section 4.3.4 about using the numeric metric for some individual features.
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‘ k H MB ‘ h:m H precision ‘ recall ‘ Fp ‘
107 | 3:18 79.32 74.20 | 76.67
107 | 4:26 84.43 74.29 | 79.03
107 | 4:52 85.29 74.43 | 79.49
107 | 5:11 85.67 74.26 | 79.56
107 | 5:26 85.97 74.14 | 79.62
1 107 | 5:40 86.10 73.99 | 79.59
13 || 107 | 5:52 86.12 73.76 | 79.46

= O] O W —

Table 4.5: Performance with different values of &, the number of Nearest Neighbors considered.
To prevent many ties, we used only uneven values of k. (1/0 restriction on intervening verb
chunks, IB1-IG, Gain Ratio, MVDM, majority voting)

experiments unless otherwise noted. However this again decreases speed.

4.3.4 Feature-specific metrics

In Section 4.3.2, we saw that using MVDM as a global metric improves performance.
However it might still be the case that another metric is better suited for some individual
features. For most of the features, the alternative metric is overlap. The distance feature
(number 3) and the “intervening verb chunks” feature (4) however can easily be inter-
preted as numeric features.” Table 4.6 shows the results of using the alternative metric
for individual features (MVDM still being the global metric, i.e. for the other features).
We treated features that contain the same kind of information (e.g. words, or PoS) as one
group. We see that a numeric metric for the distance feature performs much worse than
MVDM (see Section 4.3.7 for a discussion). It also takes much longer. For the (binary)
intervening verb chunks feature, the numeric metric does not change performance, but
increases speed. Using overlap decreases performance for all individual (types of) features,
except for the “intervening verb chunks” feature. The difference is statistically significant
only for the words and PoS (p < 0.001, ¢ = 9.382/t = 9.760) and for the chunk types
(p < 0.05, t = 2.531). In addition overlap doubles the run time for the word features.
This means that we could use overlap for the distance, the intervening verb chunks, the
verb and the prepositions features. This would also increase speed. However using MVDM
for these does not harm performance, and as it is much easier to use one metric for all
features, we will continue to use MVDM only. For practical applications, overlap would be
an attractive option for these features.

"Due to our search space restriction, the “intervening verb chunks” feature (number 4) can only take
the values 0 or 1. Therefore it is rather a binary feature than a true numeric one.
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‘ feature-specific metric H MB ‘ h:m H precision ‘ recall ‘ Fg ‘
| none (all MVDM) | 107 [ 5:26 | 85.97 | 74.14 | 79.62 |
distance (3) as numeric 107 | 7:16 || 80.93 | 70.05 | 75.10
intervening verb chunks (4) as numeric || 107 | 4:32 || 85.97 | 74.14 | 79.62
distance (3) as overlap 107 | 3:04 | 86.03 | 73.75 | 79.42
intervening verb chunks (4) as overlap || 107 | 4:34 || 85.97 | 74.14 | 79.62
verb (5) as overlap 106 | 4:16 | 85.37 | 74.28 | 79.44
prepositions (6,10,14) as overlap 107 | 4:44 85.87 | 73.77 | 79.36
words (7,11,15) as overlap 104 | 9:49 83.92 73.10 | 78.14
PoS (8,12,16) as overlap 107 | 2:23 84.97 | 72.12 | 78.02
chunk types (9,13,17) as overlap 107 | 2:49 85.76 | 73.52 | 79.17

Table 4.6: No feature-specific metric performs better than global MVDM (1/0 restriction on
intervening verb chunks, IB1-IG, Gain Ratio, kK = 9, majority voting)

‘ distance weights H MB ‘ h:m H precision ‘ recall ‘ Fy ‘
none (majority voting, default) 107 | 5:26 85.97 | 74.14 | 79.62
Inverse Distance 107 | 5:01 85.76 75.03 | 80.04
Inverse Linear 107 | 5:01 84.28 75.47 | 79.63

Exponential Decay | decay factor « = 2 || 107 | 4:48 85.58 74.71 | 79.78

5 || 107 | 5:01 85.61 74.75 | 79.81
10 || 107 | 4:48 85.67 74.90 | 79.92
20 || 107 | 4:48 85.61 75.20 | 80.07
30 || 107 | 4:48 85.41 75.39 | 80.09
40 || 107 | 4:48 85.07 75.45 | 79.97

Table 4.7: Performance of different distance weighted class voting schemes. Inverse Distance
and Exponential Decay are better than majority voting. (1/0 restriction on intervening verb
chunks, IB1-IG, Gain Ratio, MVDM, k = 9)

4.3.5 Distance weighted class voting

In Section 4.3.3 we saw that larger values for £ are better for our task, i.e. that basing the
decision on more Nearest Neighbors is better. Intuitively, however, the nearer a neighbor
the more important it should be. This is achieved by distance weighted class voting.
Table 4.7 shows results for different methods, one of them parametrized. We note that all
methods perform better than majority voting. The improvements with Inverse Distance
and Exponential Decay with factor 30 are even statistically significant (p < 0.01, ¢ =
2.695/t = 3.118). We will use Exponential Decay with oz = 30 in all following experiments
unless otherwise noted as it achieves the best performance and is also faster than the other
alternatives.
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‘ algorithm H MB ‘ h:m H precision ‘ recall ‘ Fp ‘
IB1-IG (default) 107 | 4:48 85.41 75.39 | 80.09
IG-Tree 21 | 0:19 77.33 68.31 | 72.54

TRIBL | threshold (default) 274 | 4:40 | 85.41 | 75.39 | 80.09
274 | 4:06 85.38 75.33 | 80.04
274 | 1:34 85.30 75.04 | 79.84

1
2
3
4 || 274 | 0:56 84.55 74.55 | 79.24
5
6

274 | 0:55 84.53 74.56 | 79.23
273 | 0:49 84.19 74.47 | 79.03

Table 4.8: Performance of different algorithms. As TRIBL has an extra theshold parameter, we
also tested various values for this. (1/0 restriction on intervening verb chunks, Gain Ratio; for
IB1 and TRIBL: MVDM, k = 9, Exponential Decay weighted class voting with a = 30)

4.3.6 Algorithms

As explained in Section 4.1, our MBL implementation allows for three different algorithms:
the default IB1(-IG), IGTree and the hybrid TRIBL. Table 4.8 shows the performance of
the algorithms, with various threshold values for TRIBL. We see that IB1-IG and TRIBL
with ¢ = 1 perform best (80.09). IGTree is much faster and needs much less memory
but scores about 7.5 points worse. As was to be expected, the performance of the hybrid
TRIBL is in between those of IB1 and IGTree. On the other hand, TRIBL with ¢ = 2 does
not perform significantly worse (¢ = 0.329) than IB1-IG and it is a bit faster. However,
it needs much more memory. We will continue to use IB1-IG for the experiments in the
following chapters, but for practical applications for which speed is important, TRIBL
would be a better alternative.

4.3.7 Discussion

In the previous sections we presented the effects of TIMBL’s parameters on performance.
In this section we will discuss why certain options work and others do not, and what this
tells us about the task of finding grammatical relations.

4.3.7.1 Feature weights

The five different feature weighting schemes resulted in quite different performances (cf.
Table 4.3, p. 90). Figure 4.5 shows the actual weights on our (restricted) data set. The
y-axis scale is not important in this comparison, only the relative height of a bar is. We
see that the weights are quite different. Information Gain and Chi-square predict the
focus word feature (wo) to be the most important feature while Gain Ratio and Shared
Variance favour the focus chunk type (ch). This difference can be explained by the fact
that Gain Ratio and Shared Variance are variants of Information Gain and Chi-square in
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Figure 4.5: Feature weights assigned by Information Gain, Gain Ratio (left), Chi Square and
Shared Variance (right) and number of values per feature (two times at bottom, with logarithmic
y-axis). See Table 3.1 on page 72 for the list of features. The first two features (“administrative”
features) are ignored.

which weights are normalized so that features with many values are not overestimated.
The bottom of Figure 4.5 shows the number of values per feature.

There are many more differences between the four weightings. Chi-square, which performs
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L [ 5[ —4[ 8] —2[ -t] 1] 2[ 3] 4[] 5]
=5 0] 002]0.09]0.19] 121 | 1.65 | 0.89 | 042 | 0.24 [ 0.18
—4|[0.02] 0] 0.06] 019 | 1.21 | 1.63 | 0.88 | 0.40 | 0.22 | 0.17
=3[ 0.09| 006 0] 0.19 | 1.20 | 1.58 | 0.84 | 035 | 0.20 | 0.16
—2 ([ 0.19 [ 0.19 | 0.19 | 0 | 1.02 | 1.66 | 0.91 | 0.43 | 0.27 | 0.28
—1 | 121 | 121 | 1.20 | .02 | 0] 1.65 | 1.27 | 1.28 | 1.29 | 1.30

1]/ 1.65 | 1.63 | 1.58 | 1.66 | 1.65 | 0| 1.17 | 1.44 | 1.55 | 1.58
2 [[ 089 | 0.88 | 0.84 | 0.91 | 127 | 1.i7 | 0] 052 0.70 | 0.76
3 [ 042 | 040 | 0.35 | 0.43 | 1.28 | 1.44 | 0.52 | 0| 0.20 | 0.26
4024 [ 022 | 020 | 0.27 | 1.29 | 1.55 | 0.70 | 020 | 0 | 0.08
5[ 018 | 0.17 | 0.16 | 0.28 | 1.30 | 1.58 | 0.76 | 0.26 | 0.08 | 0

Table 4.9: MVDM for the most frequent values of the distance feature. The lowest numbers
(< 0.1) are marked in italics.

worse, does not agree on any of the four most important features with Gain Ratio, which
performs best (wo, wo+1, wo—1, verb vs. ch, pr, dist, PoS). In particular, both Chi-
square and Shared Variance give too low a weight to the distance feature (dist), which, as
we already saw when computing baselines (Table 3.2, p. 75), is very informative.

This difference might be due to the fact that Chi-square adds only very little to the feature
weight sum if a hapax value (i.e. one that occurs only once) occurs with the default class,
but adds a lot if the hapax value occurs with a non-default class (because the E,,, factor
is different). Information Gain treats both cases alike (because the entropy is zero). Chi-
square as well as Shared Variance give low weight to the focus prepositional feature (pr)
which ends up second-highest in Gain Ratio through the normalization.

In summary the focus chunk type, its preposition and the distance seem to be the most
important information sources for finding grammatical relations. Although Gain Ratio
seems to estimate feature weights better than the other weighting schemes, it does not
perform much better than using no weighting at all. This seems to suggest that Gain
Ratio is a far from optimal weighting scheme. A known flaw of all these weightings is that
they compute the weight of each feature independently, whereas we know that the features
are far from independent. For example a head noun house necessarily means that the PoS
is NN and the chunk type is probably NP and maybe PNP.

4.3.7.2 Metrics

The MVDM metric increases performance over the overlap metric by more than two percent
(Table 4.4, p. 90). This is mainly due to its better treatment of word and PoS-valued
features (Table 4.6, p. 92). In addition, it is also much better than a numeric treatment
of the distance feature. We will therefore take a closer look at the actual value differences
for selected values of these features. Recall that low numbers mean that the two feature
values are similar, high numbers mean they are dissimilar.

Table 4.9 shows the computed value differences for the distances —5 to 5 (five elements
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| | NN|VBZ|[NNP | VBN |[PRP [ VBD| JJ[NNS| CD| RB

NN 0| 077 | 035 0.75 | 0.55 | 077|070 | 0.11 | 0.41 | 0.78
VBZ || 0.77 0| 067 | 0.10| 089 | 0.05|0.79 | 0.76 | 0.84 | 0.81
NNP || 0.85 | 0.67 0| 0.66 | 0.35| 067|070 | 0.28| 0.65 | 0.78
VBN (| 0.75 | 0.10 | 0.66 0| 088 | 0.11 |1 0.76 | 0.74 | 0.83 | 0.80
PRP || 0.55 | 0.89 | 0.35| 0.88 0| 089 0.82]| 048 | 0.74| 0.87
VBD || 0.77 | 0.05| 0.67 | 0.11 | 0.89 01079 076 | 0.85 | 0.82

JJ 070 | 0.79 | 0.70 | 0.76 | 0.82 | 0.79 0] 069 | 0.74 | 0.75
NNS || 0.11 | 0.76 | 0.28| 0.74 | 0.48 | 0.76 | 0.69 0] 048] 0.78
CD 041 084 | 065 | 0.83| 074 | 0.85|0.74 | 0.48 01081
RB 0.78 | 081 | 078 | 080 | 087 | 0.82 | 0.75 | 0.78 | 0.81 0

Table 4.10: MVDM for the most frequent values of the focus PoS feature. The lowest numbers
(< 0.5) are marked in italics.

to the left to five to the right). The largest values (around 1.6) all occur between 1 and
the negative distances. This is due to the configurational nature of English in which the
position directly after the verb occupies a special place. Objects, for example, cannot
occur in front of the verb.® However they sometimes occur at position 2, e.g. if a verb
particle intervenes. The lowest values can be found in the corners of the table, between
values —5/ — 4, —4/ — 3 and 5/4. The further away the position, the less pronounced
preferences for certain relations are, and the more often the class will be “no relation”.
This results in the difference between —5/5 being roughly the same as between —5/ — 2.
These observations also explain why a numeric treatment of the distance feature does not
perform well: it will judge the difference between —1/1 to be as big as that between —5/—3
and the difference between —5/5 much bigger than that between —5/ — 2. Eisner (1996a)
achieved a similar effect as the MVDM encoding by manually mapping the distance values
into the groups 1, 2, 3-6, and 7—oc.

Table 4.10 shows some value differences for the focus PoS feature. At one level the differ-
ences reflect major part-of-speech groups: NNS (plural noun) is similar to NN (singular
noun), NNP (proper noun), PRP (pronoun), CD (numeral) but dissimilar to VBx (verbs),
JJ (adjective) or RB (adverb). At a finer level NNS is more similar to NN and NNP than
to PRP and CD and at a yet finer level it is more similar to NN than to NNP. Thus the
MVDM values encode information about a hierarchy of PoS. Eisner (1996a) achieves a
similar effect by manually grouping PoS at two levels and using these “short tags” and
“tiny tags” for back-off probabilities. Most other parsing work however treats the PoS as
unstructured.

The value differences for the focus word (Table 4.11) implicitly also encode this PoS hi-
erarchy, e.g. it is similar to they and he and slightly less similar to company. However
they also encode semantic knowledge, e.g. the three nouns year, million and company are
pairwise dissimilar whereas the noun company and the pronoun it are similar. Similarity

8In a wh-construction, the wh-element has a non-local object relation to the verb. However, we are
only concerned with local relations here.
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| | it][said| as| be | who | which | they | year | million | that | company | he |
it 0085|083 | 0.85] 0.85 085 | 0.17 | 0.82 0.68 | 0.81 0.18 | 0.18
said 0.85 0054 081 | 0.05 0.05) 0.83 | 0.54 0.87 | 0.41 0.71 | 0.86
as 0.83 | 0.54 0] 054 | 0.54 0.54 | 0.84 | 0.49 0.80 | 0.52 0.69 | 0.86
be 0.85 | 0.31 | 0.54 01 032 0.82 | 0.84 | 0.55 0.88 | 0.42 0.72 | 0.86
who 0.85 | 0.05 | 0.54 | 0.32 0 0.01 | 0.84 | 0.54 0.88 | 0.41 0.71 | 0.86
which 0.8 | 0.05 )| 0.54 | 0.32 | 0.01 0| 0.84 | 0.54 0.88 | 0.41 0.71 | 0.86
they 0.171 0.83 | 0.84 | 0.84 | 0.84 0.84 0| 0.83 0.84 | 0.81 0.27 | 0.02
year 0.82 | 0.54 | 0.49 | 0.55 | 0.54 0.54 | 0.83 0 0.80 | 0.52 0.67 | 0.85
million 0.68 | 0.87 | 0.80 | 0.88 | 0.88 0.88 | 0.84 | 0.80 0| 0.83 0.70 | 0.84
that 081 | 0.41] 052 | 0.42 | 0.41 0.41] 0.81 | 0.52 0.83 0 0.67 | 0.83
company || 0.18 | 0.71 | 0.69 | 0.72 | 0.71 0.71 | 0.27 | 0.67 0.70 | 0.67 0| 0.50
he 0.18 | 0.86 | 0.86 | 0.86 | 0.86 0.86 | 0.02 | 0.85 0.84 | 0.83 0.30 0

Table 4.11: MVDM for the most frequent values of the focus word feature. The lowest numbers
(< 0.5) are marked in italics.

Table 4.12: MVDM for selected singular and plural nouns of the focus word feature.

| company | companies | share | shares | year | years ]

company 0 0.15 | 0.58 0.49 | 0.67 | 0.62
companies 0.15 0| 0.57 0.51 | 0.43 | 0.54
share 0.58 0.51 0 0.71 | 0.50 | 0.52
shares 0.49 043 | 0.71 0] 079 | 0.77
year 0.67 0.57 | 0.50 0.79 0] 045
years 0.62 0.54 | 0.52 0.77 | 0.45 0

numbers for singular/plural pairs are marked in italics.

The
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‘ ‘ Monday ‘ ‘ rose ‘ ‘ persuaded ‘
0.08 | week 0.109 | climbed | 0.123 | urging
0.11 | Friday 0.194 | slid 0.172 | urge
0.126 | winter 0.217 | fell 0.218 | ordered
0.132 | night 0.225 | jumped 0.22 | permit

0.144 | month 0.233 | surged 0.224 | encouraging
0.154 | summer 0.251 | slipped 0.226 | requires
0.18 | Mondays | 0.276 | plunged | 0.226 | watching
0.194 | nights 0.279 | dipped 0.231 | teach

0.229 | afternoon | 0.285 | decreased | 0.233 | encourage
0.23 | February | 0.291 | advanced | 0.233 | marketed
0.235 | Tuesday | 0.294 | dropped | 0.236 | missed

Table 4.13: The most similar words (according to MVDM) to Monday as head of the focus
chunk, and to rose and persuaded as head of the verb chunk.

can also cross major PoS categories, e.g. who/which are very similar to said because all
three hardly ever have any relation to a verb chunk as who/which attach to nouns and said
is mostly the main verb.

Table 4.12 shows that even the singular and plural forms of the same noun are not neces-
sarily similar, e.g. share and shares are rather different. This is due to constructions like
“$ 22.26 a share” which are only possible in the singular. This and the previous example
show that MVDM encodes task-specific similarity and can therefore not be replaced by
information from general semantic knowledge bases like WordNet (Miller et al., 1990).

As a last example, Table 4.13 shows the most similar words to Monday, rose and persuaded.
The latter two words demonstrate how MVDM forms semantic clusters of verbs on the basis
of their behaviour with respect to grammatical relations. The connection between the
subcategorization and meaning of verbs was studied extensively in Levin (1993). It should
be noted that despite this intuitively correct grouping, MVDM does not help significantly
for the verb feature. Maybe its failure to do so is related to the fact that the weight of the
verb feature is so low: it is the third least important feature.

4.3.7.3 The number k of Nearest Neighbors

Increasing the number of Nearest Neighbors from 1 to 9 raises performance by nearly 3
points (Table 4.5, p. 91). A rule of thumb known from other applications of memory-
based learning says that when using the MVDM metric, it is often useful to increase k
(Daelemans et al., 2000, p.12). This is due to the fact that MVDM makes much more
fine-grained distinctions so there will typically be much fewer neighbors at each distance
than with the overlap metric. Additional experiments showed that a slightly larger & is
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‘ sentence ‘ distance ‘ class ‘
Consumer spending in Britain rose 0.1% ... the Central NP-TMP
Statistical Office estimated Friday.

“...” said Barbara May. 0.117434 | NP-SBJ

The final proration factor will be announced Monday. | 0.117542 | NP-TMP
The directors’ action, taken Oct. 10 but announced | 0.124292 | NP-TMP
Friday, ...
Likewise, certificates of deposit on average posted lower | 0.129763 | NP-TMP-CLR
yields in the week ended Tuesday.
Among the possible suitors is Italy’s Fiat S.p.A., ana- | 0.134853 | NP-TMP
lysts said last week.
“..” admits Mr. Peters. 0.134955 | NP-SBJ
“...” the Jaguar chairman asserted yesterday. 0.138952 | NP-TMP
. a stop-gap spending bill that the House Appropria- | 0.140691 | NP-TMP
tions Committee is to consider Monday.
... the Intelsat VI commercial communications satellite | 0.140792 | NP-TMP
is set to be launched Friday.

Table 4.14: The sentences belonging to a test instance (first row) and its Nearest Neighbors
(other rows). NNs are ordered by increasing distance (column 2). The last column shows the
instance’s class, i.e. the relation between the head of the verb chunk and the head of the focus
chunk (both marked in bold face).

even advantageous with the overlap metric but £ = 9 is disadvantageous. Thus most of
the advantage of the larger k£ seems to be caused by the use of MVDM.

We also looked at some of the instances that were classified incorrectly with MVDM,
k = 1 but correctly with MVDM, k£ = 9. Table 4.14 shows the sentences from which a
test instance and its Nearest Neighbors are derived. With k£ = 1 the rather exceptional
use of “May” as a last name in the first NN leads to the wrong classification (NP-SBJ).
At larger values of k£ the right class (NP-TMP) gets the majority (6 out of 9). With the
overlap metric, the instance would also be misclassified, due to the overwhelming majority
of constructions with said plus inverted subject.

4.3.7.4 Distance weighted class voting

The performance increase through the best distance weighted class voting (Exponential
Decay with o = 30) is only 0.4 (Table 4.7, p. 92). Class voting only makes sense if £ > 1.
It helps to counteract the disadvantage of large k’s (too much “noise” in the NN set) while
preserving the advantage (robustness).

This is demonstrated by the case shown in Table 4.15. The first two NNs are much more
similar to the test instance than the other seven, and have the correct class (NP-SBJ). With
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sentence | distance | class |

The issue, which is puttable back to the company Nov. NP-SBJ
1, 1994, was priced at a spread of 70 basis points above
the Treasury’s five-year note.

The noncallable issue, which is puttable back to the | 0.000000 | NP-SBJ
company Nov. 1, 1994, was priced at a spread of 62.5
basis points above the Treasury’s five-year note.

The noncallable issue, which has a one-time put Oct. | 0.003088 | NP-SBJ
15, 1999, was priced at a spread of 66 basis points above
the Treasury’s 10-year note.

A new issue, Exabyte, surged 2 1/8 from its initial of- | 0.015745 | —
fering price to close at 12 1/8.
The refunding issue, which had been in the wings for | 0.028618 | NP-SBJ
two months, was one of the chief offerings overhanging
the market ...

The Bravo Zulu award, the Navy accolade for a “job | 0.032538 | NP-SBJ
well done,” is bestowed on Federal’s workers who sur-
pass the call of duty.

The strong dollar, which reduces the value of overseas | 0.034045 | —
earnings and revenue when they are translated into
dollars, is expected to ...

The broker, Thomas Beairsto of Merrill Lynch’s Mor- | 0.038348 | —
ristown, N.J., office, refuses to discuss the matter with
a reporter, referring inquiries to Merrill Lynch officials
in New York.

The company, which reported that its loss for the fiscal | 0.039516 | —
quarter ended Aug. 26 widened from a year earlier, cut
its semiannual dividend ...

Per capita income, a widely used measure of a nation’s | 0.039623 | —
economic health, hit a record in 1988, rising 1.7% after
inflation adjustment to $13,120.

Table 4.15: The sentences belonging to a test instance (first row) and its Nearest Neighbors
(other rows). NNs are ordered by increasing distance (column 2). The last column shows the
instance’s class, i.e. the relation between the head of the verb chunk and the head of the focus
chunk (both marked in bold face).
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k =1 the test instance is classified correctly by the first Nearest Neighbor alone. With
k = 9 and majority voting however, the correct class gets outvoted by the “no relation”
class with 5 against 4. With £ = 9 and Exponential Decay voting, the vote of the first
two NNs gets much more influence than that of the other seven, so NP-SBJ “wins” with
2.71208 against 1.91036.

4.3.7.5 Algorithms

As Table 4.8 (p. 93) shows, IGTree scores worse than IB1-IG (72.54 vs. 80.09). This can
partially be explained by the fact that IGTree does not allow for most of the options that
improved performance of IB1, like MVDM, larger £ and distance weighted class voting.
But even without these options, IB1 is better (F3=74.40, cf. Table 4.3, p. 90). IGTree
usually performs worse than IB1-IG if there are several features with similar weights, or
if the features with the highest weight regularly have value combinations in test instances
that did not occur in training. This is always the case if a high-valued feature can have
unseen values, which is typically the case with word-valued features.

The same reasoning also explains why TRIBL with larger values of ¢ performs worse than
IB1-IG. It is however interesting to note that performance stays the same for ¢ = 1 or 2,
although this makes the MVDM option unavailable for the first one or two features (focus
chunk and preposition) and Table 4.6 showed that MVDM is useful especially for the focus
chunk. Apparently this handicap of TRIBL is outweighted by the advantage of a forced
match on the most important features.

4.4 Summary

In this chapter we described three Memory-Based Learning algorithms, their parameters
and details of their implementation. We then tested various settings on our relation finding
data set: feature weights, global and feature-specific metric, number of Nearest Neighbors,
distance weighted class voting schemes and algorithms. The setting that yields the best
Fp performance (80.09) is IB1-IG with Gain Ratio weighting, the MVDM metric, £ = 9
and Exponential Decay weighted class voting (o = 30). This is an important increase
over the default settings (overlap, & = 1, majority voting: 74.40). The downside of this
improvement is much slower classification: 4:48 vs. 1:06 hours.

The setting performs well because Gain Ratio recognizes the importance of the focus chunk
and the distance feature, MVDM encodes a non-linear scale of the distance and task-specific
syntactic and semantic hierarchies of words and PoS, a larger k£ increases robustness for
MVDM, distance weighted class voting lessens the effect of noise in the NN set, and IB1-
IG allows to exploit all these options for all features. The new setting will be used in all
following experiments.
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Chapter 5

Feature representation improvement

In the previous chapter we optimized the parameters of the learning algorithm. This
increased Fj from 74.40 to 80.09. We will use the optimal parameter setting in the present
chapter where we try to determine what information is important for finding grammatical
relations. We do this by varying the features of our data and testing whether performance
changes. As our preliminary features (cf. Section 3.1.3) were a somewhat arbitrary selection
out of all the information present in the history, there are many possible ways to improve
on this.

There is a conceptual difference between the information conveyed by (a set of) features and
the actual feature representation, due to the bias of the learner. To take a simple example:
suppose we want to convey information about the type of a chunk and the possible values
are NP, VP, ADVP and ADJP. We could choose to represent this information with one
feature having four possible values, or with four binary features of which exactly one must
be “true” at a time or with two binary features (cf. Section 2.1.1) or even with two or three
ternary features, which would be a redundant representation.

In practice however, it is not possible to clearly separate the value of the information from
the merit of the representation. The information value poses an upper bound on the merit
of any of its representations, but the reverse is not true: if performance does not improve
significantly when adding a certain feature this does not prove that this information is
useless, it only teaches us that either the information is useless or our algorithm cannot
exploit it properly or the effect is too small to be significant. For any practical purpose,
the three amount to the same. The solution to try all possible representations of a given
piece of information is infeasible. However, we will sometimes try several representations
of (nearly) the same information.

Despite this caveat the various ways of changing the features that we will test in this
chapter can be associated with either a change of information or a change of representation.
Using fewer features (Section 5.1) normally entails using less information unless a feature
is completely redundant. Combining several features into one (Section 5.2) or conversely
splitting one feature into several (Section 5.3) is a change of representation. Adding features

103
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Figure 5.1: Effect on the Fjg value when ignoring individual features. The Fg of 80.09 with all
features corresponds to the zero line here. The differences up to feature “VCs” are all statistically
significant with at least p < 0.01. (1/0 restriction on intervening verb chunks, IB1-IG, Gain Ratio,
MVDM, k = 9, Exponential Decay with o = 30)

(Section 5.4) entails adding information unless the features are redundant. Adding different
(sets of) features that encode similar information in different ways (cf. page 113) combines
changing information with changing representation. Adding values to an existing feature
(Section 5.5) is like adding a new feature and simultaneously combining it with an old
one. Similarly deleting values (Section 5.7) is like first splitting one feature into two and
then ignoring one of them. Although the main focus of this chapter is on testing what
information is important for finding grammatical relations, we will continue to note how
memory and run time requirements change when changing features.

As in the previous chapter, we will describe the experiments and results in the first sections,
and discuss results and their implications in the last section (5.9).

5.1 Fewer features

In this section, we will start with the easiest possibility of feature change: deleting features.
We let the algorithm ignore one feature at a time and record the decrease in performance.
Table 5.1 and Figure 5.1 show the results. At first sight, it seems that many features are
useless and can safely be ignored. However, this measure suffers from the opposite fault as
the feature weightings discussed in Section 4.3.7.1. The latter computed all weights inde-
pendently, whereas the former measures “uselessness” in the presence of all other features.
So if performance does not decrease significantly (or even increases) when ignoring either
of the four features of the right context, this does not mean that we can safely ignore all
of them at the same time, as shown in the 19th row of Table 5.1: the Fj value then drops
from 80.09 to 78.78 which is significant (p < 0.001, ¢ = 11.141). The same holds for the
prepositional, PoS and chunk type features of the left context (p < 0.001, ¢t = 3.993). We
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‘ ignored feature(s) ‘ feature # H MB ‘ h:m H precision ‘ recall ‘ Fjg ‘
none 107 | 4:48 85.41 75.39 | 80.09
dist. 3 97 | 5:34 71.11 65.52 | 68.20
VCs 41 106 | 5:44 85.14 74.81 | 79.64
verb ) 91 | 2:26 84.50 74.22 | 79.03
context —1 | prep. 6| 103 | 4:42 85.40 75.39 | 80.08
word 7T 941 2:35 83.47 | 74.08 | 78.49
PoS 8 || 101 | 5:23 85.45 75.36 | 80.09
chunk 9 || 105 | 5:56 85.49 75.26 | 80.05
focus prep. 10 || 103 | 4:58 84.27 73.07 | 78.27
word 11 90 | 2:20 82.40 71.69 | 76.67
PoS 12 || 101 | 5:07 85.51 74.97 | 79.90
chunk 13 || 106 | 7:07 84.79 74.52 | 79.32
context +1 | prep. 14 || 103 | 4:39 85.50 75.49 | 80.18
word 15 92 | 3:09 85.35 75.75 | 80.27
PoS 16 || 100 | 4:48 85.28 75.55 | 80.12
chunk 17 || 104 | 5:23 85.26 75.35 | 80.00
three of context —1 6,8,9 95| 7:14 85.17 74.63 | 79.55
all of context +1 14-17 | 78 | 3:07 83.77 | 74.35 | 78.78
two of context —1 6,8 98 | 5:40 85.45 75.35 | 80.08
three of context +1 14-16 82 | 3:04 85.08 75.76 | 80.15
five of context —1/+1 | 6,8,14-16 || 77| 3:27 || 85.11 | 75.79 | 80.18

Table 5.1: Performance when ignoring features (1/0 restriction on intervening verb chunks,
IB1-IG, Gain Ratio, MVDM, k = 9, Exponential Decay with a = 30)

can however ignore two features of the left context, or three of the right, or even all five
together. The latter result shows that information in the two context elements is mutually
independent.

Ignoring these five features decreases the memory requirement from 107 to 77 MB and run
time from 4:48 to 3:27 hours while increasing performance (insignificantly, ¢ = 0.735) from
80.09 to 80.18. We will therefore use the reduced feature set in subsequent experiments.
We could also have ignored the focus PoS with a decrease in memory requirement and only
an insignificant performance loss (t = 1.162). However run time would increase. As no
application dictates a preference, we rather arbitrarily choose to keep the focus PoS.

5.2 Combining features

We saw in the previous section that we can ignore some features without harming perfor-
mance. This effect is probably due to redundancy. If features are only partially redundant,
it might be a good idea to combine them into one feature by concatenating their values.
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‘ feature representation H MB ‘ h:m H precision ‘ recall ‘ Fg ‘

separate prep. and chunk type feature 77| 3:27 85.11 75.79 | 80.18
combined prep. and chunk type feature 77| 3:54 85.11 75.78 | 80.17

Table 5.2: Combining the prepositional and the chunk type feature of the focus (1/0 restriction
on intervening verb chunks, IB1-IG, Gain Ratio, MVDM, k£ = 9, Exponential Decay with a = 30,
ignoring 5 features)

| feature representation | MB | h:m | precision | recall | Fj |

combined direction and absolute distance 77| 3:27 85.11 75.79 | 80.18
separate direction and absolute distance 77 | 2:46 85.16 75.94 | 80.29

Table 5.3: Splitting the distance feature speeds up classification. (1/0 restriction on intervening
verb chunks, IB1-IG, Gain Ratio, MVDM, k = 9, Exponential Decay with o = 30, ignoring 5
features)

That way, the algorithm can better compute the joint weight, and the number of features
is reduced. One linguistically plausible combination consists of the prepositional and the
chunk type feature (the syntactic head and the syntactic type, respectively). So instead of
four feature-value pairs (as, director, NN, PNP) to represent a chunk like “as a nonezec-
utive director”, we now have only three (director, NN, PNP-as) but these still carry the
same information. Table 5.2 shows the results with the new representation. Performance
does not change significantly (from 80.18 to 80.17) and the separate representation is faster.
We will therefore keep the two features separate.

5.3 Splitting features

Just as we can combine features, we can also split features. A good candidate for splitting is
the distance feature. Collins (1996) already made a distinction between direction (modifier
to the left or right of the head) and adjacency (modifier directly next to the head) and
Eisner (1996a) between direction and distance. So instead of having one feature value, say
“—7”, meaning the focus is seven chunks to the left of the verb chunk, we now have two
features with values “—” and “7” respectively. Table 5.3 shows the results: we notice a
slight insignificant performance increase (from 80.18 to 80.29, ¢ = 0.719) but a clear increase
in speed. We will therefore adopt this new representation in subsequent experiments.

A much more radical way to split features is the use of binary features. This means that
instead of one symbolic feature with ¢ values we have 7 features (with two values each).
This representation is very redundant (as only exactly one of the binary features can be
“on” in any given instance). Its effect is that the algorithm now in fact computes the
importance (i.e. weight) of a (former) feature value but the generalization expressed by
(former) feature weights is lost. A similar approach is taken by the SNoW and Maximum
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‘ feature representation H MB ‘ h:m H precision ‘ recall ‘ Fp ‘
Symbolic multi-valued features | 279 | 20:51 80.01 73.26 | 76.49
Binary features 256 | 85:57 78.92 74.60 | 76.70

Table 5.4: Using symbolic versus binary features with Fambl. (1/0 restriction on intervening
verb chunks, IB1-IG, overlap metric, £ = 1, majority voting, ignoring 5 features, split distance)

Entropy algorithms (cf. also Sections 2.4.1.1 and 2.4.2.6). A disadvantage of this approach
is that especially for the word-valued features, many feature values appear very infre-
quently. Therefore their importance cannot be estimated reliably (the well-known sparse
data problem).

TiMBL does not have any built-in option for converting symbolic to binary features. Doing
the conversion separately would mean presenting the algorithm with instances having about
40,000 features. As this is not feasible in this implementation we chose to use another MBL
implementation for this experiment: Fambl (Van den Bosch, 1999b; Van den Bosch, 1999a),
which has an option for unpacking multi-valued features into binary ones.! As it is unclear
whether the advantage of the MVDM metric and the larger value of k carries over to a
binary representation, we chose to use the default settings (overlap metric, £ = 1, majority
voting). Table 5.4 shows that the use of binary features increases performance significantly
from 76.49 to 76.70 (p < 0.05,¢ = 1.829) but also that it needs much more memory and run
time.? For practical reasons we will not use binary features in the remaining experiments.
More research needs to be done in this direction.

5.4 More features

The feature changes treated in the previous sections were more successful in achieving the
same performance with less memory or run time than in increasing performance as none of
them adds information. In this section we will add information in the form of new features.
Figure 3.18 (p. 71) showed the initial feature choice for an example instance. All the pieces
of information that are not underlined represent potential new features. In addition we
can also use information that the main part of the figure contains only implicitly like
the distance and the intervening verb chunks. Let us have a more systematic look at
the possible information sources now. Example values refer to our example sentence.
Underlined values are used already.

'With the “-b” option Fambl behaves identical to default TiMBL. Setting the “-a” option triggers the
use of binary instead of symbolic multi-valued features.

2The performance increase from 74.40 (Timbl with IB1-IG, overlap metric, ¥ = 1, majority voting,
initial features, cf. Table 4.3) to 76.49 (Fambl with IB1-IG, overlap metric, ¥ = 1, majority voting,
ignoring 5 features, split distance) must be caused by the improved feature representation, which seems to
have much more effect with the default parameter setting than with the best setting, where it only caused
improvement from 80.09 to 80.29 (cf. Tables 5.1 and 5.3).
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e The focus chunk

— The type of chunk: (NP)

— The (semantic) head: (29)

— Its part-of-speech: (CD)

— The syntactic head of a PNP: (—)

— The other words/PoS of the focus chunk besides the head (henceforth called the
rest of the focus chunk): Nov./NNP

e The verb chunk

— The type of chunk is used implicitly in instance construction as instances cor-
respond to pairs of verb and other chunks.

— The (semantic) head: (join)
— Its part-of-speech: (VB)

— The other words/PoS, besides the head, of the verb chunk (the rest of the verb
chunk): will/MD

e All the other elements in the sentence. As the verb and the focus chunk are the two
fixed points in the sentence, we can divide the other elements with respect to these
two chunks.

— First there is one part comprising all the elements in front of the verb chunk
(respectively in front of the focus chunk if it is first) (front material): [yp
Pierre/NNP Vinken/NNP] ,/, [vp 61/CD years/NNS] [apsp old/JJ] ,/,

— Then there is the part of all the elements in between the verb and the focus
chunk (intervening material): [yp the/DT board/NN] {pnp [pp as/IN | [vp
a/DT nonexecutive/JJ director/NNJ}

— And finally there is the part following the focus chunk (resp. the verb chunk if
it is last) (back material): ./.

As for the verb and focus chunk, we can use the headwords, their PoS, the chunk
types or the non-headwords/PoS of all the elements in the front, intervening and
back material.

The above list shows possible new information sources. However, when adding new features
we also have to decide upon their representation. The “rest of the verb/focus chunk” as well
as the “front/intervening/back material” are sequences of elements. There is no principled
upper length to these sequences, although on average, the “rest of the verb/focus chunk”
tends to be shorter than the “front/intervening/back material”. As with any application
of a propositional learner to language data, we have to find a mapping from potentially
unbounded sequences to a fixed number of propositional features. There are at least two
ways to do this:



5.4. MORE FEATURES 109

e Windowing: We define a window of a certain width around a fixed point in the
sequence and use only information from elements that fall into this window (Sejnowski
and Rosenberg, 1987). This approach is widely used when applying propositional
learners to language data. The fixed points in the verb and the focus chunk are the
start and the head of the chunk. The fixed points in the complete sentence are the
verb and the focus chunk (which correspond to the end of the front material, the
start and the end of the intervening material, and the start of the back material).
Up to now, we have used a window of three chunks, centered on the focus chunk.

e Global features: Up to now, we used two global features of the intervening material:
its length (in the distance feature) and the number of verb chunks in it. These are
properties of the sequence as a whole, not only of some part close to some fixed point.
In general, there are three types of features:

— Symbolic: As an example, take the intervening material of our example sen-
tence. We might have a symbolic feature with the value “the_board_as_a_non-
executive_director” or “DT_NN_IN_DT_JJ.NN” or “NP_PNP” or any variation
of these.

— Numeric: The distance feature is an example of a numeric feature of the inter-
vening material. It counts all the elements in the sequence. Alternatively, we
can count specified elements only, as we did for the “intervening verb chunks”
feature.

— Binary: Every numeric feature can be mapped to a binary feature. Collins
(1996) used a binary feature indicating whether there was a verb between the
focus chunk and the head.

Given the possibilities described above, there is a nearly infinite number of possible new
features yet to be explored. For each of the five sequences, we could try the windowing
approach with all different window sizes, and the global feature approach with all dif-
ferent kinds of feature types and elements represented/counted. As this is infeasible, we
started with the more straightforward options and explore other possibilities only if the
first experiment looks promising. The following new features will be tested in this chapter:

e The PoS of the verb (Section 5.4.1).

e Window features around the focus and the verb chunk (Section 5.4.2). Our prelim-
inary representation corresponds to a 1/1 context window around the focus chunk.
We will gradually increase context window size. The context window around the
verb chunk was 0/0 up to now. We will also increase its size.

e Global features of the front, back and intervening material (Section 5.4.3). For the
intervening material different representations will be tested.

e Global features of the rest of the focus and verb chunk (Section 5.4.4).
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‘ New feature H MB ‘ h:m H precision ‘ recall ‘ Fg ‘

none 77| 2:46 85.16 75.94 | 80.29
PoS of verb 80 | 2:57 85.20 76.19 | 80.44

Table 5.5: The part-of-speech of the verb as extra feature (1/0 restriction on intervening verb
chunks, IB1-IG, Gain Ratio, MVDM, k = 9, Exponential Decay with a = 30, ignoring 5 old
features, split distance)

‘ Focus context features H MB ‘ h:m H precision ‘ recall ‘ Fg ‘
| w—1, ch—1, ch+1 | 77[2:46] 85.16 | 75.94 ] 80.29 |
w—1, ch—1, ch+1, ch+2 || 81 | 3:10 85.23 | 76.00 | 80.35
w—1, ch—1, ch+1, w+2 93 | 4:34 85.33 | 75.54 | 80.14

ch—2, w—1, ch—1, ch+1 81 [2:56 | 85.20 | 76.30 | 80.51
w—2, w—1, ch—1, ch+1 92 [ 4:41 | 85.79 | 76.29 | 80.76
w—2, ch—2, w—1, ch—1, ch+1 96 | 5:00 | 85.85 | 76.51 | 80.91
w—3, w—2, w—1, ch—1, ch+1 107 | 6:49 | 85.90 | 76.16 | 80.74

Table 5.6: Using more context of the focus chunk. “w” is the word feature, “ch” means chunk
type feature. (1/0 restriction on intervening verb chunks, IB1-IG, Gain Ratio, MVDM, k = 9,
Exponential Decay with a = 30, ignoring 5 old features, split distance)

For the sake of efficiency and to check for feature redundancy the new features will all be
tested separately and only combined later (Section 5.6).

5.4.1 PoS of the verb

As Table 5.5 shows, addition of the PoS of the verb increases performance only insignif-
icantly (¢ = 1.440). As it also increases memory and run time, it does not seem to be a
useful feature. However we will return to this point in Section 5.9.3.3.

5.4.2 Context window around focus and verb chunk

Up to now we have been using information from one element to the left of the focus chunk
and one element to its right (in addition to the focus chunk itself). Table 5.1 showed that
using less focus context is worse. We will now test whether more context is better. As we
also saw that only the word and the chunk type are useful for the left context (—1) and
only the chunk type for the right context (+1), we will concentrate on these features and
ignore the prepositional and PoS features. Table 5.6 shows the results. Neither the chunk
type nor the word of the second element to the right has a significant effect (¢ = 0.885
and t = 1.165). We therefore did not explore further elements in this direction. For
the left context, the chunk type of the second element improves performance significantly
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‘ Verb context features H MB ‘ h:m H precision ‘ recall ‘ Fp ‘
| | 77246 85.16 |75.94] 80.29 |

chunk+1 81 | 2:57 85.11 76.04 | 80.32
word+1 91 | 4:57 85.36 76.04 | 80.43

chunk—1 81 | 3:02 85.28 76.22 | 80.49

word—1 92 | 5:41 85.51 76.37 | 80.68

word—1, chunk—1 94 | 5:36 85.59 76.51 | 80.79
word—2, word—1 104 | 8:47 85.81 76.40 | 80.83

Table 5.7: Using more context of the verb chunk (1/0 restriction on intervening verb chunks,
IB1-1G, Gain Ratio, MVDM, k£ = 9, Exponential Decay with a = 30, ignoring 5 old features,
split distance)

(p < 0.05,¢ = 2.090) from 80.29 to 80.51. However adding the headword of this element
increases performance even more, to 80.76. And once the word is added, the chunk type
yields only an insignificant additional increase (to 80.91, ¢ = 1.278) but decreases memory
and time efficiency. Likewise adding the headword of the third element to the left does not
help performance (80.74). In summary the headword of the second element to the left is
the only useful feature we found in the window around the focus chunk. Unfortunately its
addition also increases memory and run time requirements considerably.

We performed similar experiments for the window around the verb chunk. The size in the
preliminary representation is zero on both sides. Results mirror those for the focus window:
the context to the right does not improve performance significantly (¢ = 0.262 for chunk,
t = 1.302 for word). The chunk type of the context to the left adds very little performance
(t = 0.885) once the headword of this element is known, whereas the headword raises
performance significantly from 80.29 to 80.68 (p < 0.01,¢ = 3.446). The headword of the
second element to the left still increases performance (to 80.83) but only insignificantly
(t = 1.192). So the only useful feature in the verb context window is the headword feature
of the element to the left. Again its addition increases memory and run time requirements
considerably.

5.4.3 Global features of the front, back, and intervening material

For the global features of the front, back and intervening material we first test a symbolic
representation, first using only the chunk type information of each element (or its PoS if the
element is not a chunk but e.g. punctuation). For our example sentence in Figure 3.18, the
front material would thus be represented as “NP, NP ADJP ,”. To prevent excessively long
feature values, we restricted the number of elements represented per feature arbitrarily to
a maximum of 30. Table 5.8 shows results for the three new features. Only the intervening
feature improves performance but this improvement is considerable: from 80.29 to 81.46.
All three features take much time and memory but the intervening least so. This is clearly
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Global av.
feature representation | len. | # values || MB | h:m || precision | recall Fp
none 77 | 2:46 85.16 75.94 | 80.29
front chunks, symb. || 5.4 58,122 || 108 | 7:37 84.91 75.82 | 80.11
intervening | chunks, symb. | 2.6 45,366 | 102 | 5:27 86.02 77.36 | 81.46
back chunks, symb. || 6.5 64,516 || 128 | 9:10 84.70 74.82 | 79.45

Table 5.8: Global features of the other elements in the sentence besides the verb and the focus
chunk. The representation is symbolic, consisting of a sequence of chunk types (or PoS for non-
chunks), covering a maximum of 30 elements. The third column shows the average length of
the sequence. (1/0 restriction on intervening verb chunks, IB1-IG, Gain Ratio, MVDM, k = 9,
Exponential Decay with a = 30, ignoring 5 old features, split distance)

Global av.

feature representation || len. | # values | MB | h:m || precision | recall Fg
none 77| 2:46 85.16 75.94 | 80.29
intervening | chunks, symb. | 2.6 45,366 || 102 | 5:27 86.02 77.36 | 81.46
intervening | PoS, symb. 4.9 129,056 || 149 | 10:04 85.70 75.67 | 80.37
intervening | words, symb. 4.9 | 193,454 || 226 | 14:48 85.05 75.31 | 79.89

Table 5.9: Global features of the intervening material. The representation is symbolic, either
consisting of a sequence of chunk types (or PoS for non-chunks), covering a maximum of 30
elements, or of a sequence of PoS respectively words, covering a maximum of 15 elements. Using
the chunk type information of the elements performs best. (1/0 restriction on intervening verb
chunks, IB1-IG, Gain Ratio, MVDM, k = 9, Exponential Decay with a = 30, ignoring 5 old
features, split distance)

related to the different average lengths of the sequences, which result in different numbers
of feature values (columns 3 and 4). Based on the results of this first experiment we decided
to continue experimentation with the intervening feature only.

Instead of using the chunk types of the sequence elements, we tried using the sequence of
PoS and of (head and non-head) words. In this case the number of elements covered was
restricted to 15. Table 5.9 shows that the PoS representation increases performance only
insignificantly (from 80.29 to 80.37, t = 0.719), whereas the word representation decreases
performance. This might be related to the much larger number of feature values. We will
continue experiments with the chunk-based global feature.

We convert the symbolic sequence of chunk types (or PoS) to a set of numeric features by
counting occurrences of all symbols that occur more than 1000 times in training material.
These are in decreasing frequency order: NP, PNP, comma, VP, ADVP, CC, SBAR, ADJP,
? i “ PRT, RB, ), and (.> Thus a sequence like “ NP PNP PNP ,” would be converted
into NP: 1, PNP: 2, comma: 2, VP: 0, ADVP: 0, etc. Conversion of numeric features to

3Conveniently this set is the same for all ten folds. See Appendix A.1 for a list of PoS tags.
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‘ Global features ‘ representation H MB ‘ h:m H precision ‘ recall ‘ Fg ‘
none 77 | 2:46 85.16 | 75.94 | 80.29
intervening chunks, symbolic || 102 | 5:27 86.02 77.36 | 81.46
intervening chunks, numeric 93 | 2:12 85.50 77.76 | 81.45
intervening chunks, binary 86 | 1:46 85.32 77.33 | 81.13

Table 5.10: Global features of the intervening material. The representation is either symbolic,
consisting of a sequence of chunk types (or PoS for non-chunks), or numeric (15 features), or
binary (15 features). The maximum number of elements covered is always 30. (1/0 restriction on
intervening verb chunks, IB1-1G, Gain Ratio, MVDM, k = 9, Exponential Decay with a = 30,
ignoring 5 old features, split distance)

| Global features | representation | MB | h:m | precision | recall | Fj |
none 77 | 2:46 85.16 | 75.94 | 80.29
intervening chunks, numeric, 15 features 93 | 2:12 85.50 77.76 | 81.45
intervening chunks, numeric, 3 features 80 | 2:15 85.46 77.32 | 81.18
intervening chunks, numeric, 7 features 84 | 2:05 85.64 7777 | 81.52

Table 5.11: Numeric global features of the intervening material. Using subsets of the original
15 features. The maximum number of elements covered is 30. (1/0 restriction on intervening
verb chunks, IB1-IG, Gain Ratio, MVDM, k = 9, Exponential Decay with o = 30, ignoring 5 old
features, split distance)

binary ones just means replacing all values higher than 1 by 1. As Table 5.10 shows, the
numeric representation performs as well as the symbolic one while requiring less memory
and much less run time. Interestingly classification is even faster with the new numeric
features than without them. The binary representation performs significantly worse (81.13,
p < 0.01,¢ = 3.519) than the numeric one but still better than without any new features
(p < 0.001,¢t = 8.830) and even faster, so it might be a worthwhile alternative for fast
applications. We will continue experiments with the numeric representation.

To find out which numeric features are most important we added each of them separately
and then tried combinations of them. The “3 features” in Table 5.11 are the ones that alone
had increased performance significantly (comma, CC, SBAR), the “7 features” are the ones
that alone had increased performance at all (addition of NP, ”, ;) “). Although addition
of the “3 features” increases performance to 81.18, the “7 features” increase performance
significantly more (to 81.52, p < 0.01,¢ = 3.420). They even perform (insignificantly,
t = 0.707) better than the original 15 numeric features, and they need less memory and
run time, so we will use these 7 features to represent the intervening material.
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“Rest of” av.

feature representation || len. | # values | MB | h:m || precision | recall Fg
none 77 | 2:46 85.16 75.94 | 80.29
focus words, symb. || 1.11 43,759 || 100 | 6:18 84.96 75.64 | 80.03
focus PoS, symb. 1.11 5,750 83 | 3:43 85.41 76.25 | 80.57
verb words, symb. || 0.55 2,348 83 | 4:29 85.39 75.97 | 80.40
verb PoS, symb. 0.55 383 82| 3:03 85.29 76.07 | 80.42

Table 5.12: Adding global features of the rest of the focus and verb chunk, in symbolic represen-
tation. Sequences consist either of PoS or of words. (1/0 restriction on intervening verb chunks,
IB1-IG, Gain Ratio, MVDM, k£ = 9, Exponential Decay with « = 30, ignoring 5 old features,
split distance)

5.4.4 Global features of the rest of the focus and verb chunk

The example of the intervening feature showed that the symbolic representation of a global
feature makes a useful first experiment. We therefore also tried this option with the “rest of
the focus chunk” and “rest of the verb chunk” features. Sequences consist either of PoS or
of words. Table 5.12 shows that the rest of the focus chunk represented as words decreases
performance (from 80.29 to 80.03) whereas the PoS representation increases performance
significantly (p < 0.05,t = 2.492). The rest of the verb chunk yields an insignificant
improvement in both representations (¢ = 1.064 for words, ¢ = 1.183 for PoS). We will thus
add the rest of the focus chunk in PoS representation to the list of useful features.

5.5 More feature values

As we already explained, simultaneously adding a new feature and combining it with an
existing one amounts to adding new values to a feature. In this paragraph we will describe
two such approaches, concerning prepositions and VPs respectively.

Recall that during chunking, PP chunks are found. These consist of just one word in most
cases. However there are also some frequent multi-word prepositions like “because of”,
“instead of”, “such as”, “rather than”, “due to”. During PNP-finding a PP and one or
more NP chunks are combined into one PNP chunk. A focus PNP chunk is represented by
four features in the current representation: the preposition, the headword, the PoS and the
chunk type. The headword is the last word of the NP chunk. Likewise the prepositional
feature value is the last word of the PP chunk. This works fine if the PP chunk just consists
of one word, if the extra words are just modifiers to the preposition (like “shortly before”,
“particularly in” “only in”, “not including”) or if the preposition is coordinated (e.g. “to
and from”, which would have the head “from”). For the true multi-word prepositions
however, information is lost. The learner is unable to make the difference between e.g.
“because of him”, “instead of him” and “of him”. To solve this problem we decided to use
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| New feature (values) | MB | h:m | precision | recall | Fj |
none 77 | 2:46 85.16 | 75.94 | 80.29
multi-word prepositions 77| 2:53 85.18 76.10 | 80.38
VP type for focus 77| 2:37 85.30 76.31 | 80.55
VP type for focus and verb chunk 82 | 2:57 85.68 76.87 | 81.04

Table 5.13: Difference in performance with and without extra values in the prepositional feature
for multi-word prepositions and types of VPs (1/0 restriction on intervening verb chunks, IB1-
IG, Gain Ratio, MVDM, k& = 9, Exponential Decay with « = 30, ignoring 5 old features, split
distance)

a concatenation of all the words in the PP chunk as the value of the prepositional feature
instead of just the last word. In the above-mentioned cases of modifiers or coordinations,
this approach leads to a loss of generalizations (as “shortly before” is now different from
“before”). However as these cases are less frequent than the true multi-word prepositions,
the overall effect is positive (from 80.29 to 80.38, cf. Table 5.13) but not significantly so
(t =0.902).

The prepositional feature contains the syntactic head of a PNP chunk whereas the head
feature in fact contains the semantic head. This distinction between syntactic and seman-
tic heads is also applicable to VPs. Consider a VP like “will visit” or “to visit”. The
semantic head clearly is “visit” as the semantic predicate-argument structure of the clause
containing this VP would be something like “visit(X,Y)”. The syntactic head however is
“will” respectively “to”. With the former, the VP can be part of a finite clause whereas
the latter makes it an infinitive. We therefore introduced eight other values into the prepo-
sitional feature. These values appear only with VPs and represent the PoS of the syntactic
head (MD, TO, VB, VBD, VBG, VBN, VBP, VBZ). We call this information the “VP
type”. Note that in our current representation only the focus chunk has a prepositional
feature, thus the new VP type information is added only to the focus and not to the verb
chunk. This significantly increases Fj from 80.29 to 80.55 (p < 0.05, ¢ = 2.441). In a
second experiment we also added a feature containing the VP type information for the
verb chunk. This significantly increases Fj further to 81.04 (p < 0.001, ¢ = 4.286).

5.6 Combinations of new features

In the previous sections, we saw that several new features or feature values improved
performance when added separately. However not all of the new features are independent
of each other, e.g. the two left context words and the intervening material partially convey
the same information, as do the rest of the focus chunk and the VP type of the focus
chunk. For this reason, we first checked combinations of features which we suspect to
interact. Table 5.14 shows that performance is lower when adding the VP type of the
focus chunk and the rest of the focus chunk (80.51) than when just adding one of them
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| New feature (values) | MB | h:m | precision | recall | Fj |

| none | 77246 85.16 |75.94] 80.29 |
VP type for focus 77| 2:37 85.30 76.31 | 80.55
rest of focus chunk (PoS) 83 | 3:43 | 85.41 | 76.25 | 80.57
VP type for focus & rest of focus chunk (PoS) | 84 | 3:11 85.28 | 76.25 | 80.51
focus context word—2 92 | 4:41 85.79 | 76.29 | 80.76
verb context word—1 92 | 5:41 85.51 76.37 | 80.68
verb context word—1 & focus context word—2 | 106 | 8:49 86.16 | 76.70 | 81.16
intervening (7 numeric) 84 12:05| 85.64 | 77.77 | 81.52

verb context word—1 & focus context word—2 || 113 | 5:30 86.48 | 78.38 | 82.23
& intervening (7 numeric)
VP type (for focus & verb) 82| 2:57 | 85.68 | 76.87 | 81.04
verb context word—1 & focus context word—2 || 119 | 5:58 86.87 | 79.24 | 82.88
& intervening (7 numeric) & VP type (for fo-
cus & verb)

Table 5.14: Combinations of new features and feature values (1/0 restriction on intervening
verb chunks, IB1-IG, Gain Ratio, MVDM, k = 9, Exponential Decay with @ = 30, ignoring 5 old
features, split distance)

(80.55 and 80.57). As the VP type option reduces run time and keeps memory constant
whereas the rest of the focus chunk increases both, we will only use the former in future
experiments.

The two left context words and the intervening features together increase performance to
82.23, which is more than with any of them separately. The last row of Table 5.14 shows
performance with all useful new features/values together. In total, performance increases
from 80.29 to 82.88. However memory and run time also increase by 55% and 115%,
respectively.

Figure 5.2 shows which information from the history is new in this representation. Ta-
ble 5.15 gives the instances from Table 3.1 in the new representation.

5.7 Fewer feature values

The new representation developed in the previous section has a superior performance but
also higher memory and run time requirements. This is mainly caused by the two new
word-valued context features. When using the MVDM option, the learning algorithm has
to compute a value difference for each pair of values for each feature. If the number of values
of a feature is reasonably low (e.g. for the chunk type features), this matrix is computed
once and stored. If on the other hand a feature has many values, only the distribution
of classes with each value is stored and the actual MVDM value is computed on the fly,
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features 6 instances
focus # 1 1 4 5 10 11 16
verb # 2 8 8 8 8 8 8
dir. 3 — - - + + +
dist. 4 5 3 2 1 2 3
VCs 5 0 0 0 0 0 0
verb cont. —1 word 6 , , , , , ,
e chunk | VP bpe [ 7| MD | MD | MD | MD | MD | M
verb 8 join join join join join join
focus cont. —2 word 9 - Vinken , , join board
focus cont. —1 word 10 - , years join board director
chunk 11 - - NP VP NP PNP
prep./VP type | 12 - - - - as -
focus chunk word 13 || Vinken years old board director 29
PoS 14 NNP NNS JJ NN NN CD
chunk 15 NP NP ADJP NP PNP NP
focus cont. +1 chunk 16 - ADJP - PNP NP -
commas 17 2 1 1 0 0 0
CCs 18 0 0 0 0 0 0
intervening, SBARs 19 0 0 0 0 0 0
numeric NCs 20 1 0 0 0 1 1
7 21 0 0 0 0 0 0
colons 22 0 0 0 0 0 0
“ 23 0 0 0 0 0 0
class NP-SBJ - - NP-OBJ | PP-CLR | NP-TMP

Table 5.15: The instances for the first sentence of the Wall Street Journal Corpus (cf. Figure 5.2)
in the new feature representation.
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PNP
NP NP ADJP VP NP PP NP NP
NNP NNP , CD NNS 1 , MDVB DT NN IN DT & NN NNP CD .
Pierre Vinken , 61 years old , will join theboard as a nonexecutive director Nov. 29 .
tokens O 1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17
elements 1 2 3 4 5 6 7 8 9 10
| |
+3
verb
veb 0 0 o0 0 0 } 0 0 ? 0
0
comma? 0 1 0 0 1 o0 0 0 0 0
| |
cc? 0 0 o0 0 0 0 0 0 2 0 0
| |
BAR? 0
e 0 0 o0 0 0 9 0 0 = ? 0
0
noun —-
noun 1 0o 1 0 0 ? 1 0 = ? 0
opening 0 0 0 0 0 0 0 0 L 0 0
quotes? | |
colon? 0 0 o0 0 0 o0 0 0 2 0 0
| |
closing 0 0 o0 0 0 O 0 0 2 0 0
quotes? | |
0

Figure 5.2: Our example sentence from Figure 3.18. The single underlined parts are used as
feature values of the instance that corresponds to the decision about the relation (marked by the
question mark) between the verb and the “Nov. 29” chunk in the new feature representation.
The doubly underlined parts are new. The dashed underlined parts were used in the preliminary
representation but have been discarded in the new one.

which takes time. In addition, storing the distribution takes up much memory, especially
for the many-valued word features. As words have a Zipfian distribution, many values
are very rare. We know that for rare values MVDM value computation is based on little
evidence and is therefore not reliable. In order to save run time and memory and maybe
even exclude unreliable values, we replace all feature values that appear at most 1, 5 or 10
times in the training material by the new value HAPAX. All values in test material that
do not occur as such in training material (i.e. they have been replaced by HAPAX or did
not occur at all) are also replaced by HAPAX. To give an idea of the scope of the change:
with threshold 5, about 35% of the test instances contain at least one HAPAX value. In
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‘ HAPAX threshold H MB ‘ h:m H precision ‘ recall ‘ Fp ‘

0| 119 | 6:49 86.87 | 79.24 | 82.88
1 116 | 5:18 86.64 79.65 | 83.00
5 || 108 | 3:34 86.45 80.01 | 83.10
10 || 104 | 3:14 86.12 79.99 | 82.94

Table 5.16: Replacing infrequent feature values by the special symbol HAPAX (1/0 restriction
on intervening verb chunks, IB1-IG, Gain Ratio, MVDM, k£ = 9, Exponential Decay with o = 30,
ignoring 5 old features, split distance; new features: verb context word-1, focus context word-2,
7 intervening numeric, VP types)

| Class values | MB | hum | precision | recall | Fj |

all 108 | 3:34 86.45 80.01 | 83.10
frequency > 5 || 108 | 3:27 86.93 79.94 | 83.10

Table 5.17: Replacing infrequent class values by the “no relation” class (1/0 restriction on
intervening verb chunks, IB1-1G, Gain Ratio, MVDM, k = 9, Exponential Decay with a = 30,
ignoring 5 old features, split distance; new features: verb context word-1, focus context word-2,
7 intervening numeric, VP types; HAPAX threshold=5)

one test fold picked at random, HAPAX values occur in 11 of the 21 non-administrative
features.

Table 5.16 shows the results of HAPAX replacement: all three thresholds increase per-
formance and decrease memory and run time requirements.* Performance improvement
with threshold 5 is even statistically significant (from 82.88 to 83.10, p < 0.05,¢ = 1.993).
The improvement is probably due to the elimination of unreliable MVDM values. We will
adopt the new HAPAX representation with threshold 5 in subsequent experiments unless
otherwise noted.

5.8 Fewer class values

As we already noted in Section 3.2.1, the frequency distribution of classes is very unbal-
anced. For example, 100 classes occur only once in our restricted cross validation material
(1/0 restriction on verb chunks). This means that such a class either occurs only in the
training material, in which case it does not contribute anything useful to testing perfor-
mance, or it only occurs in the test material, in which case the learner has no chance to
predict it correctly. Of the 305 classes exemplified in our restricted cross validation mate-
rial, only 145 were predicted by the learner with the best performing parameter setting and

4Reading in the training and test material, counting values, and deciding which values to replace and
actually replacing them takes time. This is why the experiment with threshold zero takes longer than the
otherwise identical experiment in the last row of Table 5.14.



120 CHAPTER 5. FEATURE REPRESENTATION IMPROVEMENT

feature representation (see third row of Table 5.16). The more classes we have, the more
memory and time is needed for storing the class distribution and for computing MVDM.
We therefore replaced all classes that occur at most 5 times in the training material by the
default “no relation” class. This change affects about 0.1% of the instances. Note that the
gold standard material against which performance is measured is not changed. Table 5.17
shows that the replacement speeds up classification slightly and does not change the mem-
ory requirement. Precision increases slightly and recall decreases slightly. Fj stays the
same.

5.9 Discussion

5.9.1 Fewer features

It is quite difficult to say why a certain feature is not useful. For the PoS features a
likely reason is that their information is already implicitly contained in the word feature
(through the value differences, cf. Section 4.3.7.2). A similar argument is presented in Van
den Bosch and Buchholz (2002) in the context of chunking and function tagging.

5.9.1.1 The left context word: subcategorization, PP attachment and control

It is common in parsing to base a decision on local context. However the precise definition
of local context varies. In addition, the merit of a local context feature also depends on
the parser architecture. Both Ratnaparkhi (1997) and Charniak (2000) use a symmetric
left /right context. In our experiment, an asymmetric context (more information from the
left than from the right) proved best.

Ratnaparkhi (1997) uses the constituent label (or PoS if a constituent has not been con-
structed yet) and the headword of two elements to the left and two to the right as con-
ditioning information in his Maximum Entropy parser. In his system the headword of a
PP is the preposition, so he conditions on information that is similar to our prepositional
features. In our experiments the prepositional features of the context elements do not
contribute to performance.

Charniak (2000) conditions generation of a constituent on the category labels (our chunk
type features) of up to three previously generated siblings but not on their headwords.
In our experiments the word feature of the left context proves useful. To find out why
this is the case we perform further analyses by breaking down performance by types of
instances. Types are defined by the values of selected features. For each type we compute
the number of instances that are classified correctly without and with the left context
feature. The difference between the two numbers is the absolute improvement. By dividing
both numbers through the total number of instances of this type, we get two accuracy
figures. These can be used to compute the relative change in error rate. Suppose accuracy
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instance type absolute | without ‘ with | error rate
dist. ‘ context ‘ focus ‘ class improv. | focus context word—1 change
+1 VP NP NP-PRD 509 77.04 96.75 —85.83
+1 VP NP NP-OBJ 358 94.81 96.80 —38.41
-1 VP NP - 247 74.44 89.09 —57.31
+2 NP PNP - 183 91.83 94.77 —35.95
-1 VP NP NP-SBJ 131 89.85 94.45 —45.33
+1 VP NP - 114 83.77 86.19 —14.94
+1 VP PNP PP-DIR 78 57.21 66.83 —22.48
-2 VP NP NP-SBJ 75 62.53 83.20 —55.15
+1 VP PNP PP-PRD 64 38.58 62.55 —39.02
+1 VP PNP | PP-LOC-PRD 53 34.67 61.31 —40.77

total | 2539 ] 90.13] 90.83 | —T7.12|

Table 5.18: Absolute improvement in number of instances, accuracy, and error rate change on
most improved instance types without and with the head word of the immediate left context
of the focus. (1/0 restriction on intervening verb chunks, IB1-IG, Gain Ratio, MVDM, k = 9,
Exponential Decay with a = 30)

changes from 85% to 90%. This means the error rate drops from 15% to 10%. These are
one third fewer errors, so the relative error rate change is —33%. If on the other hand
accuracy changes from 50% to 55%, the relative error rate change is only —10%.

Table 5.18 shows part of the breakdown for instance types consisting of the distance, the
chunk type of the left context and the focus, and the instance’s class. The following cases
can be distinguished:

Subcategorization: The types “+1 VP NP class” and “4+1 VP PNP class” are typical
constellations for subcategorization information. The verb whose relation we want to
determine directly precedes the focus NP or PNP. Note that the identity of the verb
is known even if the left context word feature is not present, as it is also represented
in the special verb feature. However the weight of the verb feature is lower than the
weight of the left context word (cf. Figure 4.5), so it does not have as much influence
in classification.

PP attachment: The type “+2 NP PNP —” represents the classical PP attachment
environment: the PP can either attach to the NP directly in front or to the VP two
positions in front. Knowing the identity of the NP’s head® helps the algorithm to
decide whether it is likely that the PP attaches to the NP. In that case the relation to
the verb would be “—” i.e. no (direct) relation. Typical nouns in this constellation
include “damage (to)”, “access (to)” and “look (at)”, i.e. nouns that subcategorize
for a PP.

5the N; in the PP attachment literature, cf. Section 2.4.1.2
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. which will allow several signals to travel along a single optical line ...
... the company doesn’t currently have any plans to sell additional newspapers ...

(VP (VB allow) (VP (VB have)
(s (NP (DT any) (NNS plans)
(NP-SBJ (JJ several) (NNS signals) ) (s
(VP (TO to) (NP-SBJ (-NONE- *) )
(VP (VB travel) (VP (TO to)
(PP-DIR (IN along) (VP (VB sell)
ONN) N

Figure 5.3: Two sentence fragments which contain the sequence verb, noun chunk and infinitival
verb chunk in two different structures: object control (left) and infinitive under NP (right).

e Control: The types “—1 VP NP —” and “—1 VP NP NP-SBJ” are exemplified by
the two sentence fragments in Figure 5.3. To determine whether the noun chunk is
the subject of the second verb (left) or is not dependent on it at all (right; in fact
the verb depends on the noun chunk) the algorithm needs to know whether the first
verb is an (object) control verb (left) or not (right).

5.9.1.2 The verb feature: implicit subcategorization information

As we saw in the previous section, the left context word already encodes subcategorization
information in many cases. Still the verb feature improves performance. To study its
contribution, we separately computed Fj without and with the verb feature for all rela-
tions which occur more than 500 times and sorted results by relative error rate change.
Table 5.19 shows that, as predicted by subcategorization theories, error on typical comple-
ment relations like objects and predicatives drops while error on typical adjunct relations
like PP-PRP® rises slightly (as the verb constitutes “noise” for them).

This observation allows us to divide the table into three parts: complement relations,
problematic cases for a binary complement/adjunct distinction, and adjunct relations. We
will investigate some interesting points in the three parts in more depth in the following
paragraphs.

The relations NP-EXT (extensional NP, e.g. “rose 2%”) and PP-DIR (directional PP)
which are normally not considered subcategorized functions show up in the complement
part of the table. There are two explanations for this. Either they are subcategorized
(contrary to common theory) or there is some other lexical property of the verb, for example
its meaning, that licenses these relations. Given our data, it is impossible to tell the
difference.

SPP of purpose or reason
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relation frequency | without ‘ with | error rate

verb change
VP/S/SBAR-OBJ 3100 67.71 | 78.40 -33.11
VP/S-TPC 2027 3.09 | 21.56 —19.05
VP/S-OBJ 1469 39.24 | 48.90 —15.90
NP-PRD 3387 85.58 | 87.54 —13.64
PRT 1405 99.71 | 99.75 —12.59
NP-OBJ 20898 92.55 | 93.41 —11.58
PP-DIR 2826 74.71 | 77.24 —10.03
NP-EXT 1109 90.28 | 91.18 -9.29
SBAR-OBJ 1954 87.49 | 88.62 —9.07
ADJP-PRD 3473 94.63 | 95.01 —7.23
PP-LGS 1365 92.35 | 92.88 —6.97
PP-CLR 6145 67.72 | 68.96 —3.81
NP-SBJ 38100 90.87 | 91.21 -3.80
VP-OBJ 737 30.73 | 32.93 -3.17
ADVP-MNR 712 72.34 | 73.06 —2.62
PP-TMP 3656 69.22 | 69.85 —2.03
VP/S-PRP 684 29.64 | 30.39 —1.06
PP-LOC 3232 55.87 | 56.20 —0.74
PP 4233 43.80 | 44.17 —0.65
SBAR-ADV 1443 57.61 | 57.84 —0.53
PP-MNR 746 41.28 | 41.49 —0.35
SBAR-TMP 625 62.37 | 62.47 —0.27
ADVP 3196 74.20 | 74.14 0.22
VP/S 523 220 | 2.19 0.00
ADVP-TMP 1863 74.41 | 74.07 1.35
NP-TMP 1724 73.93 | 73.57 1.37
PP-PRP 518 26.89 | 25.82 1.46
VP/S-ADV 1150 51.75 | 50.91 1.73

Table 5.19: Fj and error rate change on most frequent relations without and with the verb fea-
ture (1/0 restriction on intervening verb chunks, IB1-IG, Gain Ratio, MVDM, k£ = 9, Exponential
Decay with a = 30)
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Logical subjects of passives (NP-LGS), “closely related” PPs (PP-CLR) and subjects (of
actives) are considered by some theories to be subcategorized, and by some others not.
In any case Fj is already reasonable or good without the verb feature. For the active
and passive subjects it is clear which information achieves this: the configuration for the
actives, and the by-preposition for the passives. For the PP-CLR this is less clear. Part of
the performance can be explained by the fact that the verb is sometimes contained in the
left context. We therefore looked specifically at instances where this is not the case (i.e.
with distance greater than one). The following patterns emerged from the analysis:

e typical “financialspeak” PPs like “(quoted) at z yen”, “(closed) at $ 2” or “(sell/buy)
for x million”. The combination of the preposition and the head noun is already
sufficient information.

e “(attributed) (something) to factors”: As the semantics of the head noun rule out a
directional or dative interpretation of the PP, PP-CLR is the most likely alternative.

e “(prevent) (somebody) from doing (something)”: Again for this combination the
most likely class is PP-CLR.

For many of the relations in the adjunct part of Table 5.19 the error rate actually drops
when adding the verb. This cannot be explained by theories of subcategorization. We
therefore had a closer look at the verbs and relations for which the improvement occurred,
to see what other factors could explain the effect.

e write, says and adds and ADVP-MNR: Apparently if there is some adverb following
a verb of saying, it is most likely that it is an adverb of manner. This might be a
combination of the facts that locations are rarely relevant for verbs of saying, that
temporal expressions are less common with the present tense and that things can be
said in many different ways.

e been and PP-TMP: The frequent co-occurrence of “been” with a temporal expression
is clearly due to the English tense system. In fact it is more the presence of a temporal
expression like “since 1985” that triggers the present perfect form of “be”.

e met with or bribed and VP/S-PRP, e.g. “bribed officials to win ... account” These ac-
tions are not performed by coincidence. People need strong reasons to bribe someone
for example. Also one can normally not guess precisely for what reason someone at-
tempts bribery. Therefore it is natural to mention the reason for the bribery together
with the fact.

o fell (75 cents) in (over-the-counter) trading (PP-LOC): This seems to be a recurrent
expression that is usually annotated with the PP-LOC relation.

e said and PP: This connection stems from sentences like “For the quarter, Textron
said aerospace revenue declined 9.8%” in which the PP is annotated to have an
unspecified relation to “said”.



5.9. DISCUSSION 125

e behave is the classical example from the subcategorization literature of a verb that
needs an expression of manner. In our data it occurs in the form “behaved like
calves”.

5.9.2 Combining and splitting features

Our experiments with combined and split features and also with fewer features illustrate
two interesting properties of (our implementation of) MBL. First it is not necessarily the
case that a representation with fewer features is faster. Apparently a linguistically plausible
division of information over more than one feature can speed up classification. Second the
algorithm can cope very well with feature redundancy. None of the (partially) redundant
features or feature representations caused a significant decrease in performance.

5.9.3 More features

See Section 5.9.3.3 for a discussion of the “PoS of the verb” feature. The other three groups
of new features are discussed in the following three paragraphs.

5.9.3.1 Context window around focus and verb chunk

There is another source of (partial) redundancy in our representation, which we already
saw in Section 5.1. If the verb chunk is directly in front of the focus chunk, its head
appears in the verb feature as well as in the left focus context word feature. When using a
larger left focus context or when also using context of the verb chunk, the effect grows, as
more instances will contain duplicated values. We could prevent this redundancy by not
representing the verb chunk. However as Table 5.1 showed this would hurt performance.

The need to represent the verb as an independent feature instead of just as a context
element has also been noted for other approaches. Figure 5.4 (Ratnaparkhi, 1998, p.66)
shows a typical PP attachment decision in Ratnaparkhi’s shift-reduce-style Maximum En-
tropy parser (cf. Section 2.4.2.6). It takes the form of a BUILD operation on the first NP:
if BUILD decides “Join VP”, the PP is later (once it is built) free to attach under the
VP, too. If on the other hand BUILD decides “Start NP”, the PP must attach under the
NP. Collins (1999, p.224) gives an example in which the verb falls outside the context in
approaches similar to Ratnaparkhi’s. It is reproduced here with Ratnaparkhi-style annota-
tions in Figure 5.5. The left context of the decision bearing (second) NP includes the (first)
preposition and the (first) NP, but not the verb. In head-driven generative approaches like
Collins (1997) or Charniak (1997) (cf. Section 2.4.2.4 and 2.4.2.5) the verb is guaranteed
to be represented because it is a head.

In summary this case constitutes another example of the fact that (partial) redundancy
need not be disadvantageous.
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StatS  StatVP JoinVP or StatNP? IN NP
| | | N
NP VBD NP with DT NN
| N .
PRP saw DT NN the telescope
.
I the man

Figure 5.4: Example of a PP attachment decision in Ratnaparkhi’s representation.

Start VP Start NP Start PP Join PP or Start NP ? IN NP
| | | | N
VBD NP IN NP on DT NN
| /N | /N .
put DT NN with DT NN the table
. .
the envelope the  photos

Figure 5.5: Example in which the (important) verb information falls outside the context scope
of two elements to the left.

5.9.3.2 Global features of the front, back, and intervening material

Addition of the “back material” decreases performance significantly whereas the front
material does not. This fits with previous results that the left context is more informative
than the right context and with general psycholinguistic intuitions that, as processing
a sentence is an incremental process, it is logical that the part that has already been
heard/read has more influence on the GR analysis of the focus than the part that has not
been heard/read yet.

The intervening material represents most of the relevant syntactic structure that deter-
mines whether the focus attaches to the verb, and, for the relations that are expressed
configurationally in English, what type of relation holds between the two. The represen-
tation of the intervening material as a sequence of PoS resembles the MBSL approach (cf.
Section 2.4.1.1). However MBSL implements a much more sophisticated similarity metric
between sequences. In our case MVDM enables the algorithm to compute a sort of task-
specific similarity over the symbolic values. 94% of the intervening chunk sequence types
occur only with the “no relation” class, so their pairwise value difference is zero. As an
example for the value differences between values that do occur with relations, Table 5.20
shows the intervening chunk sequences that are most similar to the empty sequence (i.e.
verb and focus are adjacent). We can see for example that a single intervening ADVP,
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| value difference | sequence | frequency |
0.485 | ADVP 3837
0.586 | DT NP 4
0.666 | 654
0.701 | ” 211
0.703 | , ADVP , 139
0.714 |, PNP , NP | 9
0.732 | PNP , PNP PNP 10
0.746 | VBP 5
0.772 | , PNP , 281
0.826 | , NP CC NP 72
0.827 | 7 PNP 28
0.834 |, NP, NP | s
0.851 | PND , PND | 65
0.866 | PNP « 40
0.871 | PNP ADVP 246
0.874 | , PP PNP , 16
0.874 | VP NP CC 308
0.883 | PNP 9829
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Table 5.20: Some intervening chunk sequences (and their frequencies). The first column shows
the value difference between this sequence and the empty sequence (i.e. verb and focus are adja-

cent).
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whether or not separated by commas, does not have much influence on relations. Like-
wise quotes can intervene between verbs and for example their subjects and objects. The
sequence “, NP CC NP” stems from the treatment of coordinated subjects. In the two
sentences “John laughed” and “John, Peter and Mary laughed” there is a subject relation

between “John” and “laughed” (in addition to the subject relations “Peter laughed” and
“Mary laughed”).

Although MVDM obviously performs well, it is clear that the information in the sequences
in not optimally exploited. To see this, suppose the algorithm encounters a sequence (say
“ ADVP NP ADJP )7) in the test data that it has never “seen” in the training data.
Then no MVDM values can be computed between this sequence and the other values of
the same feature in training data when searching for the Nearest Neighbors and all training
values will be taken to be equally (dis)similar to the test value. True sequence matching
on the other hand might tell the algorithm that “; ADVP NP ADJP ,” is much closer to,
say “, NP ADJP )’ than to “SBAR VP”, especially if the MVDM matrix contains many
pairs that differ only in the presence or absence of “ADVP” and have a low MVDM value
difference.

Clark (2002) describes a method for representing an unbounded sequence of symbols by a
finite number of numeric features. First he trains a stochastic transducer, or Pair Hidden
Markov Model, on the training sequences. Then he computes the expected number of
times each transition parameter and each output parameter of the model would be used
for generating a test sequence. These numbers are then taken as feature values to represent
the test sequence. Our approach for converting a symbolic sequence to a set of numeric
features is much simpler. It performs at least as well as the symbolic representation. For
our above example it can capture the relative similarity intuition. However it cannot
represent the distinction between for example “, NP” and “NP ,”.

The decrease in performance when using binary instead of numeric features is mainly due
to the comma feature. This effect is not surprising, as one comma between the verb and the
focus usually indicates that they are in separate clauses (and thus cannot have a relation)
whereas two commas merely indicate a comma separated element/clause between them
(and thus a relation is possible). The importance of the comma feature is also confirmed
by the fact that it is the numeric intervening feature that increases performance most (from
80.29 to 80.92) when added alone.

We have seen the influence of CC in the coordinated subject example. SBAR marks the
start of a subclause which often means that verb and focus are in different clauses and
therefore cannot have a relation (the same argument was already used for the intervening
VCs feature). Even if they could be in the same clause it is rather unlikely that a relation
to the right spans a constituent that includes a subclause, as such a constituent is “heavy”
and therefore either extraposition, an alternating subcategorization frame or an alternative
position for an adjunct would normally be preferred. In the following examples, the second
sentence of each group is awkward, as a relation spans a heavy constituent:
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(1) I gave the man a book.
?I gave the man that [ met when I was looking for a new appartment last year
a book.
I gave a book to the man that [ met when I was looking for a new appartment
last year.

(2) Isaw the man yesterday.
?I saw the man that I met when I was looking for a new appartment last year
yesterday.
Yesterday I saw the man that I met when I was looking for a new appartment
last year.

A model like that of Charniak (1997) could not capture the distinction between the first
two sentences of each example triple, as the intervening material is one NP in both cases.

Apart from the comma, CC and SBAR features, we also found information about inter-
vening NPs, begin and end quotes and colons to be useful. It is interesting to note that
the last four features did not improve performance significantly when added in isolation
but did when added in combination with the other features. This might be due to the fact
that these features contain only part of a useful piece of information. For example in the
coordinated subject case, information is distributed among the comma, the CC and the
NP feature.

5.9.3.3 Global features of the rest of the focus and verb chunk

To find out why the rest of the focus chunk (as PoS) is useful we break down results
according to the most frequent types of relations. Table 5.21 shows that the biggest error
rate reduction is achieved for the VP/S/SBAR-OBJ relation (complementizerless clausal
object, e.g. of “say”). Further analysis (not shown here) revealed that other VP relations
improve too. This suggests that the rest of the focus chunk is useful mainly because it
implicitly encodes the VP type of the focus. This was confirmed by the experiments in
Section 5.2.

There is also a slight error reduction for subjects. As subjects are the most frequent
relation even small improvements have influence on overall performance. The improvement
especially occurs if the headword of the focus chunk is a proper noun. In these cases the
“rest of the focus chunk” enables the algorithm to make the distinction between temporal
expressions and persons. For the example in Table 4.14 on page 99, the new feature would
increase the distance for the focus chunks “Barbara May”, “last week” and “Mr. Peters”
because they have a non-empty rest, and would therefore make the learner more “sure” of
its decision (larger majority for NP-TMP).

One low frequency relation for which we noted an improvement through the rest of the
focus chunk is NP-CLR, which is mainly used for fixed expressions. These often contain a
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relation frequency | without ‘ with | error rate

rest of focus chunk change
NP-SBJ 38100 90.40 90.55 —1.46
NP-OBJ 20898 93.11 93.01 +1.45
PP-CLR 6145 69.96 69.29 +2.25
PP 4233 46.25 46.32 —0.13
PP-TMP 3656 72.47 72.52 —0.16
ADJP-PRD 3473 95.12 95.12 +0.02
NP-PRD 3387 87.88 87.86 +0.20
PP-LOC 3232 57.60 57.02 +1.36
ADVP 3196 74.01 74.33 —-1.25
VP/S/SBAR-OBJ 3100 80.36 83.68 —16.90

| NP-CLR | 91| 769] 10.61| —3.17]

Table 5.21: Fj and error rate change on the ten most frequent relations (and NP-CLR) when
adding the rest of the focus chunk (1/0 restriction on intervening verb chunks, IB1-IG, Gain
Ratio, MVDM, k =9, Exponential Decay with a = 30, ignoring 5 features, split distance)

singular noun without determiner, like “keep track of” or “take advantage of”. Thus the
information that the rest of the focus chunk is empty is useful.

The experiments in Section 5.2 seem to suggest that the VP type feature values and the
rest of the focus chunk feature largely encode the same information. However from the
construction of the VP type values we know that, depending on whether the semantic head
of the VP chunk is also its syntactic head, the VP type comes from the semantic head or
from the “rest”. This means that the focus VP type actually combines information from
the focus PoS feature and the rest of the focus chunk. Similarly the VP type of the verb
chunk combines information from the verb PoS feature and from the rest of the verb chunk
which up to now we tested only separately. Table 5.14 shows that, indeed, adding the
latter two performs roughly the same as adding the former (80.91 versus 81.04) and that
adding all three features does not perform significantly better (81.22, ¢ = 1.576) than just
adding the verb VP type alone, while requiring more memory and run time. This is another
case of distributed information. Neither of the latter two features significantly increases
performance by itself but combined they do.

5.9.4 More feature values

The change to represent multi-word prepositions as such instead of just by their last word
actually amounts to using the “rest of the PP chunk”. It did not result in a significant
performance increase and we therefore did not use these new feature values in subsequent
experiments. However only 0.26% of the instances are actually affected by the change. For
these, accuracy increases from 71.5% to 85.3%. So clearly the change had the effect we
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‘ New features H MB ‘ h:m H precision ‘ recall ‘ Fp ‘
| VP type for focus | 77237 85.30 |76.31]80.55 |
& VP type for verb 82 | 2:57 85.68 76.87 | 81.04

& verb PoS & rest of verb chunk (PoS) | 87 | 2:56 || 85.59 | 76.71 | 80.91

& VP type for verb
& verb PoS & rest of verb chunk (PoS) | 90 | 3:13 | 85.88 | 77.04 | 81.22

Table 5.22: The VP type and the combination of PoS and “rest of” feature of the verb chunk
encode similar information (1/0 restriction on intervening verb chunks, IB1-IG, Gain Ratio,
MVDM, k = 9, Exponential Decay with « = 30, ignoring 5 old features, split distance)

expected it to have. This shows that overall performance might not be the best way to
judge the merit of a rather subtle change in the feature representation.

The VP type information of the focus chunk enables the algorithm to distinguish for
example between finite and non-finite clauses. Consequently the error rate on for example
VP/S/SBAR-OBJ drops by 16.6%. As we mentioned in Section 2.3.1, the treebank’s
decision to use the same syntactic label for finite and non-finite clauses was based more
on practical considerations (fewer labels by collapsing lexically recoverable ones) than on a
conviction that the two behave syntactically similarly. Different types of VP chunks have
also been used by e.g. Carroll and Rooth (1998a).

The VP type of the verb chunk enables the algorithm to learn subject-verb agreement as
it encodes information about the grammatical person. Error rate on NP-SBJ drops by
10.1%.

5.9.5 Fewer feature values

In most statistical parsing work, some treatment of low frequency events is necessary for the
success of the parser. Often some smoothing method is applied to the observed frequencies.
Ratnaparkhi (1997) constructs (binary) features for his Maximum Entropy parser only for
events that occur at least five times. Collins (1999, p. 186) replaces words that occur less
than five times by the token “UNKNOWN?”. This has the additional advantage of enabling
the algorithm to learn if low frequency events differ systematically from higher frequency
ones. Our HAPAX encoding is comparable.

There are more sophisticated representations than the simple HAPAX replacement. Eisner
(1996a) and Van den Bosch and Buchholz (2002) use an encoding for low-frequency words
that contains an approximation of morphological information (e.g. capitalization, suffix).
The Memory-Based Tagger of Daelemans et al. (1996) encodes all of this information in
separate features that are only used for unknown words. It would certainly be interesting to
apply a similar encoding to our data. Note however that we applied the HAPAX encoding
to all features, not only to the word-valued ones.
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5.9.6 Fewer class values

It might seem as if prediction of the low frequency classes by the learner is so bad that
we may as well not predict them at all. This is not true in general however. That we
do not see a statistically significant effect of their deletion is merely due to the classes’
low frequency. The rare class WHADVP/SBAR-PUT (wh-clause as locative complement
of put), which appears only three times in our material, e.g. in “I suggest that the Wall
Street Journal (...) should put its money where its mouth is”, has a precision of 100%
and a recall of 66.7% (Fj = 80) if we do not delete low frequency classes. The predicative
clause of purpose and reason (SBAR-PRP-PRD) which occurs 13 times, e.g. in “That’s
because they only drop “mere names,” says Mr. Churchill.” has a precision, recall and Fp
of 84.6.

As we cannot know in advance whether anyone is interested in these classes, it would be
unwise to prevent our learner from predicting them just because their frequency is low, as
Table 5.17 also shows that having many rare classes does not hurt the performance of our
learner in any way. From a practical point of view, deletion of infrequent classes of which
we know that we will not need them in our application is a sensible way to increase speed.
Classes with a frequency below eleven are seldomly predicted by the learner.

5.10 Summary

In this chapter, we improved upon the preliminary feature representation. Performance
rose from 80.09 to 83.10, mostly through the addition of ten new features and eight new
feature values. The new features (values) contain information about the local left context
of the verb and the focus chunk, about certain chunks and punctuation marks in between
the verb and the focus chunk, and about the syntactic head of the verb chunk or the
focus chunk if the latter is verbal. Their values are words, integer numbers and PoS tags,
respectively.

Memory requirements stayed practically constant (107 versus 108 MB) and run time even
decreased (from 4:48 to 3:27 hours) because apart from adding new features (values) we also
discarded five old features and all feature values with a frequency less than or equal to five.
Speed also increased by a separate representation of direction and distance and through
the seven new numeric features. This demonstrates the surprising fact that using more
features can be faster. Other interesting properties of the algorithm that were exemplified
in this chapter are its ability to cope with redundant or sparse data and with information
that is distributed over several features (the numeric ones, or the rest of the focus/verb
and its PoS). We again saw the power of the MVDM metric by its ability to exploit the
information in the symbolic representation of the intervening material and of the rest of
the focus chunk. However it again proved to slow down classification.

In the case of the intervening material, we found a much faster representation that per-
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formed as well as the symbolic representation by a straightforward transformation to nu-
meric features that did not use linguistic knowledge. In the case of the symbolic features
“rest of the focus/verb chunk” (plus PoS) and the faster variant VP type, the connection
is not that straightforward. We need linguistic knowledge to determine that the VP type
of “to laugh” and of “not to laugh” is the same (to-infinitive) but for “wants to laugh” it
is different (third person singular present).

We are not only interested in what information is useful for finding grammatical rela-
tions but also why. To answer this question we performed extensive analyses in which we
compared classification with and without a certain feature (or set of feature values). We
employed two kinds of analyses. In one, classification accuracy is broken down by types
of instances, in the other, Fj is broken down by types of relations. Both analyses allow
us to better understand where the improvement occurs. We can then relate patterns of
improvement to linguistic phenomena like subcategorization, PP attachment, control, co-
ordination, fixed expressions, finite versus infinite clauses, and agreement. This analysis
is not only interesting in the context of machine learning of grammatical relations. We
showed how the comparison between classification with and without the verb feature allows
us to sort grammatical relations from typical complements to typical adjuncts. This pro-
vides empirical evidence for the theory that for example the extensional NP and directional
PP relations are dependent on lexical properties of the verb. We could further identify in-
dividual cases in which the addition of the verb does not influence performance although
in general the relation has been classified as subcategorized, or on the contrary, addition
improves performance although in general the relation has been classified as adjunct. Ex-
amples like “been” with a temporal expression suggest that the algorithm does not only
learn subcategorization but also other factors (here: tense) that influence co-occurrence.
We believe that analyses like these can prove fruitful for (psycho)linguistic research into
subcategorization and other lexical properties. It is clear that the data that resulted from
our experiments contains many more interesting patterns. However a complete analysis is
beyond the scope of this thesis. The discovery of these patterns is left for future research.
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Chapter 6

Integration into the Memory-Based
Shallow Parser and comparisons

The two previous chapters described how we improved performance by optimizing the
algorithmic settings and the feature representation on the task of finding grammatical
relations, using the task definition and the data as introduced in Chapter 3. In this
chapter we use the optimal settings and feature representation but apply it to slightly
different tasks and data in Section 6.1.! These experiments pave the way for a comparison
of MBSP to related work in Section 6.2.

6.1 Additional tasks and data

In contrast to the previous chapters, the experiments in this section reflect more realistic
conditions for the relation finder. In particular we will also find non-local dependencies
(Section 6.1.1), use a smaller set of coarser defined relations (Section 6.1.2), work on
other data than the Wall Street Journal Corpus (Section 6.1.3) and, perhaps most im-
portantly, work on data that was tagged and chunked automatically instead of using the
hand-corrected treebank annotation (Section 6.1.4).

6.1.1 Non-local dependencies

In Section 3.1.2.6 we explained how non-local dependencies are represented in the Penn
Treebank. Up to now we excluded these relations from our experiments. They are however
important in applications like question answering or subcategorization extraction where
we want to find the object of a verb, for example, no matter whether it stands in a local

!There is no guarantee that the setting and representation that proved to work best for the task and
data of the previous chapters is also the best one for the other tasks and data. However it is infeasible to
optimize everything again.

135
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(s (s
(NP-SBJ (DT This) ) (NP-SBJ-1 (PRP He) )
(VP (VBZ is) (VP (MD will)
(NP-PRD (DT an) (JJ old) (NN story) ))) (VP (VB be)
(VP (VBN paid)
(NP (-NONE- *-1) )))))
(NP (NP-SBJ
(NP (DT the) (JJ Japanese) (NNS companies) ) (NP (DT The) (NN plant) )
(SBAR G o)
(WHNP-1 (WDT that) ) (SBAR
(s (WHNP-1 (WDT which) )
(NP-SBJ (-NONE- *Tx-1) ) (s
(VP (VBP compete) (NP-SBJ-4 (-NONE- *T*-1) )
(PP-CLR (IN with) (VP (VBZ is)
(NP (PRP it) )))))) (VP (VBN owned)
(NP (-NONE- *-4) )
(PP (IN by)

(NP-LGS ... )DNN

Figure 6.1: Four combinations of local and non-local relations: “This is an old story”: only a
local relation (here: surface subject) between the bold face words. “He will be paid”: a local and
a non-local relation (surface subject and deep object). “the Japanese companies that compete
with it”: only one non-local relation (surface subject). “The plant, which is owned by ...”:
two non-local relations (surface subject and deep object).

or a non-local relation to the verb. This section reports on experiments that include the
non-local relations. There can be at most one local but several non-local relations between
a verb and some other word. We can distinguish four combinations, which are exemplified
in Figure 6.1. The corresponding instances in Table 6.1 contrast the class representation
we used up to now with the one used in this section. For distinction, non-local relations
are prefixed by “T-” (trace). The table also shows the frequency of each of the four
combinations of local and non-local relations. We see that non-local relations are much
less frequent than local ones. Still 10.8% of the relations are affected by the class change
so its influence is not negligible. In the above examples, passive and wh-movement is the
source of the non-local dependency. Another source is topicalization, which is exemplified
in Figure 6.2.

A first experiment including the non-local relations yields disappointing results. Fj drops to
80.02, 3.08 points less than the 83.10 we had reached at the end of the previous chapter. The
first and second row in Table 6.2 show that this decrease is entirely due to the performance
on the non-local relations themselves whereas performance on the local relations is not
affected significantly by the addition. A quick analysis of the errors involving non-local
relations showed that the learner is especially bad at making the distinction between pure
surface subjects, and those that are also deep objects. This is not surprising, as the feature
representation lacks the information whether the verb chunk is passive or not. In a second
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features class frequency of case
dir. ‘ dist. ‘ focus ‘ verb old ‘ new absolute ‘ %
— 1 This is NP-SBJ NP-SBJ 114,701 89.2
— 1 he paid NP-SBJ | NP-SBJ;T-NP-OBJ 5,135 4.0
— 1 that | compete - T-NP-SBJ 8,226 6.4
— 1 | which | owned - T-NP-OBJ;T-NP-SBJ 484 0.4

Table 6.1: Partial instances for the four combinations of local and non-local relations from
Figure 6.1 with old and new class values. The last two columns show the absolute and relative
frequency of each case in the unrestricted cross validation material.

( (SINV (t( t()
(s-TPC-1
(SBAR-ADV (IN Unless)
(s

(NP-SBJ (PRP he) )
(VP (VBZ changes) )))
Gy
(NP-SBJ (PRP they) )
(VP (VBP lose) ))
(, ’) (;; ;;)
(VP (VBD said)
(S (-NONE- *Tx-1) ))
(NP-SBJ (DT a) (JJ Democratic) (NN leadership) (NN aide) )

G..oa»n
( (SINV
(S-TPC-1

(NP-SBJ (DT The) (NN perception) )
(VP (VBZ lingers) ))
G oy)
(VP (VBZ says)
(SBAR (-NONE- 0)
(S (-NONE- *T*-1) )))
(NP-SBJ
(NP (DT an) (NN official) )
(PP-LOC (IN at)
(NP (DT a) (JJ major) (JJ industrial) (NN company) )))
. )

Figure 6.2: The difference between direct and indirect speech is expressed through the non-local
relations (S-0BJ or S/SBAR-0BJ). The local relation is the same (VP/S-TPC: topicalized sentence)
in both cases: “Unless he changes, they lose,” said a Democratic leadership aide. The perception
lingers, says an official at a major industrial company.

experiment we added this information in the form of additional feature values of the VP
type feature of the verb chunk. If the words in the verb chunk and their PoS match



138 CHAPTER 6. INTEGRATION INTO MBSP AND COMPARISONS

non- | pas- local non-local both

loc. | sive MB | h:m || prec. | rec. | Fp prec. | rec. | Fp prec. [ rec. | Fp

no no 108 | 3:34 || 86.45 | 80.01 | 83.10

yes no 109 | 3:50 || 86.20 | 80.11 | 83.04 || 76.08 | 46.93 | 58.04 || 83.67 | 76.67 | 80.02

no yes 108 | 3:15 || 86.48 | 80.02 | 83.13

yes yes 109 | 3:55 || 86.37 | 80.19 | 83.17 || 80.92 | 57.68 | 67.34 || 85.08 | 77.95 | 81.36
[ yes [yes | *] 108 ] 3:27 | | | | | | | 85.12 | 77.97 | 81.39 ]

Table 6.2: Performance with and without the non-local relations, with and without the passive
feature values of the VP type feature, on local and non-local relations and overall. Parame-
ter settings and rest of feature representation same as for third row of Table 5.16. *= same
representation for local and non-local relations

| local relation | freq. | prec. | rec. | Fp || non-local relation | freq. | prec. | rec. | Fp |
NP-SBJ 35141 | 92.52 | 93.29 | 92.90 || T-NP-SBJ 6015 | 82.86 | 60.85 | 70.17
NP-SBJ; 2948 | 90.41 | 56.31 | 69.40 | T-NP-OBJ; 482 | 89.33 | 50.41 | 64.45
T-NP-OBJ T-NP-SBJ
NP-OBJ 20898 | 93.32 | 95.17 | 94.24 || T-NP-OBJ 514 | 74.15 | 63.62 | 68.48
PP-CLR 6143 | 70.00 | 71.25 | 70.62 || T-PP-CLR 17 | 70.00 | 41.18 | 51.85
PP 4227 | 58.20 | 40.38 | 47.68 || T-PP 34 | 2727 | 8.82 | 13.33
PP-TMP 3656 | 77.63 | 67.86 | 72.42 | T-PP-TMP 22 | 50.00 | 13.64 | 21.43
T-ADVP-TMP 661 | 91.31 | 93.80 | 92.54
ADJP-PRD 3472 | 93.68 | 97.75 | 95.67 || T-ADJP-PRD 19 | 75.00 | 31.58 | 44.44
NP-PRD 3384 | 89.75 | 91.37 | 90.55 || T-NP-PRD 40 | 33.33 | 10.00 | 15.38
PP-LOC 3230 | 65.62 | 54.61 | 59.61 || T-PP-LOC 74 | 55.05 | 81.08 | 65.57
T-ADVP-LOC 163 | 80.84 | 82.82 | 81.82
ADVP 3196 | 76.16 | 74.66 | 75.40 | T-ADVP 20| 0.00 | 0.00 | 0.00
VP/S/SBAR 3100 | 94.17 | 83.87 | 88.72 | VP/S-TPC; 873 | 60.96 | 24.86 | 35.31
-OBJ T-S/SBAR-OBJ

Table 6.3: Performance on ten most frequent local relations and non-local counterparts (using
passive feature).

a regular expression, the string “-pas” is concatenated to the original VP type. This
additional information indeed increases overall performance to 81.39 and performance on
the non-local relations by nearly 10 points from 58.04 to 67.34. The passive feature values
do not have any significant effect on the local relations (first and third row of Table 6.2).

If an application does not need to distinguish between local and non-local relations we can
represent both by the same class instead of using the “T-” prefix for the latter. This sim-
plification does not have any significant effect on performance but classification is slightly
faster (fifth row of Table 6.2).

Table 6.3 compares performance on local and non-local counterparts of the ten most fre-
quent relations. Some local relations have two counterparts, e.g. the locative PP in “he
met her in New York” has a non-local variant as a PP (“the city in which he met her”) or
as an ADVP (“the place where he met her”). The function of the latter is clearly marked
by the lexical item where, so precision and recall on this relation are high. Performance on
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‘ H MB ‘ h:m H prec. ‘ rec. ‘ Fg ‘
with 1/0 restriction || 109 | 3:55 || 85.08 | 77.95 | 81.36
without restriction 178 | 8:29 || 85.13 | 77.81 | 81.31

Table 6.4: Performance with and without the 1/0 restriction on intervening verb chunks.

the PP case is lower but still higher than for local PP-L0OCs. This is because most cases of
preposition plus “which” are T-PP-LOC whereas there are many more frequent alternatives
for the general preposition-plus-noun case. In general, performance on non-local relations
is much lower than on the local ones. This can be explained by the much lower frequency
of the former and the fact that in wh-constructions, the preceding head noun, and not
the wh-word, contains most of the semantic information.? Most of the reasonably frequent
non-local relations also have reasonable performance. An exception are topicalized sen-
tences. In this case the learner often fails to retrieve indirect speech or mistakes it for
direct speech (see also Figure 6.2). Topicalized direct speech (VP/S-TPC;T-S-0BJ) is more
frequent (1130) and the learner achieves higher performance for it (F3=63.30). Unless
stated otherwise, experiments in the remainder of this thesis include the passive feature
and the non-local relations (in the T-prefixed representation).

In Section 4.2 we introduced the preprocessor, which was implemented as a 1/0 restriction
on intervening verb chunks in all experiments up to now. In order to investigate its in-
fluence on performance with the new feature representation and the non-local classes, we
repeated the last experiment without the restriction. Table 6.4 shows that both set-ups
yield basically the same performance but that the restricted version is more than twice as
fast and takes less memory. It will therefore be the preferred version for practical appli-
cations. On theoretical grounds, however, it is interesting to note that the method is, in
principle, able to find very distant relations.?

6.1.2 Application-specific classes

Up to now the set of GRs that we used was the maximal set extractable from the Penn
Treebank. Our reasoning was that different applications would need different subsets of
these relations but that we cannot know in advance which relations might or might not
be needed and we therefore wanted our results to be as general as possible. For a specific

2In fact one might want the grammatical relation to hold between the head noun and the verb. This
could be achieved by more manipulations of the annotations derived from the treebank.

3Here are two examples of distant relations that the unrestricted version found: “If Sen. Bradley would
permit a vote on capital gains, though, it would pass, Christmas retail sales would be strong instead of
burdened by a falling stock market, the 1990 economy would be robust, and the revenue gains at every
level of government, including New Jersey’s, would be surprisingly high.” (SBAR-ADYV); “There are
about $10 million of 7% bonds priced at 99 1/4 to yield 7.081% in 2004; about $15 million of 7% bonds
priced at 98 1/2 to yield 7.145% in 2008; about $88.35 million of 7% bonds priced at 97 1/4 to yield 7.227%
in 2018; and about $15 million of 6 3/4% bonds priced to yield 7.15% in 2019.” (NP-PRD).



140 CHAPTER 6. INTEGRATION INTO MBSP AND COMPARISONS

# preprocessing postprocessing
Task cl. || MB ‘ h:m H prec. ‘ rec. ‘ Fg prec. ‘ rec. ‘ Fg
unlabeled depend. | 1 || 102 | 1:46 || 89.32 | 85.55 | 87.39 || 93.19 | 86.52 | 89.73
subject/object 2 || 103 | 1:55 || 94.65 | 91.38 | 92.99 || 94.59 | 93.92 | 94.25
QA classes 91 105 | 2:06 || 87.08 | 80.74 | 83.79 | 88.51 | 81.10 | 84.64
C&B’s GRs 13 || 105 | 2:06 || 89.00 | 83.05 | 85.92 || 90.23 | 82.67 | 86.28

Table 6.5: Results with preprocessing and postprocessing for task-specific class prediction. The
second column shows how many non-default classes there are for each task. For postprocessing
MB is 109 and h:m is 3:55. Run time excludes the preprocessing or postprocessing step.

application, we would then need a mapping from our treebank classes to the application-
specific classes. There are two ways to realize this mapping:

e by preprocessing i.e. mapping the classes in the training material. The application-
specific classifier then directly predicts the new classes.

e by postprocessing i.e. mapping the classes after classification but before using them
in the application.

To find out what consequences on performance, speed and memory the two alternatives
have, we conducted preprocessing and postprocessing experiments with four different map-
pings. The first mapping corresponds to the task of predicting unlabeled dependencies
(attachment): all classes except pure non-local relations and “~” (no relation) are mapped
to, say, REL. The second task is to extract only NP subjects and direct objects. Thus
all classes except local NP-SBJ and NP-0BJ are mapped to “~”. The third mapping was
used for the Question Answering system that will be described in Chapter 7. It does not
distinguish between different types of objects, between syntactic categories, between local
and non-local relations and between PP complements and adjuncts. Finally we test the
mapping from our GRs to the ones of Carroll, Minnen, and Briscoe (1998), henceforth
C&B. It will be explained in more detail in Section 6.2.2.* The most important points
are that their GRs do not distinguish between semantic adjunct types (-TMP, -LOC etc.),
between most syntactic categories (NP, ADJP, ADVP etc.) and between local and non-local
relations. Very roughly the QA mapping keeps mostly adjunct distinctions whereas the
C&B mapping keeps mostly complement distinctions. In all four cases, the gold standard
against which the results are evaluated is mapped, too. This is why Fj values are higher
than in the previous experiment (81.36).

The results demonstrate several points. First, unsurprisingly, the task gets easier with
fewer classes. Second, subjects and objects are easier to find than most other relations.
Third, postprocessing consistently yields better performance than preprocessing but is
much slower. This means that even if we need the learner to perform only a simple(r) task

4The auxiliary and determiner relations only hold within chunks so they do not occur in this experiment.
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it is still better for performance to train it on a more difficult task.® If we have several
applications with different target classes they can use the same learner and just apply
different mappings afterwards if memory but not speed is a concern. On the other hand
tailoring the learner to the specific classes needed is a way to speed up classification.

To find out why preprocessing performs worse we analyze the data of the “C&B’s GRs”
experiment in more detail. A breakdown of performance by relation shows that precision
on adjuncts decreases when switching from postprocessing to preprocessing but recall in-
creases more, so Fj increases too. On complements however either the opposite happens
(precision higher, recall lower, F lower) or precision as well as recall are lower. Thus on
adjuncts the learner becomes less “over-cautious”. This is the effect of merging several
different semantic types of adjuncts into one general adjunct class. It then becomes more
likely for this new class to get the majority among the Nearest Neighbors, i.e. to get pre-
dicted. Take the sentence “... the Secret Connection attache case which can surreptitiously
record conversations for nine hours at a stretch.” Without preprocessing, the NN distri-
bution for the pair record/at stretchis {-: 0.0323755, PP-CLR: 0.00800639, PP-TMP:
0.0217656, PP-LOC: 0.00826969, PP-MNR: 0.00730642}, so “~” (no relation) has the
majority (which is correct because “at a stretch” attaches to “hours”). After preprocess-
ing the distribution becomes {-: 0.422741, ncmod: 0.712311, iobj: 0.140134}so
“ncmod” (non-clausal modifier) gets predicted. In this case this is incorrect but often it is
right.

As an example of why performance on complements drops, take the phrase “which traded
11 million shares”. Without preprocessing, the NN distribution for the pair traded/shares
is {NP-0BJ: 0.185321} i.e. “shares” unanimously gets classified as direct object. Af-
ter preprocessing, the distribution becomes {ncmod: 0.996092, dobj: 0.787955}, so
“shares” is incorrectly classified as an adjunct. The NNs in the postprocessing case are
phrases like “who sold shares”, “which bought machines” etc. while in the preprocessing
case they are “which soared 9%”, “Saab ended talks”, “stock plunged HAPAX” etc. which
look much less related. This is partially due to a lower relative importance of the word-
valued features with preprocessing and partially to different MVDM values. Apparently,
having to distinguish between semantic types of adjuncts helps the algorithm to better
estimate the value of lexical information.

6.1.3 Influence of text type

We started our experiments with data from the WSJ Corpus because that was the largest
corpus with hand-corrected parse trees featuring information on different kinds of comple-
ments and adjuncts. Later however the parsed Brown Corpus became available as part

5Tt might still be the case that we could find a parameter setting and feature representation that is better
suited for the simple task and yields even better performance than the “original task and postprocessing”
set-up. However this would involve extensive optimization.
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‘ H # words ‘ # sentences ‘ av. sentence length ‘ # genres ‘

WSJ  |[ 1,173,766 49,208 23.9 1
Brown | 459,148 924,243 18.9 8

Table 6.6: Characteristics of the WSJ and the Brown Corpus.

| | train \ test - | WSJ | Brown | | | train \ test — | WSJ | Brown |
WSJ 80.03 | 74.23 WSJ 17.7 29.9
Brown 73.10 | 78.87 Brown 37.5 18.3

Table 6.7: Left: Fj on different training and test corpora. Right: Percentage of test instances
whose focus word has been replaced by HAPAX. Experiments are without the —CLR function tag.

of the third release of the Penn Treebank. The characteristics of the two corpora are
compared in Table 6.6.

The annotation scheme in both corpora is nearly the same.® We can therefore test what
influence the text type and differences in text type between training and test material
have on relation finding performance by training on either WSJ or Brown and testing
on either WSJ or Brown. We use the complete Penn Treebank Brown Corpus (459,148
tokens) and files 0001-0999 and 2000-2035 of the WSJ Corpus (459,136 tokens). The
WSJ part deliberately excludes the files that we used for the optimization experiments in
the previous chapters (1000-1999). We randomize both corpora at the sentence level and
then split them into equally sized training and test partitions. The results are shown in
Table 6.7 (left part).

The WSJ/WSJ performance is lower than in previous experiments, probably because we
use only half the amount of training material. The Brown corpus seems to be slightly
more difficult given the lower performance when training and testing on the same source.”
Unsurprisingly training and testing on a different corpus results in a lower performance.
Interestingly training on Brown and testing on WSJ performs worse than the other way
round. All these results appear to be related to the percentage of low frequency words in
the test material (see right part of Table 6.7). When training on Brown and testing on
WSJ, more than a third of the focus words have not been seen sufficiently often. Nearly
half of these HAPAX words are common nouns (only less than a quarter are proper names).
For example “%” occurs more than 1100 times in the WSJ data but only 5 times in the
Brown part. Although it is typical for financial texts, we normally would not consider it
specialized vocabulary. Another example is “million” which does not occur in the Brown
data at all (only “millions” does).

6The -CLR function tag is no longer used in the Brown Corpus. In the WSJ files, we therefore replace
it by -0BJ if it is the only tag on NPs, ADJPs, etc. (cf. p. 59) and delete it otherwise. The -IMP tag (for
imperatives) exists only in the Brown Corpus. We therefore replace it by -0BJ if it is the only tag on S
and SINV and delete it otherwise for the experiments in this section.

"There might also be a small effect of the fact that the parameters and features are optimized for WSJ,
not for Brown.
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context—5 context—1 focus context+1 context+2 context+3

word | PoS word | PoS | word [ PoS [ word | PoS || word | PoS [ word | PoS || class
- | - - — || Pie. | NNP || Vin. | NNP ||, , 61 | CD | LNP
— | - Pie. | NNP || Vin. | NNP ||, , 61 | CD || yea. | NNS || LNP
— - Vin. | NNP , , 61 CD yea. | NNS || old JJ 0
- — , , 61 CD yea. | NNS old JJ , , I-NP
— | = 61 | CD | yea. | NNS || old | J7 , , will | MD || NP

Table 6.8: The first chunking instances for the sentence “Pierre Vinken, 61 years old, will
join the board as a nonexecutive director Nov. 29.”. Features: word and PoS of focus token
(word or punctuation), of five context tokens to the left and of three context tokens to the right.
Parameters settings: IB1-1G, Gain Ratio, MVDM for PoS features and overlap for word features,
k = 3, majority voting.

Gildea (2001) performed related experiments with the WSJ and Brown corpus on the full
parsing task (without function tags) using Collins’s Model 1 parser. However he uses a
larger training set from the WSJ than from Brown (950,000 versus 413,000 words) and
does not explore training on Brown with testing on WSJ. Yet his results confirm that the
Brown corpus is slightly more difficult and that training on a different corpus decreases
performance by several percent.

6.1.4 Using a real tagger and chunker

Up to now we used the tags and chunks from the treebank and concentrated on improving
the performance of the relation finder. For comparisons to other systems and for real
applications however we need to use an automatic tagger, chunker and PNP finder. In this
section we describe how these modules are implemented, what their influence on relation
finding performance is and how they can best be combined with the relation finder. The
Memory-Based Tagger (MBT) software is described in Daelemans et al. (1996). It is
based on TiMBL (version 4.2 at the time of writing) but in addition it offers automatic
conversion from sentences to instances and back, a sophisticated treatment of unknown
words based on word-internal features (capitalization, suffix letters, etc.) and the use
of the predicted class of a word as a feature for the classification of the nearby following
words. Memory-based chunking has been studied by Veenstra (1998), Tjong Kim Sang and
Veenstra (1999), Veenstra and Van den Bosch (2000) and others. We adopt the setting and
instance representation as proposed by Veenstra and Van den Bosch (2000). Some sample
instances are shown in Table 6.8.

We also introduce a novel module that tags and chunks at the same time. This is achieved
by simply letting MBT predict tags that are a concatenation of a PoS tag and an IOB tag.
In this notation our example sentence looks like:
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context-1 focus context+1
dist. | # PPs | # ,s || prep. || head | PoS | chunk [ head | PoS || head | PoS | chunk | class
1 0 0 as as IN PP dir. | NN 29 CD NP +
2 0 0 as dir. NN NP 29 CD . . — —

Table 6.9: The two PNP finding instances for our example sentence. Features: distance (in
chunks) between preposition and NP, number of intervening PPs, number of intervening commas,
preposition, headword, head’s PoS and chunk type of one context chunk to the left, of focus chunk,
and of one context chunk to the right. The chunk type of the focus is ignored as it is NP by
definition. Instances are only created for distance values between 1 and 5 (similar to the search
space restrictions in Section 4.2). Parameter settings: IB1-IG, Gain Ratio, overlap, k = 1,
majority voting.

training testing relation finder performance
tags | chunks | PNPs || tags | chunks | PNPs || MB | h:m || precision | recall [ Fp
[tb [tb | tb [tb [tb | tb | 109 | 3:55 [ 85.08 | 77.95 | 81.36 |
th tb tb tb tb Timbl | 109 | 3:56 84.54 77.43 | 80.83
tbh tb Timbl || tb tb Timbl || 110 | 3:57 84.88 77.24 | 80.88
tb tb tb tb tb regexp || 109 | 4:01 83.57 77.42 | 80.38
th th regexp || tb th regexp || 112 | 4:03 84.77 77.14 | 80.78
tb [ tb tb MBT Timbl || 109 | 4:01 75.24 67.90 | 71.38
MBT Timbl MBT Timbl || 111 | 4:24 79.96 66.47 | 72.59
tb [ tb tb MBT regexp || 109 | 4:07 74.27 67.83 | 70.91
MBT regexp MBT regexp || 112 | 4:32 80.04 66.41 | 72.59

Table 6.10: Influence of automatically tagged and chunked data on relation finding performance.
“tb” refers to treebank tags and/or chunks and “regexp” to the regular expression.

(1) Pierre/NNP-I-NP Vinken/NNP-I-NP ,/,-O 61/CD-I-NP years/NNS-
NP old/JI-I.ADJP ,/,-O will/MD-I.VP join/VB-I-VP the/DT-I-
NP board/NN-I-NP as/IN-I-PP a/DT-I-NP nonexecutive/JJ-I-NP
director/NN-I-NP Nov./NNP-B-NP 29/CD-L-NP ./.-O

The PNP finder instances are shown in Table 6.9. The PNP finder seems to be the simplest
module of MBSP so we also try whether it can be replaced by a simple regular expression
that joins all PP and NP chunks that match the pattern “[pp ...] [np ...]” or “[pp ..
[vp -] CC [np ...]” or “[pp -..] [np -] , [vp -] CC [np ...]” (CC is a coordinating
conjunction).

We train the tagger, chunker and PNP finder on sections 00—09 of the WSJ corpus and
apply them to our cross validation material (from sections 10-19). For the relation finder
we try two different set-ups: training on treebank data (as before) or training on output
from the lower modules. Results are shown in Table 6.10. The first row shows our previous
set-up: training and testing on treebank tags and chunks. In the second and third row we
use TiMBL to predict PNPs (its Fj is 96.63). It does not seem to matter much whether the
relation finder is trained on treebank or automatically predicted PNPs (80.83 versus 80.88).
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It does matter for the regular expression PNP finder however (which achieves an Fp of only
92.92). If the relation finder can adapt to the imperfect output of the regular expression
it performs nearly as well as with the TIMBL PNP finder (80.78 versus 80.88). Otherwise
performance is significantly worse (80.38, p < 0.001, ¢t = 4.462). A similar effect holds for
the combined tagger/chunker (which achieves 92.98% accuracy on the combined tags and
an Fg of 91.33 on chunks alone). Relation finder performance is better when trained on
predicted tags/chunks and PNP chunks than when trained on treebank material (72.59
versus 71.38, respectively 72.59 versus 70.91 with the regular expression PNP finder).

6.1.5 Summary

The previous sections demonstrated two points. First, performance on a given task does
not need to suffer and might even improve if the learner is trained to perform a more
difficult task. We saw this effect when adding the non-local relations to the local ones and
when training on the full task (with postprocessing) instead of on the application-specific
ones. Second, performance is better if training and test material are as similar as possible.
We saw this effect with the WSJ/Brown experiments and with automatically tagged and
chunked versus treebank material.

6.2 Comparisons

As we saw in Sections 2.4.3 and 2.4.4, there are a few other systems that extract general
grammatical relations (i.e. more than subjects and objects). One of these systems, using
Transformation-Based Learning (TBL), is described in Ferro, Vilain, and Yeh (1999). Yeh
(2000a) compares this system to the relation finder of Buchholz, Veenstra, and Daelemans
(1999) on the very small, manually chunked training and test set of Ferro, Vilain, and
Yeh (1999). In that comparison the memory-based relation finder does not perform very
well: Fj is 60 whereas the TBL system scores 71. Part of this difference is due to extra
information (passive and VP type) in the TBL system which was not incorporated into
the MBL system at that time but some part of the difference must also be attributed
to the different learners. Note however that MVDM and larger values of £ which proved
advantageous in our current system were not used back then. However it is unsure whether
they would have had a positive effect given the small training set (3299 words). Yeh
(2000a) notes that if he “had been trying to compare the two systems on a large annotated
training set, the MBL system would do better by default just because the TBL system
would take too long to process a large training set.” By contrast the two systems with
which we compare the Memory-Based Shallow Parser in this section can either handle large
training sets (MBSL) or do not need to be trained at all (Carroll and Briscoe). All TiIMBL
experiments reported in this section were performed with TiMBL version 4.2.
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6.2.1 Memory-Based Sequence Learning

MBSL (see Argamon, Dagan, and Krymolowski (1998), Dagan and Krymolowski (2002)
and Sections 2.4.1.1 and 2.4.1.3) has also been applied to the task of finding unlabeled
dependencies (Krymolowski and Dagan, 2002). Krymolowski and Dagan’s definition of
dependencies encompasses each local head-dependent relation that is listed in the interme-
diate format (cf. Section 3.1.2) excluding relations that involve punctuation. In cases of
multiple heads (due to coordination), only the first head is considered. A target PoS se-
quence extends between the head and the dependent. In our Memory-Based Shallow Parser
we distinguish between relations within chunks (e.g. in the NP chunk “Pierre Vinken” the
relation from “Pierre” to “Vinken”) and relations between chunks. The former are found
by the chunker, the latter by the relation finder. In MBSL there is no such distinction.
Instead it is possible to extract e.g. only dependents of verbs, only right dependents of
nouns, or only dependents which are nouns. In the most general setting, which we use
here, dependencies between all types of words and in both directions are extracted. In
Krymolowski and Dagan (2002) this is denoted as *<—*, x—%*, where the asterisk matches
any PoS and the arrow points to the head.®

As data sets we take the by now standard parsing division of WSJ sections 02-21 for
training and 23 for testing. We use the treebank tags, in order to abstract away from the
influence of any particular PoS tagger. We automatically chunk the text and find PNPs
as outlined in Section 6.1.4. Finally we apply the relation finder to the combined output
of chunker and PNP finder. Fj of the chunker, PNP finder and relation finder on the test
set are 94.46, 93.07 and 77.56 respectively.

We record an unlabeled dependency for

e each chunk head and some other word from the same chunk, e.g. for the chunk “a
nonexecutive director” we would record dependencies nonexecutive—director and
a—director.

e each preposition and the head of the NP chunk that were joined by the PNP finder,
e.g. as<—director.

e cach verb chunk head and focus chunk head that were predicted to have a local
relation by the relation finder, e.g. Vinken— join.

e the words “not” and “n’t” if they occur outside any chunk to the immediately pre-
ceding word. This simple heuristic catches most of the cases like was<—n’t and is
necessary because the relation finder will not predict relations for chunkless words.

8MBSL settings are: a threshold of 7 = 0.5, left and right context of 2 words, at most one embedded
instance in a tile, with a recursion level = 1 and a maximal tile length of 5. Many thanks to Yuval
Krymolowski for running the experiment.
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VB*<—*, *—>VB* Kk, Kk
Method || precision | recall | Fj | precision | recall | Fj
MBSL 87.4 | 73.5|79.9 85.8 | 81.7 | 83.7
MBSP 91.8 | 85.4| 88.5 93.6 | 76.7 | 84.3
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Table 6.11: Performance of Memory-Based Sequence Learning and the Memory-Based Shallow

Parser on section 23 when evaluating unlabeled relations to verbs only, and to all words.

MBSL MBSP
span # || precision | recall | Fj || precision | recall | Fj
2 | 6581 92.2 | 954 | 93.8 96.3 | 95.7 | 96.0
3 | 3443 85.9 | 87.6 | 86.8 93.9 | 92.2193.1
4 | 1958 84.8 | 76.9 | 80.7 92.1 | 87.7189.9
5 | 1062 79.8 | 57.0 | 66.5 88.2 | T78.8 | 83.2
6| 655 75.6 | 44.1 | 55.7 84.2 | T1.6|77.3
7 499 76.5 | 30.0 | 43.1 85.0 | 69.3 | 76.3
8 | 381 74.7 | 22.5 | 34.6 82.0 64.5 | 72.2
9| 286 60.2 | 14.3 | 23.1 81.5| 57.3|67.3
10 | 255 69.4 | 9.80|17.1 81.5 | 60.7 | 69.6

Table 6.12: Breakdown of performance by number of words spanned when evaluating unlabeled
relations to verbs only. 2 means the relation connects two adjacent words. The second column
shows how many instances of a given length there are. Relations spanning more than ten words
are not shown (1265 instances).

As MBSP finds only relations to verb chunks, we first compared performance of MBSP
and MBSL on a subset of all relations. This subset is denoted as VBx<—*, *x—VBx*, i.e.
relations to words tagged as verbs. Results are shown in the left half of Table 6.11.° We

see that MBSP performs much better. This might be explained by the following facts:

e MBSP uses lexical information whereas MBSL is based on PoS only.

e TiMBL gives different weights to different features whereas all the elements of a
sequence have equal influence in MBSL.

e MBSP splits the task into chunking and relation finding and lets the relation finder
work on the simplified output of the chunker (chunks reduced to headword, head’s
PoS and chunk type). This reduction steps allows it to find relations over longer
distances. MBSL takes only limited advantage of previously found structure as there

is a limit on the maximal number of embedded instances that can be used.

A breakdown of performance by the number of words a relation spans (see Table 6.12)
confirms the last point: the performance difference between MBSL and MBSP is much

9Figures are computed by the evaluation module integrated into MBSL.
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bigger on longer relations. To get an idea of how far we are still away from the task
of finding all dependencies, we also evaluate the systems’ output on the complete set
of relations *<—x*, x—*. Note that this set includes relations that our system does not
even attempt to find, e.g. Vinken<—old and years—old in our example sentence, or PPs
attached to NPs, or VPs attached to SBARs (complementizers). This explains the much
lower recall (see right half of Table 6.11). Precision is higher than for verbs because the
complete set contains more “easy” cases (e.g. inside NPs). Thanks to the high precision
overall performance of MBSP on this set is even higher than MBSL’s.

6.2.2 Carroll and Briscoe

The GR extraction system of Carroll, Minnen, and Briscoe (1998) was already described in
Section 2.4.3.2. The results reported in this section are based on the latest version, which
also uses a list of phrasal verbs as additional lexical information.!® C&B’s test set consists
of 500 sentences from the SUSANNE corpus (Sampson, 1995), which is a subset of the
Brown corpus.!! The sentences were chosen randomly from among the sentences for which
the parser produces at least one complete parse (about 80%). GRs were first annotated
automatically, then corrected manually. 236 of the test sentences also occur in the Brown
corpus part of the Penn Treebank.'? Apart from these sentences we take the complete
Brown and WSJ treebank material for training (73,215 sentences, 1,628,672 tokens). We
tag and chunk the test set with a combined tagger/chunker.!®* We then perform tenfold
cross validation on the tagger/chunker and PNP finder training sets. The output of these
experiments provides realistic training material for the PNP and relation finder. As the
Brown corpus annotation does not use the -CLR function tag, we first train a relation
finder on all material with this tag deleted and classify the test data. We then retrain the

10Many thanks to John Carroll and Ted Briscoe for sending the system’s output on the test set and for
explaining the details.

" Raw and annotated files, a description of the annotation, and evaluation software are available at
http://www.cogs.susx.ac.uk/lab/nlp/carroll/greval.html.

12The complete part-of-speech tagged Brown corpus can be found on the Treebank CD-ROM. However
only the genres F, G, K, L, M, N, P and R are also parsed. Genres A, G, J and N are represented in
the SUSANNE corpus. Test sentences are from genres A, G and J only. This means that we only have
parse tree annotations for the sentences of the G genre (belles lettres, biography, memoirs). The process
of locating the test sentences in the treebank uncovered some differences between the two annotations
which might influence performance slightly. For example the Treebank files sometimes contain quotation
marks, hyphens or duplicate question marks or semi-colons that are not present in the test set. The test
set sometimes contains tags in angle brackets (e.g. <bminhd>) that are not present in the Treebank.
Treebank and test set encode formulas/symbols differently. Some phrases occur in the test set completely
in capital letters whereas only the first letters are capitalized in the Treebank. Some phrases, which seem
to be minor headlines, are not clearly delimited from the following sentence in the tagged Treebank files
whereas they do not occur in the test set. Some words differ in the two corpora (infield versus infielder,
3-to-o versus 8 to 0, Hovdingar versus h<ouml>vdingar, 12 versus XII).

13See Section 6.1.4. Settings: -p ddwfa -P pdFasss -0"-a0 -mM -wl -k3 -vS"
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dependent
nod arg_nod arg aux conj

ncnod xnod cnod detnod subj _or _dobj

ncsubj  xsubj csubj j cl ausal
dobj obj 2 i obj xconp cconp

Figure 6.3: The hierarchy of grammatical relations used by Carroll and Briscoe

relation finder on the WSJ material only and reclassify the instances that were classified
as PP (with or without function tags) in the first pass.

The most difficult part of the comparison is the mapping from our relations to the ones
used by C&B. They use 15 basic GRs, which are organized in a subsumption hierarchy (see
Figure 6.3). The GRs are explained in Carroll et al. (1997),'* here we give only a summary.
Modifiers (mod), i.e. adjuncts, are differentiated into non-clausal (ncmod), open (xmod) and
closed (cmod) modifiers. Closed modifiers contain their own subject (e.g. “because he
laughed”) whereas the subject of open modifiers is unexpressed and can be controlled
(e.g. “while laughing”). The same distinction holds for subjects (subj) and complements
(comp). Object (obj) subsumes direct object (dobj), second NP object (obj2) and indirect
object (introduced by a preposition; iobj). Arg mod is used for the by-phrase expressing
the logical subject in passives.

A GR annotation includes at least the name of the relation and the lemmatized head
and dependent. The subj, arg mod and dobj relations also specify the deep relation
if appropriate (obj and subj respectively with passives, or iobj after dative shift) in
the initial_gr slot. The mod, argmod, iobj and clausal relations also specify the
preposition or complementizer which is the syntactic head of the dependent, if present, in
the type slot. Carroll and Briscoe (2001) introduce three more relations. Aux is the relation
between an auxiliary verb and the following verb, detmod holds between a determiner and
the head noun and conj describes the relation between two conjuncts in coordination (e.g.
conj(and,Peter,Mary) for “Peter and Mary”).

Like MBSL, Carroll and Briscoe do not differentiate between intra-chunk and inter-chunk
relations so again we have to construct relations from the output of the chunker, the PNP
finder and the relation finder. Chunks are mapped as follows:

14 An updated version is available at http://www.cogs.susx.ac.uk/lab/nlp/carroll/greval.html
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e Anything tagged DT, WDT, PRP$ or WP$ inside a chunk is taken to have a detmod
relation to the chunk’s head.

e Any word form of be, do and have inside a chunk is taken to have an aux relation to
the following verb in the same chunk (if one exists).

o If there is a sequence of two main verbs in a chunk and the second is a present
participle or a to-infinitive, an xcomp relation is predicted between them with the
first one being the head. Any predicted subject relation is copied from the dependent
to the head. For the sentence “| Peter | [ wants to leave |” for example, our relation
finder would predict a relation ncsubj(leave,Peter,_). The copy rule then adds
ncsubj(want,Peter,_). Any predicted preceding modifier relation is moved from
the dependent to the head.

e Anything tagged RBx (adverb) inside a chunk is taken to have a ncmod relation to
the following word in the same chunk (if one exists).

e If there is a word tagged POS (possessive marker) in a chunk a ncmod relation is
predicted between the chunk’s head and the word preceding the POS (e.g. “[ Peter |
[ ’s big house |” gives rise to ncmod(poss,house,Peter)).

e If there is a coordinating conjunction (CC) in a chunk, a conj relation is pre-
dicted between the preceding word (if any) and the closest following word (if any)
within the same chunk that has the same major part-of-speech. Any relation that
one of the conjuncts has is also copied to the other one. For the sentence “[ Pe-
ter and Mary | [ leave |” for example, our relation finder would predict a relation
ncsubj(leave,Mary,_). The copy rule then adds ncsubj(leave,Peter,_).

e Anything else in a chunk is taken to have a ncmod relation to the chunk’s head.
Relations are mapped according to the following rules:

e Predicative XPs and non-finite VPs!® map to open dependents, finite VPs and SBARs
to closed dependents and all other categories to non-clausal dependents.

e Anything with the -SBJ function tag maps to a relation under subj. If there is also
a non-local -0BJ relation (due to a passive) the initial_gr is obj.

e Anything with the -0BJ or -PRD function tag maps to a relation under comp.'6

e NPs with the -0BJ or -CLR (closely related) function tag map to dobj. A second
NP-0BJ is mapped to obj2.

15The (non-)finiteness can be derived from the VP-type feature.
16There is one exception for the relation VP-0BJ which mostly encodes VP coordination and thus maps
to conj.
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‘ H precision ‘ recall ‘ Fg ‘

C&B 76.4 | 774769
MBSP 81.8 | 66.0 | 73.0

Table 6.13: Overall performance of Carroll and Briscoe’s GR extraction and of the Memory-
Based Shallow Parser on Carroll and Briscoe’s test set. All differences are significant.

e PPs with the -CLR, -DTV, or -PUT function tags map to iobj. The semantic head
fills the head slot while the syntactic head fills the type slot.

e PP-LGS maps to arg_mod with initial_gr subj.
e Anything else maps to a relation under mod.

e Local and non-local relations map to the same GR (except for passives).

A special conversion problem occurs with subclauses with complementizers, and prepo-
sitions whose dependent is not an NP (e.g. by laughing or until after midnight). Our
relation finder determines only the relation between the matrix verb and the complemen-
tizer /preposition but not between the complementizer/preposition and its dependent. In
C&B’s annotation however the relation is between the verb and the dependent. We there-
fore take the closest following NP or PNP (for prepositions) or VP (for prepositions and
complementizers) that does not have a relation to any head as the dependent. If such an
element does not exist the dependent is left unspecified.

In C&B’s annotation, relations hold between lemmas and also the type slot is frequently
filled by a lemma. Some lemmas may be multi-word (e.g. according to). As we do
not have a lemmatizer we map word forms to lemmas after parsing, using the lemmatized
version of the test text, which is available together with the “raw” version. Once our output
is in the required format we use C&B’s evaluation software. In general a relation in the
parser output and in the gold standard match if they have the same head and dependent
and if the relations are identical or at most one subsumption level apart (e.g. a predicted
mod matches with a gold standard ncmod, xmod or cmod). If present the initial_gr and
type slot also have to match.

Overall results of the comparison are shown in Table 6.13. Following Carroll, Minnen,
and Briscoe (1998), we computed significance with a paired t-test.'” As with the general
task in the MBSL comparison, MBSP has lower recall (p < 0.001, ¢ = 13.8263) because
it misses many relations to non-verbs, but higher precision (p < 0.001, ¢ = 5.50214).
However in this case overall performance of MBSP is lower than C&B’s system (p < 0.001,
t = 5.93221). The performance of our system on C&B’s test set depends on many factors:
the annotation scheme of the treebank, annotation errors in the treebank, our definition of
heads, the performance of the memory-based modules and the mapping from their output

"But see Charniak (1995) and Yeh (2000b) for discussions of problems.
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C&B MBSP Treebank

Relation # occ. || prec. | rec. | Fp [ prec. | rec. | Fp || prec. | rec. | Fp
dependent 2920 76.4 | 77.5 | 76.9 | 83.2 | 653 | 73.1 84.5 | 70.7 | 77.0
mod 1691 744 | 77.4|75.9 | 80.8 622|703 | 799 | 687 | 739
ncmod 1004 73.0 | 72.4 | 72.7 70.9 | 52.0 | 60.0 69.8 | 60.2 | 64.7
xmod 56 72.7 | 57.1 | 64.0 66.6 | 7.1 | 129 64.7 | 19.6 | 30.1
cmod 94 62.3 | 51.0 | 56.1 61.1 | 23.4 | 33.8 67.3 | 329 | 44.2
detmod 526 95.5 | 943 | 949 96.3 | 94.4 | 95.3 98.4 | 96.0 | 97.2
arg_mod 13 || 100.0 | 61.5 | 76.1 || 100.0 | 61.5 | 76.1 || 100.0 | 100.0 | 100.0
arg 969 78.5 | 77.6 | 78.0 84.4 | 70.0 | 76.5 90.4 | 743 | 815
subj 483 || 81.8 | 82.4 | 82.1 87.1|72.8 | 793 | 922 | 834 | 87.6
ncsubj 477 83.4 | 82.6 | 83.0 87.4 | 73.1 | 79.6 92,5 | 83.6 | 87.8
xsubj 4 || 100.0 | 75.0 | 85.7 || 100.0 | 50.0 | 66.6 || 100.0 | 50.0 | 66.6
csubj 1 0.0 0.0 0.0 0.0] 00| 0.0 33.3 | 100.0 | 50.0
comp 486 75.0 | 72.8 | 739 | 81.7|672| 738 | 883 | 652 | 750
obj 286 75.1 | 68.5| 71.6 | 84.5 | 65.0 | 73.5 91.8 | 55.2| 69.0
dobj 179 84.8 | 81.5| 83.1 89.6 | 77.6 | 83.2 91.5 | 84.9| 88.1
obj2 8 58.3 | 87.5| 70.0 66.6 | 50.0 | 57.1 || 100.0 | 50.0 | 66.6
iobj 99 55.8 | 43.4 | 48.8 72.8 | 43.4 | 54.4 || 100.0 2.0 3.9
clausal 200 74.8 | 79.0 | 76.8 78.3 | 70.5 | 74.2 85.0 | 79.5 | 82.1
xcomp 172 81.1 | 80.2 | 80.7 | 81.7 | 726 | 769 | 90.3| 814 | 85.6
ccomp 28 83.3 | 71.4 | 76.9 59.2 | 57.1 | 58.1 59.3 | 67.8 | 63.3
aux 160 | 88.6 | 83.1 | 85.8 | 95.1 | 85.6 | 90.1 97.2 | 86.8 | 91.7
conj 87 69.7 | 68.9 | 69.3 | 90.9 | 344 | 50.0 82.0 | 36.7 | 50.7

Table 6.14: Number of occurrences (# occ.) of each GR in the 236 test sentences for which we
have parse trees from the Penn Treebank. Performance of Carroll and Briscoe’s GR extraction
(C&B), of the Memory-Based Shallow Parser (MBSP), and of direct mapping from the treebank
on these sentences. Figures in bold face mark the significantly better result of the comparison
between MBSP and C&B; figures in italics mark cases where the treebank mapping performs
significantly worse than MBSP.

to the test set relations. To get a better idea of how many of the errors of the system are
due to the modules, we also compute our system’s performance on only those 236 sentences
from the test set for which we also have parse tree annotations from the Penn Treebank.'®
Next instead of mapping the predicted chunks and relations of verbs, we map those that
we extracted directly from the treebank (as if for making training material).

Table 6.14 shows a breakdown of performance by relation. Figures for relations higher in
the hierarchy sum up performance on all the relations they subsume. Thus performance
on dependent is overall performance. For both systems it is very similar to performance
on the whole test set, so these 236 sentences seem to be representative. On some relations
MBSP performs (insignificantly) better than C&B’s system. These include detmod and
aux, two relations that only occur within chunks. This is in line with Li and Roth (2001)
who showed that a specialized chunker is better at finding chunks than a full parser.
MBSP is also (insignificantly) better on objects, especially indirect objects. The reason is

180n these 236 sentences Fp of the relation finder when comparing to the treebank annotations is 73.47.
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probably that MBSP uses information about the identity of the preposition. Performance
on clausal complements, especially ccomp, is lower. This might be due to the imperfect
way of determining the dependent of complementizers. The largest performance difference
occurs with clausal modifiers. Few of these are recalled by MBSP. However this is for the
most part not the fault of the memory-based modules as the low result of the treebank-
based predictions shows. Many missing cmod are reduced relative clauses. As they attach
to nouns they are not recalled. In addition the treebank does not annotate explicitly
that the noun is the subject or object of the reduced relative clause (cf. Section 3.1.2.6),
which results in more missed relations. The treebank’s low recall on iobj is caused by the
missing -CLR tag in the Brown corpus (cf. Section 6.1.3). Thus all prepositional objects
get mapped to ncmod, which also decreases precision there. In general these results show
that the mapping from one annotation scheme to another is full of caveats. Given this
large handicap the performance of MBSP does not look too bad, especially if one considers
the fact that the test sentences were deliberately chosen to be in coverage for C&B’s
system. On a fully random test set their system’s performance would presumably be lower
(depending on how successful extraction of GRs from partial parses is).

Riezler et al. (2002) describe a combination of an LFG grammar, a full parser for producing
possible parses and a discriminative estimation technique for ranking those. The system
has been tested on 700 WSJ sentences annotated with f-structures (cf. Section 2.1.3) and
also on C&B'’s test set. Crouch et al. (2002) describe in detail the problems encountered
during mapping from f-structures to C&B’s annotation. Riezler et al. (2002) report an Fjy
of 74.0 (based on labeled precision and recall) on C&B’s test set.

6.3 Summary

This chapter showed how the relation finder that we developed in the previous chapters fits
into the bigger picture of the Memory-Based Shallow Parser, how it can best be integrated
and how MBSP compares to other approaches for finding GRs.
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Chapter 7

Application: question answering

In this chapter we show how the Memory-Based Shallow Parser can be applied to the task
of open-domain question answering (QA). Our goal is not to implement a fully-fledged QA
system but to investigate how the relation finder (and the other modules of MBSP) can
contribute to a real-world application. In the general QA task a system is given a natural
language question and has to return a natural language answer. For limited domains,
the task might be approached by mapping the question to a database query that extracts
the necessary information from a database which models the information in this domain.
Query results can then be presented using predefined patterns, and domain knowledge can
guide the mapping. For open-domain QA, by contrast, exhaustive domain knowledge or
databases are not available, and answer patterns cannot be predefined. Instead the answer
is directly extracted from natural language texts. The set of all texts from which the
system can extract answers is called the document collection.

Moldovan et al. (2000) define five classes of difficulty of QA on document collections (see
Table 7.1). The difficulty does not only depend on the question but also on how the answer
is contained in the document collection. Our QA system can only answer class 1 questions.
Many current QA systems include strategies for answering class 2 questions, e.g. by using
WordNet (Miller et al., 1990), see (Harabagiu et al., 2001), and some attempts have been
made at tackling class 3 (see the “list task” below).

In general the larger the document collection, the higher the chance that it contains answers
of the class 1 kind. The largest document collection that exists is probably the World
Wide Web (WWW). We implemented a prototype of a QA system that tries to answer
questions on the basis of the WWW. This system is called Shapaqa (shallow parsing for
question answering). There are two variants of Shapaqa using two different WWW search
engines. We also took part in the QA track of TREC-10 (Text REtrieval Conference).
The set-up of these yearly QA competitions is described in more detail in Section 7.1.
TREC QA tracks use a fixed document collection and have specific requirements on the
format of answers. We therefore implemented another version of Shapaqa that fulfils these
constraints. This version also has two variants. Both versions and all theirs variants
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| Class | KB | Reasoning | NLP/Indexing | Examples and Comments |
1 dictionaries | simple complex noun, | Q33: What is the largest city in Germany?
heuristics, apposition, A: ... Berlin, the largest city in Germany . ..
pattern simple seman-
matching tics, keyword | Answer is: simple datum or list of items
indexing found verbatim in a sentence or paragraph.
2 ontologies low level verb nom- | Q198: How did Socrates die?
inalization, A: ... Socrates poisoned himself ...
semantics,
coherence, Answer is contained in multiple sentences,
discourse scattered throughout a document.
3 very large | medium level | advanced Q: What are the arguments for and against
knowledge- NLP, seman- | prayer in school?
base tic indexing Answer across several texts.
4 domain KA | high level Q: Should Fed raise interest rates at their next
and clas- meeting?
sification, Answer across large number of documents, do-
HPKB main specific knowledge acquired automati-
cally.
5 world very high Q: What should be the US foreign policy in the
knowledge level, special Balkans now?
purpose Answer is a solution to a complex, possibly
developing scenario.

Table 7.1: The taxonomy of QA systems reproduced from Moldovan et al. (2000). KB: knowl-
edgebase, KA: knowledge acquisition, HPKB: high performance knowledge bases.

share a common core, which is introduced in Section 7.2. Section 7.3 describes the online
system and Section 7.4 the TREC system. Most of the content of these sections has been
published before in Buchholz and Daelemans (2001b) and Buchholz (2002). Section 7.5
discusses related research and Section 7.6 summarizes our approach and gives an outlook
on future research.

7.1 Text REtrieval Conference QA tracks

The TREC QA tracks have given a boost to QA research and the development of actual
QA systems. Many groups working in the field have taken part and documented their
approaches in the proceedings.! The tracks have also influenced QA evaluation methods
and the definition of the task. As we largely adopt their task definition and evaluation
method for our system, we describe the tracks briefly in this section. The QA track of
TREC started in 1999 with TREC-8 and has been carried out each year since. The basic
set-up is as follows:

http://trec.nist.gov/pubs.html
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894 How far is it from Denver to Aspen?

895 What county is Modesto, California in?

896 Who was Galileo?

897 What is an atom?

898 When did Hawaii become a state?

899 How tall is the Sears Building?

900 George Bush purchased a small interest in which baseball team?
901 What is Australia’s national flower?

902 Why does the moon turn orange?

903 What is autism?

Figure 7.1: Some questions with original numbers from the TREC-10 QA track.

e Systems receive a list of several hundred natural language questions. The ques-
tions are fact-based, thus excluding questions such as “Who is the best actor in the
world?”. Each question consists of just one sentence. Most of them are wh-questions.
Occasionally they are not formulated as questions (e.g. “Name a food high in zinc”).
Some examples from TREC-10 are shown in Figure 7.1.

e There is a fixed document collection, mostly consisting of newspaper/newswire text.

e Systems have to answer the questions completely automatically. Using external re-
sources such as dictionaries, ontologies or, indeed, the WWW is allowed.

e For each question a system can submit up to five ranked answer strings. Together
with each string it must specify which document of the collection the answer is based
upon.

e The assessors judge each answer in the context of the associated document. This
means that even if some document states wrong information answering a question
and a system extracts this answer from this document, the answer will be judged
correct.

e If the first correct answer is at rank x the system receives 1/x points for this question.
If the system found no correct answer it receives zero points. The total score of a

system is the average over the scores for all questions. This evaluation metric is
called Mean Reciprocal Rank (MRR).

Some aspects of the QA track have changed over the years. In TREC-8 some questions
came from the logs of the FAQ Finder system (Burke et al., 1997) but most were created
explicitly for the track by either the assessors or the participants. This resulted sometimes
in unnatural formulations and often in questions that used the same wordings as the answer
in the document, which is unrealistic. In later tracks, questions were either directly taken
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from logs or, if a question in the log was not grammatical, formulated without looking at
the documents.

In TREC-8 and 9 there was a 50-byte and a 250-byte task. The questions were the same
but in the latter task answer strings could be longer. An answer string did not actually
have to be the answer, it was only required to contain an answer.? In TREC-10 only the
50-byte task was kept. In TREC-11 answer strings are required to be the ezact answer,
i.e. nothing more or less than the answer.

From TREC-9 onwards an answer that was actually correct but not supported by the as-
sociated document was judged “unsupported”.® This distinction yields two scores: a strict
one in which unsupported is considered incorrect and a lenient one in which unsupported
is considered correct.

In TREC-8 and TREC-9 the organizers guaranteed that the document collection contained
at least one at most 50-byte answer to each question. From TREC-10 onwards this condi-
tion was dropped. Systems could then also state that there was no answer in the collection.
If there was indeed no answer,? the system got points for this reply. Some questions in
TREC-9 were variants of other questions.

In TREC-10 there was an additional “list task”. Questions explicitly asked for a number of
items, e.g. “Name 20 countries that produce coffee”. Systems had to return an unranked
list of the specified number of answers. Typically the items had to be extracted from
different sentences or different documents. This is a first step towards general class 3 QA.
Submitted answer lists are evaluated using item precision and recall. This means that
systems have to identify actual answer items, not just strings containing answers, because
they have to decide whether two sentences contain the same item or two different items.
Otherwise the same item would be listed several times and others not at all, which would
harm recall. Table 7.2 summarizes the QA tracks.

The questions and answers in the TREC QA tracks represent only part of the general QA
problem. In particular questions as well as answers are short (one sentence; 50 bytes). One
of the effects of this restriction is that questions often ask for entities (persons, locations,
dates, measures, etc.) instead of for reasons, procedures etc. Linguistically entities are
mostly expressed by phrases, and often by single chunks whereas the other categories are
mostly expressed by clauses, sentences or paragraphs. This means that the QA task as
currently defined in TREC is well suited for our system, which is based on chunks.

2Tf an answer string contains more than one entity that could potentially be an answer without any
indication of which one should be taken it is judged incorrect.

3For example if the question is “Who is the 16th president of the United States?” and a system answers
“Lincoln” but refers to a document that only mentions Lincoln but not the fact that he was president or
which president he was, the answer is judged unsupported (Voorhees, 2001).

4 At least neither the assessors nor the systems could find one.
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TREC-8 TREC-9 TREC-10 TREC-11

year 1999 2000 2001 2002

# questions 200 500 4193 variants 500 500

excluded 2 11 8

sources  of || FAQ Finder, asses- | Encarta, Excite MSNSearch, MSNSearch,

questions sors, participants AskJeeves AskJeeves

# of docu- || 528,000 979,000 979,000 1,033,461

ments

MB 1904 3033 3033 3130

answer 50 or 250 byte 50 or 250 byte 50 byte unrestricted

length

tasks main main; variants main; list; context main; list

new aspects — unsupported “no answer” exact answers

#  partici- || 20 28 36 34

pants

best MRR 0.66 0.58 0.68

average 0.29 0.22 0.25

MRR

Table 7.2: Overview of the TREC QA tracks. TREC-11 evaluation is still going on; therefore
not all facts are known. Best and average MRR are for the 50-byte task. Average is based on
the best run from each group.

7.2 The core system

Most QA systems, including Shapaqa, implement at least the following steps:

1. Analyzing the question: what information is given and what information is asked

for?

2. Information Retrieval: making a first selection of text fragments from the document
collection on the basis of the output of the question analysis. Depending on the
system, text fragments can be whole documents, paragraphs, sentences or other

units.

3. Analyzing the fragments and extracting potential answers.

4. Sorting answers and making a final selection (if necessary).

5. Converting final answer(s) into the desired output format.

The part of Shapaga that is shared by both versions and their variants implements the
third and fourth step. This core is described in this section. The implementation of
the other steps differs per version and variant and is therefore explained in later, specific
sections. The core assumes that the question is already processed into an internal repre-
sentation. Let us take the question “When was the telephone invented?” as our run-on
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example. In the internal representation it looks like this: VERB="invented" 0BJ='"the
telephone" TMP="7?". This specifies the main verb of the sentence, all its dependent
phrases and the underlying grammatical relation between the verb and the phrase. It
also specifies whether a dependent is given or asked for. The latter case is indicated by
the question mark. As only the main verb is represented separately, an internally more
complex question such as “Who was the first man to walk on the moon?” is represented
as: SBJ="?" VERB="was" 0BJ="the first man to walk on the moon". In the internal
representation, Shapaqa distinguishes between the relations SBJ (underlying NP subject),
0BJ (underlying NP object), TMP (temporal), LOC (locative and directional), PRP (purpose
and reason), MNR (manner), EXT (extension) and OTH (other relation between a PP and a
verb). The last relation is parameterized for the preposition. In answer sentences there is
also the relation LGS (underlying subject of passives) and the relations SBJ and 0BJ refer to
the surface subject and object. These relations are based on the Penn Treebank function
tags.

In addition to the question in internal representation, the core also needs a list of sentences
or partial sentences that possibly contain answers to the question. This list is provided
by the second step. For each sentence from the list, the core applies the modules of the
Memory-Based Shallow Parser (tagger, chunker, PNP finder, relation finder) and performs
certain tests:

1. Are all the given phrases literally contained in the (partial) answer sentence?

2. Is the last word of each given phrase also the last word (i.e. head) of an appropriate
chunk in the answer sentence? “Appropriate” chunk here means that the VERB must
be the head of a verb chunk and the others must be the head of a non-verb chunk.

3. Does the first chunk of each given phrase have a relation to the VERB chunk in the
sentence that matches the relation in the question? In active sentences relations
match if they are identical (for OTH the preposition has to be identical, too), in
passives LGS matches with SBJ in the question and SBJ matches with 0BJ. If the verb
is a form of “to be” SBJ also matches with 0BJ and vice versa in order to match
“Who is X?” with “X is the president of Y”.

4. Is there a chunk in the sentence that has the same relation to the VERB chunk as the
“?” in the internal question representation?

The precise order of the application of modules and tests varies per version of Shapaqa. Let
us illustrate the tests with some sentences that possibly contain answers to our example
question about the telephone.’

(1) The importance of the telephone network as a critical factor in the success of
fax cannot be overstated.

5Note that the sentences were automatically parsed and the annotation contains errors. Integers on
chunk labels indicate relations, e.g. NP-SBJ-1 is the subject of VP-1.
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(2) Alexander Bain invented the fax machine in ...

(3) [vp Touch-Map Systems | [yp invented | [yp the telephone dealer locator |
[p over | [yp seventeen years | [apvp ago | .

(4) [vp-1 Invented | {pnp-orm-1 |[pp at | [yvp almost the same time | }
{pr [pp as ] [Np the telephone] } {pr [pp tO] [NP speed data analysis ]
} {pr [pp fOl"] [Np the 1880] } U.S. [NP Census ] s [NP_SBJ_2 the tabulating
machine | [y p_o was | [vp_ops_2 an electromechanical device | [yp that | ...

(5) [Np—sBs—2 One year | [spar after | [vp—sps—1 the telephone | [vp—1 was in-
vented | , [Nnp_sBs_2 its usage | [yp_o was taxed | .

(6) [NP_SBJ_l The telephone ] [VP—l was ‘nvented ] {PNP—LGS—I [PP by ]
[Np Alexander Graham Bell ] } {PNP—TMP—I [pp 1n] [NP 1876 ] } .

Sentences (1) and (2), which are adjacent in the original document, already fail the first
test as they do not contain all phrases. Sentence (3) fails the second test as telephone
is not the head of a chunk. Sentence (4) fails the third test as there is no underlying
object relation between the telephone and invented. Sentence (5) fails the fourth test as
no chunk has a TMP relation to invented. Finally sentence (6) passes all tests. The
chunk in 1876 is the one whose relation matches that of the question mark phrase in
the internal question representation. We will call it a key chunk. Its semantic head 1876
constitutes a keyword answer. Every time Shapaqa finds a key chunk in the list of potential
answer sentences, it increments a frequency counter for the keyword and stores the key
chunk and the sentence as evidence for the keyword answer. After all potential answer
sentences have been processed by the core of Shapaqa, keyword answers are sorted by
their associated frequency. The top of the sorted list then contains the keywords for which
most evidence has been found. A special module demotes semantically empty keywords®
to the bottom of the list. The output of Shapaqa’s core is the sorted list of keywords,
with each keyword associated with its frequency and linked to its evidence. Sorting by
frequency usually demotes answers based on parser errors and on wrong information in
documents and is a first step towards the construction of complex answers, i.e. answers
that consist of several simple answers, for example: “Who was President of Costa Rica in
199477 — “Calderén was president until 8th May, after that Figueres became president.”
(Buchholz and Daelemans, 2001a). At the moment both simple answers will appear as
separate keywords in the list.

Sone, I, you, he, she, it, we, they, me, him, her, us, them, this, that, these, those, here, now, then, there,

who, whom, which, what, where, when, why
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Whowha [ ]
g
whom/what
when
whee [ ]
whywhatfor [ ]
e E—
about

s -

at
by

Figure 7.2: The HTML input form of the online version of Shapaqa.

7.2.1 Implementation

The implementation of the Memory-Based Shallow Parser that forms part of Shapaqa
consists of four instances of memory-based learners running in server mode. This means
that the learner is kept in RAM of the computer it runs on and constantly listens to one
of the computer’s ports. If an instance is sent to the port the learner classifies it and sends
the classification back to the port. In addition to Shapaqa, an online MBSP demo’ and
an offline version of MBSP use the same servers through these port connections.

The PoS tagger software is a forerunner of MBT (Daelemans et al., 1996). The tagger was
trained on the PoS tagged version of the Penn Treebank II WSJ Corpus.® The chunker,
PNP finder and relation finder were trained on the parsed version of the Penn Treebank
IT WSJ Corpus (1,173,766 words, 49,208 sentences), converted into chunks and relations
with an earlier version of chunklink.pl than that described in this thesis. All three use
[GTree, with Gain Ratio feature weighting. Chunker instances look like shown in Table 6.8
on page 143. PNP finder instances are similar to the ones in Table 6.9 but use a context of
two chunks to the left and no feature “number of intervening PP chunks”. Relation finder
instances are similar to the ones in Table 3.1 on page 72 (our preliminary feature selection)
but use no feature “number of intervening VP chunks”.

7.3 The online system

In the current version of the online prototype,’ question analysis is left to the user. Phrases
can be entered into HTML text boxes; entering a verb is obligatory. Figure 7.2 shows

"http://ilk.kub.nl under “Demos”
8Settings: IGTree, Gain Ratio, -p ddfa, -P pdFasss.
http://ilk.kub.nl/shapaqa/
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the relevant part of the interface with our example question entered. The lowest left box
contains a list of prepositions from which the user can choose (for the OTHer relation). Once
the user presses the “submit” button, the internal question representation is transformed
into a url-encoded query!® and sent to an internet search engine. As different search
engines have different query syntax and return results in different formats the interface
to each search engine has to be implemented explicitly. At the time that the prototype
was designed interfaces to Google!! and AltaVista'? were implemented. Both engines have
their own advantages and disadvantages.

In contrast to probably all other engines, Google does not only return URLs but also text
snippets that normally contain the query words. This means that Shapaqa does not need to
retrieve the original pages (which might take quite long) but can work on the text snippets
instead. However the text snippets have a fixed length. If the query words do not occur
close to each other in the document, Google creates a text snippet that contains (partial)
sentences from different places in the original document, separated by ellipsis dots. Also
if sentences are too long to fit into the text snippet, Google truncates them and marks
this by dots. Figure 7.3 shows the top text snippets for the query on the telephone. The
fourth one does not contain the word “invented”. The fifth and sixth are composed of
non-adjacent sentences. Shapaqa cuts the text snippets into (partial) sentences using a
simple tokenizer and hands them to the core component together with the question in the
internal representation. It also stores the original URL for each sentence. The ability of
Shapaqga to work with the text snippets crucially depends on the fact that MBSP performs
only local decisions and does not try to find a global parse (which probably does not exist
for a partial sentence).

AltaVista does not return text snippets but lists of URLs of documents containing the
query words. However it offers the possibility to restrict search to documents in which the
query words occur NEAR to each other (defined as “within 10 words of each other”).!> They
might still occur in different, but adjacent, sentences but chances of this are much lower
than without the NEAR operator. This means that fewer documents need to be processed.
Shapaqga retrieves the documents one by one, splits them into sentences and hands the
sentences to the core component for processing. Again it stores the original URL for each
sentence.

Even with the text snippet short-cut or the NEAR restriction many sentences have to be
checked while the user is waiting for results. We therefore tried to implement Shapaga in a

0The words in a phrase are required to be found in this exact sequence by enclosing
them in quotation marks. Plus signs prevent Google from ignoring stop words (as we do
not know exactly what Google considers a stop word we use plus signs on all words). The
query is then "+the +telephone" +invented. Url-encoding means replacing spaces and
other non-alphanumeric characters by special codes. The full URL is then something like
http://www.google.com/search?as_qt=w&as_eqt=w&as_eq=&as_dt=i&sitesearch=&lr=lang_
en&start=0&num=10&btnG=Google+Search&as_lq=&as_q=%22%2Bthe+}2Btelephone’,22+}2Binvented

Uhttp://www.google. com

2nttp://wuw.altavista.com

Bgee http://help.altavista.com/adv_search/syntax
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Figure 7.3: Google’s top results for the query "+the +telephone" +invented

way that avoids unnecessary computation as much as possible. In particular we try to avoid
unnecessary parsing steps. This is done by interleaving URL (i.e. text snippet/document)
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processing with the tests explained earlier, in a way which we call parsing on demand, as
depicted in Figure 7.4. During sentence tokenization the program already records which
words from the given phrases it has encountered in the current sentence. When the tok-
enizer decides that it has reached the end of a sentence, Shapaqa applies the first test (all
phrases in sentence?). If the test fails, the program does not process the sentence any fur-
ther. Likewise it applies the second test directly after chunking, and if the test fails it does
not call the relation finder for this sentence. Otherwise the relation finder has to classify
one instance for each (pair of the verb chunk and a) given phrase. Thus even if the sentence
contains several verbs, only dependents of the relevant verb are checked, and among them
only those that are mentioned in the question. After each instance classification Shapaqa
applies the third test (same relation?) and if the test fails it does not process the sentence
any further. If the program extracts an answer from the sentence, it also does not process
the rest of the text snippet/document any further as it is rather unlikely that it contains
another different answer. The possibility to perform parsing on demand depends crucially
on the architecture of MBSP in which all modules work in sequence and produce a deter-
ministic output and on the implementation of the relation finder which classifies instances
independently of each other. More unnecessary processing could be avoided if there were a
search engine that implemented text snippets and the NEAR operator, or ideally an operator
for restricting query words to appear in the same sentence.

Shapaqa’s users can specify how many URLs (text snippets/documents) it must search.
They can also indicate what kind of output they wish to see. In the default setting Shapaqa
lists each URL as it processes it. It also outputs pairs of adjacent sentences that fail the first
test or sentences that fail any other test together with a short failure message. This output
is colored light grey. Successful sentences are printed in black with the given phrases and
the key chunk highlighted in color. The idea of this presentation is to help users to focus
on the successes while still allowing them to check the failures, but no further research was
done into this or alternative presentations. After all URLs have been processed, keyword
answers are sorted by frequency as described before and a summary is printed listing in
order each keyword answer, its frequency and the evidence sentences together with their
source URL. An example is reproduced in Figure 7.5, p. 178.

The online version of Shapaqa is implemented in PHP (version 4.1.2) and runs on our
group’s web server. At the time of writing the variant using Google is no longer available
as Google does not allow unauthorized automatic querying.'* However, a new variant using
Yahoo!'® has been added since Yahoo! also displays text snippets.

7.3.1 Evaluation

The evaluation reported in this section was published earlier in Buchholz and Daelemans
(2001b) and performed even earlier. Next to the version of Shapaqa described above, and

Ynttp://wuw.google.com/terms_of _service.html
Bhttp://www.yahoo.com/
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Figure 7.4: Implementation of parsing on demand in the online version of Shapaqa.

referred to here as Shapaga GR, the paper also reports on another version that is less
relevant for this thesis as it does not use the relation finder. Instead of assigning classes
to pairs of chunks (verb and something else), it assigns classes to single chunks. We refer
to it as Shapaqa CT (chunk type). Shapaqa CT does not distinguish the relational classes
SBJ, 0BJ and LGS but groups all of them under the class “NP”. This class also contains
any other NP chunk that does not fall under TMP, LOC, PRP, MNR or EXT, including NPs
that do not depend on any verb, such as the “61 years” chunk in “Pierre Vinken, 61 years
old, ...”. Likewise temporal, locative etc. chunks that do not depend on a verb are also
classified as TMP, LOC, etc. by Shapaqga CT. In Shapaga GR chunks that do not depend
on the verb have the “no relation” class.

For evaluation, we used the 200 questions from the TREC-8 QA track (Voorhees and Tice,
2000), see also Section 7.1. The first step was to manually convert the natural language
questions into Shapaqga’s internal question representation. While some questions have only
one, very obvious representation (like our old telephone example), others have several.
Thus in these cases, results may depend on the particular representation. We tried to



7.3. THE ONLINE SYSTEM 167

‘ H Shapaga GR ‘ Shapaga CT ‘ SENT ‘ Google ‘

MRR 0.28 0.34 0.32 0.30
questions with answers 72 101 114 198
“precision” over answered questions 0.76 0.68 0.56 0.31
“precision” over 72 questions 0.76 0.73 0.56 0.47

Table 7.3: Results over the test questions: MRR, number of questions for which at least one
answer is proposed, “precision” over all questions answered by a system, and over those answered
among the 72 questions that were answered by Shapaqa GR.

choose a representation that we thought would be used by the average user (given the
constraints of the HTML form). The following rules were used:

e Enter in active form, with the main verb as the only verb.

e Skip parts which, when left out, do not change the meaning, like “What is the
population of Ulan Bator, capital of Mongolia?”. This was necessary due to the
sometimes unnatural phrasing of the TREC-8 questions.

e Skip verb particles such as “up” in “Who came up with the name, El Nino?”.

e Represent questions with “What is the name of/Name the/How many/Which/What
X” as if they were simple “who/what” questions (60 cases).'®

e Questions with “How far/many times” etc. could not be represented, so Shapaqa did
not score any points for them (12 cases).

We let Shapaqa answer the questions, and took the first evidence sentence of each of its top
five keyword answers for judging. Two human judges then read the answers from top to
bottom until they found a correct answer to the original question.!” The rank of the correct
answer was noted and the overall MRR computed. To put the results into perspective, it
is necessary to compare them to other methods of finding answers on the internet. One
such method is Google, which performs keyword search and returns text snippets. We
entered all of the words in the internal representation of a test question as keywords into
Google, and took the top five text snippets for judging. We also evaluated a variant of
Shapaqa using only the most basic kind of NLP: the sentence tokenizer and the first test.
If a sentence contained all of the given phrases, it was returned as an answer (this method
is henceforth called SENT). Again, top five answers were judged. The results are shown
in the first row of Table 7.3: Shapaqa CT performs better than SENT, and SENT is still
better than Google. Shapaqa GR performs worst. However, MRR values do not differ
dramatically.

The picture changes if we look at the “precision” of the systems: the total points received
divided by the number of questions for which the system proposed at least one answer
hypothesis. Table 7.3 shows that the higher the level of NLP used, the fewer questions
a system tries to answer, but for these few, “precision” is higher. This is even true if we

16Respectively “when” and “where” for “in which year” etc. and “in what city”.
17 Judging largely followed the TREC QA guidelines (Voorhees and Tice, 2000).
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compare precision of systems on only those 72 questions that Shapaqa GR tried to answer.
This observation led us to the idea of a combined system: if Shapaga GR returned any
answers, we took these answers as those of the combined system. If not, and if Shapaqa CT
returned answers, we took those, and so on down to plain Google. This combined system
achieves an MRR of 0.46, which is substantially better than any of the individual systems.
We conclude that this back-off architecture is an easy and successful way to combine
approaches with different degrees of NLP and different “precision” values. Note however
that only the two Shapaqa approaches identify the actual answer in the sentence (the key
chunk) and therefore allow highlighting and frequency counts. Although the difference in
precision between the GR and CT versions is not big, there are examples where the former
is clearly useful. For the question “Who killed Lee Harvey Oswald?”, GR put the correct
answer (“Ruby”) on top, while CT found “Kennedy” most frequently (and “JFK” third)
as it cannot make the difference between subjects and objects, i.e. killers and victims.

7.4 The TREC-10 system

Our TREC-10 system does not have its own Information Retrieval engine. It uses the top
ranked 1000 documents per question from the list provided by NIST, the TREC organizers.
Following the insights from our evaluation of the online system we use Shapaqga together
with a simple back-off method (henceforth called “baseline”). Shapaqa and the baseline
component are integrated as follows: if Shapaqa returns at least one answer string, its top
answer string is taken as the top ranked answer string of the combined system. All the
remaining ranks are filled by the top answer strings returned by the baseline component.
We describe the two components separately in the following two sections. The overall
architecture is shown in Figure 7.6, p. 179.

7.4.1 Baseline component

The baseline component tokenizes and PoS tags the question. Then it extracts all words
that the tagger marked as not occurring in its training material or that it tagged as noun,
non-modal verb, adjective, particle, number, or foreign word.!® A special case are non-
subject questions with a form of the auxiliary do and following infinitive, e.g. “When
did Elvis Presley die?”. English grammar tells us that in a declarative sentence (i.e. the
answer) it will be the main verb that carries the inflection: “Elvis Presley died in 1977”.
Therefore if the question contains “did” or “does”, the baseline component replaces all
following infinitival verb keywords by their past tense or third person singular present
tense form, respectively. This rule applies to 22 and 14 questions, respectively, and uses
the CELEX lexical database (Baayen, Piepenbrock, and van Rijn, 1993).

18Except for the words “much”, “many”, “name” and forms of “be”, “have” and “do”.
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After keyword extraction, the baseline component tokenizes all top 1000 documents for each
question, and extracts all sentences which contain at least one keyword for that question.
This yields 1,233,692 sentences. For two questions no sentences could be extracted.!® The
component records the document ID and the number and position of the keywords together
with each extracted sentence and sorts the sentences for each question according to the
number of keywords in them.?’

It returns the top sentences of the sorted list as answers. To trim them to 50 bytes we
compute that byte position in the sentence that is at the center of all the keyword positions,
and then take 50 bytes around it, possibly shifting the 50 byte window as far as necessary
to the right or left for it not to extend beyond the sentence boundary.

As an example, consider the question “When was President Kennedy shot?”. Keywords are
President, Kennedy and shot. 5928 sentences are extracted. The topmost chosen answer
sentence and its 50-byte string are “In 1963, he was riding in the motorcade with President
Kennedy when Kennedy was fatally shot by Lee Harvey Oswald in Dallas” in which the
answer falls outside the chosen 50 bytes.

On the non-variant questions of the TREC-9 data (cf. Section 7.1), taking the full top
five sentences of the sorted list as answers yielded an MRR of 0.321 using the automatic
evaluation.?! After the sentences were trimmed to 50 bytes with the above method, MRR
dropped to 0.125. This is hardly surprising, given that the method is completely insensitive
to the type of answer the question is asking for (it returns the same 50 byte window,
whether the question word is “who”, “where”, or “when” etc.) and that the complete
answer sentences were on average 293 bytes long.

7.4.2 Shapaqa

The Shapaqga component processes the PoS tagged question further with the help of the
other modules of MBSP. The relation finder does not work well on questions, especially in
the first part, which shows the characteristic question syntax. This is probably due to the
small number of direct questions in the WSJ training material. Therefore we developed a
set, of hand-made regular expressions and substitutions on the basis of the TREC-9 data
and applied these to the question after parsing to fix the most common errors. For our
previous example, the result would be “[4pvp_7pmp—1 When | was [yp_sps—1 President
Kennedy | [yp_1 shot | 77.

19«What is pilates?” and “What is dianetics?”. Keyword matching is sensitive to capitalization and
both terms appear in the documents only with capital letters.

20Multiple occurrences of the same keyword are only counted once.

21During manual judgement of the track submissions, the TREC organizers created a file of regular
expressions as a service to the community. The file can be used together with a scoring program to
(roughly) score the output of a system. If a regular expression for a question (number) matches the output
for that question, that output is scored correct.
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Next Shapaqa transforms the parsed question into its internal representation. It rejoins
prepositions stranded at the end of the question with their NP and converts passive to
active. It then takes the head (i.e. the last word) of the first verb chunk as the VERB
(auxiliaries in inverted questions should not be a verb chunk of their own). Finally it
stores all the chunks that are dependent on the VERB together with their relation and
concatenates each “verb-independent” chunk to the closest verb-dependent chunk to the
left because it probably belongs to the same phrase. In this way it splits up the question
into phrases that all have some relation to the central verb. It also replaces the phrase
that contains the wh-word by the question mark. Our example would then look like:
VERB="shot" 0BJ="President Kennedy" TMP="7".

Shapaqa treats questions asking for “Which/What X” as if they were simple “Who/What”
questions and the phrase “In which state” as a simple “Where” because the relation finder
assigned it a locative relation. In total, Shapaqa could map 60 “Which/What X” questions.
It treats questions starting with “Name a X” as if they read “What is a X?” (which is an
ad-hoc solution that did not work: both questions were incorrectly answered). In addition
it performs some other minor simplifications during mapping. In total, it could convert
416 of 500 questions to its internal representation.

Next the Shapaga component takes all sentences that contain all of the baseline compo-
nent’s keywords (in total 44,753 sentences) and lets them be parsed by an offline version
of MBSP (using the same servers as the online Shapaqa version). It then applies the four
tests to the parsed sentences and collects frequencies of keyword answers.

We used two variants of Shapaqga in our system, called Shapaga-TREC and Shapaga-WWW
here. Shapaqa-TREC extracts answers directly from the TREC document collection in the
way described above. One of the answer chunks whose head has the highest frequency is
taken as the answer of the Shapaqa component. If necessary the answer is trimmed to 50
bytes by cutting off the end. For our example, the answer was extracted from the sentence:
“President Kennedy was shot on Nov. 22, 1963.”. The headword was found three times
as head of an answer.

Shapaqa-WWW uses the online version of Shapaqa described earlier. Google returned
results for 380 of the 416 questions that could be converted to Shapaga’s internal represen-
tation. In these Shapaqga found answers to 283 questions (7936 answers in total). For some
questions, the only answers found are semantically empty ones like “he/who/somebody”
etc., which are discarded. This leaves us with answers to 265 questions, which is slighty
more than half of all TREC-10 questions. As explained above, answers are sorted accord-
ing to the frequency of their headword. The most frequent headword is taken to be the
preliminary answer. For our example, the headword 1963 was found twelve times.

To turn a preliminary answer from the WWW into a valid TREC answer string, we have
to find a document in the TREC collection that contains the headword. To increase the
chance that the document actually supports the answer (as is necessary to be judged correct
under the strict evaluation), we look for the headword in the sorted sentences extracted
for the question, starting with the ones that contain most of the baseline component’s
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keywords. Headwords could be found in these sentences for 226 questions. After a sentence
is found, a 50 byte piece of it centered around the headword (unless shifted to meet sentence
boundaries) is extracted as Shapaqa-WWW’s answer string. For our example, answer
sentence and string are: “Ruby shot Oswald to death with the .38-caliber Colt Cobra
revolver in the basement of Dallas City Jail on Nov. 24, 1963, two days after President
Kennedy was assassinated.”, which unfortunately makes the answer invalid.

7.4.3 Runs: WWW+ and WWW -

We submitted two runs for the TREC QA track main task. Run WWW+ uses Shapaqga-
WWW’s answer (if present) on the first rank, Shapaqa-TREC’s answer (if present) on the
next highest rank, and the baseline component’s answer on all other ranks. If not enough
answers can be found to fill the five ranks, NIL (meaning that no answer exists in the
document collection) is added.?> WWW+ received a MRR of 0.210 (0.234 lenient). Run
WWW-— uses only Shapaqa-TREC (for the first rank) and the baseline component.?® Tts
MRR is 0.122 (0.128 lenient).

After submitting the runs, we unfortunately noticed a bug in Shapaqa-TREC. The special
rule that SBJ and OBJ of “to be” match was omitted in this implementation.?* This
means that for example for the frequent question type “What is a Y?” which asks for a
definition or description, only sentences matched which read “X is a Y” and not those that
read “A Y is X” (which is the way to formulate a definition). This led to many erroneous
answers like “What is a prism?” — “Serbian agression”, extracted from a sentence that
reads “Serbian aggression is a prism through which we can see all sides of Europe”.

As 254 of the questions that could be mapped to Shapaqa’s internal representation have
a form where the special matching rule could have been applied, the omission might have
influenced Shapaqa-TREC’s performance significantly. To find out how serious this effect
is, we reran the WWW— run after fixing the bug and studied the differences. It turned
out that only 50 questions were affected by the bug fix, so we compared these manually. In
most of the cases, the new answer was as bad as the old one, so the score did not change.
We estimate that the new version’s MRR would be about .004 higher than the original
one’s, which seems negligible.

Table 7.4 displays the distribution of the rank of the first correct answer in both runs and
shows that WWW+ has twice as many correct answers at the first rank than WWW—.
Table 7.5 shows how often each of the three components contributed to the five answers
for the WWW+ run before and after the bug fix. We see that even after the bug fix,
Shapaqa-WWW contributes three times as many answers as Shapaqa-TREC (159467 vs.

22Due to a bug, the NIL answer was not added at the lowest rank, as intended, but at the highest.

23In the original paper, WWW+- is called TilburgILKs and WWW— TilburgILK.

24Shapaqa-WWW is implemented in PHP and runs on our webserver, whereas Shapaqa-TREC is in
Perl and runs on a machine whose hard disk can hold all the TREC documents for the QA track.
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‘rankofﬁrstcorrect‘ 1‘ 2‘ 3‘4‘ 5‘n0ne‘

WWW— 43 15|15 | 7| 14| 398
WWW+ 87119 97|11 | 359

Table 7.4: Distribution of rank of first correct answer in both submitted runs (strict evaluation)

| components used | WWW+ | after bug fix |
none (only answer NIL given) 3 3
only baseline 267 263
Shapaga-TREC and baseline 4 8
Shapaqa-WWW and baseline 195 159
Shapaqa-WWW, Shapaqa-TREC and baseline 31 67

Table 7.5: Number of questions for which different components contributed to the five answer
strings.

8-+67). This is probably due to the much larger document collection that Shapaqa-WWW
works on.

Table 7.6 shows how the assessors judged each component’s answer strings. We compute
the precision?® of a component as the percentage of correct answers among all the answers
it contributed. We see that Shapaqa-WWW has a higher precision than Shapaqa-TREC,
especially after the bug fix. Both versions of Shapaqa have a much higher precision than
the simple baseline component. Precision of the baseline component’s answer is slightly
higher for its top ranked answer than for the lower ones, but in general there does not seem
to be a clear correlation between its answers’ ranks and their reliability. Shapaga-WWW
has more unsupported answers than the other components. This is clearly due to the
mapping from WWW-answers to TREC documents.

Table 7.7 gives a breakdown of Shapaga-WWW’s precision on different types of questions.
The first column shows the question type according to the module that maps questions
to Shapaqa’s internal representation. The second column indicates how many questions of
this type could successfully be converted to Shapaqga’s internal representation. The third
column shows for how many questions Shapaqa-WWW returned an answer string. The
fourth and fifth columns give the precision on these strings (strict and lenient). “When”-
questions do best, followed by those with the wh-word inside a prepositional phrase.

Shapaqa relies on high-level NLP (chunking, grammatical relations) for finding answers. If
it finds more than one answer however, it uses the frequencies of the answers’ headwords
to choose among the answers. The idea is that frequency correlates roughly with reliability
of the answer. However, this can only work if the document collection from which answers
are extracted is large enough. On average, Shapaqa-TREC (after the bug fix) finds 2.55
different answers (where “different” means having a different headword) for the questions

ZNote that this is slightly different from the “precision” in Section 7.3.1 because there the rank of the
correct answer entered into the formula.
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‘ judgment, ‘ baseline 1st ‘ 2nd ‘ 3rd ‘ S-TREC ‘ S-TREC* ‘ S-WWWw ‘
incorrect 462 | 473 | 469 27 63 144
correct 34| 22| 26 8 12 71
unsupported 1 1 1 0 0 11
prec. strict 6.8 4.4 | 5.2 22.9 16.0 31.4
prec. lenient 70| 46| 5.4 22.9 16.0 36.3
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Table 7.6: Judgments (under strict evaluation) and precision of answers (strict and lenient) of
each component. Baseline 1st, 2nd and 3rd means the baseline’s first, second and third answer.
S-TREC is Shapaqa-TREC, S-TREC* is Shapaqa-TREC after the bug fix, S-WWW is Shapaqa-
WWW.

‘ Wh-type ‘ # of questions ‘ # of q. answered ‘ prec. strict ‘ prec. lenient ‘

who 44 21 57.1 57.1
what 237 136 25.0 30.1
which X 5 2 0 0
what X 55 27 18.5 25.9
where 24 12 25.0 25.0
when 24 18 66.7 72.2
why 2 0 0 0
how 7 1 0 0
PP 16 9 55.6 66.7
Name a 2 0 0 0
| Total | 416 | 226 31.4 | 36.3 |

Table 7.7: Precision of Shapaga-WWW on different wh-types.

it finds answers for at all. The average frequency of the most frequent answer for each
question is 1.44, but the distribution is highly skewed in that most top answers have only
frequency one, and only one top answer has a frequency higher than ten. By contrast,
Shapaqa-WWW finds 17.0 different preliminary answers per question, and the average
frequency of the most frequent answers is 26.7.

To further study the correlation between frequency and reliability, we divided the 265
questions for which Shapaqa-WWW found an preliminary answer into a high-frequency
and a low-frequency group according to the frequency of the top answer (greater, or less or
equal to 7). The precision of Shapaqa-WWW’s answers to questions in the high-frequency
group is 36.1% (39.3%) whereas it is only 26.0% (32.7%) for the low-frequency ones.

This shows that answers which we find often are more reliable than those with little evi-
dence. As Shapaqa-WWW searches on a much larger document collection than Shapaqga-
TREC, it can take advantage of this fact. This effect even holds despite the very simplistic
way of mapping the WWW answers back to the TREC collection in order to comply with
the TREC guidelines.
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7.4.4 Error analysis

In this section, we study the effect of several design decisions we made about the document
selection, the transformation from natural language questions to Shapaqa’s internal repre-
sentation and the mapping from WWW preliminary answers back to the TREC collection.

Our system does not search the whole document collection for answers but only the top
1000 documents per question (as provided by NIST). For 14 questions, some other systems
found an answer in documents not in the top 1000, so some minor improvement should be
possible through a better IR component.

Several things can go wrong during the transformation from natural language questions to
Shapaga’s internal representation. First, if no central verb can be found, the transformation
is not possible. This happened to 14 questions. In three of these cases there really was
no verb (e.g. “How many liters in a gallon?”), so the system would have needed a special
rule to insert the verb “are”. In one case the main verb “was” was not analyzed as a
verb chunk. In the other ten cases, the main verb is analyzed as a noun. This problem is
probably due to too few questions in the training material of the tagger.

Second, two chunks are assigned the same relation and there is no coordinating conjunction
between them. This happened to 22 questions. Sometimes the chunks really have the same
relation (e.g. “In Poland, where do most people live?”), sometimes the analysis is due to
the relation finder’s failure to distinguish between different object relations (“What do you
call a newborn kangaroo?”), but most of the time the analysis is just plain wrong. Again,
more questions in the training data could improve performance.

Third, a chunk has a direct relation to the central verb that does not fit any of the predefined
categories (28 cases). These are mostly nouns mistagged as adverbs which then give rise
to adverbial chunks being neither locative nor temporal, manner or purpose/reason. In
some cases they are adjectival complements of “to be”. The system needs to be extended
to deal with these categories.

Fourth, questions with “How many/How much” or “How X” where X is some adjective
cannot be converted (12 cases). Finally, there are some rare cases, like no relation between
the wh-phrase and the central verb or failure to recognize the question phrase as such.

Shapaqa treats “which/what X” questions like simple “who/what” questions. To see in
how far this influences performance, we manually checked the top frequency answers found
on the WWW for 10 of these questions. In three cases the topmost answer looks okay. In
two other cases at least the second answer is correct (e.g. “What river in the US is known
as the Big Muddy?” — “The river”; “The Missouri”). For the remaining five questions,
the missing constraint leads to wrong results (“Which president was unmarried?” — “The
mother”). So, ideally, we would want to use the extra information. However, we would
then need a component that can e.g. decide whether something is a “mountain range in
North America”. Until that time, our solution is an approximation.

We conducted a similar survey to find out how harmful our approach of ignoring the dif-
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ference between who and what is. A manual check on Shapaqga-WWW’s answers to five
questions of each type suggests that this simplification does not introduce many errors.
This makes sense, given that questions like “Who/What discovered radium?” are very
unlikely to have any “what” answers, and questions like “Who/What is Australia’s na-
tional flower?” are unlikely to have any “who” answers. The only counter-example is
“Who developed the Macintosh computer?”, for which the assessors did not accept “Apple
Computer Inc.”.

Clearly, the forced mapping from preliminary WWW answers to TREC documents is far
from ideal. Sometimes Shapaqa-WWW finds the correct answer on the WWW but cannot
map it. One reason is that no answer exists in the collection. This happened with “What
is Australia’s national flower?” — “The Golden Wattle”. Alternatively, the answer that
came up highest from the WWW does not exist in the collection but others do. This
happened with “What is a shaman?” and the answer “a healer” (other systems found
answers like “tribal magician” or “a kind of priest”).

A problem for both versions of Shapaqa are question-answer-pairs like “What is mold?”
— “Mold is a problem”. This answers the question in letter but not in spirit. There is
probably a limited number of abstract nouns that can occur in this construction (another
one is “solution”) and explicitly excluding the most common ones might be an opportunistic
solution. A more principled approach would probably need semantic knowledge.

“What is a panic disorder?” — “A panic disorder is a type of generalized anxiety disorder.”
Although this answer as a whole is okay, Shapaqa identifies “type” as the head of the
(predicative) object, so it is this word that gets looked for in the TREC document sentences,
which might or might not work. As in the previous case, there are probably only a limited
number of nouns that cause this problem but a general solution needs semantic knowledge.

“What is epilepsy?” — “Epilepsy is a common neurological disorder.” This answer is
correct and the head is correctly identified, too. However, as the head is rather unspecific,
the answer string that is finally extracted from the TREC documents (“from an inner-
ear disorder that causes vertigo”) makes the answer invalid. In contrast to the previous
cases, this problem is entirely due to the forced mapping from WWW answers to TREC
documents, so its solution is not of general interest. One might try to find a match not
only for the headword but also for the other words in the chunk.

7.5 Related research

A good introduction to the history and state-of-the-art of QA and related fields is Hirschman
and Gaizauskas (2001). Many recent system descriptions are contained in the TREC pro-
ceedings. Here we will focus on systems that share one of the key techniques with Shapaqa:
grammatical relations, frequencies, use of the WWW, and machine learning.

Many TREC QA systems employ Named Entity (NE) tagging, which is sometimes also
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referred to as shallow parsing. However, that is a different use of the term than in this thesis.
NEs are mostly chunks, e.g. [pgrrson Pierre Vinken ] or [parg Nov. 29 ], but many
chunks are not NEs, e.g. [yp a woman ], [yp will laugh ], or [apyp later 1. To
the best of our knowledge, no other QA system follows our approach of finding GRs directly
after chunking. Oard et al. (2000), Harabagiu et al. (2002), Elworthy (2001), Scott and
Gaizauskas (2001), Litkowski (2002), Hovy et al. (2002) and some previous submissions by
the same groups employ a full parser to analyze questions and potential answer sentences.
The first two then use only unlabelled dependencies derived from the parses to constrain
answers whereas the others use named GRs. These include at least subject and object,
but sometimes also time and location, or apposition (which we did not use). In general, if
a relation in the question matches a relation in the potential answer sentence, this answer
receives extra credit by the answer selection function. This is different from our approach
in which we require all relations to match.

Not many TREC-8 systems use the frequency of an answer as a criterion for answer se-
lection. Two exceptions are Singhal et al. (2000) and Prager et al. (2000). In the latter,
frequency is only one of five features for answer selection. Besides our own, two other
TREC-10 systems used the WWW for QA. Brill et al. (2002) count frequencies of n-grams
in Google’s text snippets, apply hand-crafted NE filters and map the best answers back
to the TREC collection. The last step is similar to our mapping. Clarke et al. (2002)
add documents returned by Google or AltaVista to the TREC collection. Although the
system must not extract the final five answer strings from these documents, the documents
influence answer selection by increasing the frequency with which certain answers occur.

There are a few online QA systems. START?® (Katz, 1997) parses information from many
domains into its knowledge bases and then answers questions from these. Its answers are
often excerpts from authority sites such as online encyclopedias. Kwok, Etzioni, and Weld
(2001) describe an online open-domain QA system that uses, amongst other components,
Charniak’s parser (Charniak, 2000) and the Link parser (Grinberg, Lafferty, and Sleator,
1995). However, the system is no longer available on the web. According to Radev et al.
(2002), it worked by running on 100 workstations in parallel in order to be able to parse
in reasonable time. Radev et al. (2002) describe an online QA system called NSIR.2" It
submits queries to the search engines AlltheWeb, Northern Light and Google, downloads
the top = documents (as specified by the user) and chunks them. Chunks constitute
potential answers and are ranked by computing the probability of a chunk’s signature
being of the expected answer type. The signature is the sequence of PoS tags in the chunk.
This information corresponds to what we have dubbed the “rest of the chunk” plus the
chunk’s head’s PoS. Tonaut®® (Abney, Collins, and Singhal, 2000) works on a local cache

26http://www.ai.mit.edu/projects/infolab/

2TThere is a link to a demo on http://perun.si.umich.edu/clair/home/nsir.htm, but it did not
work at the time of writing.

Zhttp://www.ionaut.com: 8400/
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of web files, so it avoids the slow document downloading phase. It finds and ranks NEs.
LCC has an online demo? of the system described by Harabagiu et al. (2002).

Machine learning does not play a crucial role in most QA systems. Only sometimes are
off-the-shelf statistical PoS taggers, parsers or NE finders used. Exceptions are Hovy et al.
(2002) who use a decision tree parser as one important component and Ittycheriah, Franz,
and Roukos (2002) who train a Maximum Entropy model on answer scoring.

7.6 Summary and future research

This chapter demonstrated how MBSP can be used to find short answers to fact-based
questions in large document collections. The local, independent way of classification by
the memory-based modules allows parsing of partial sentences and efficient parsing on
demand. We showed how components with varying levels of NLP can easily be integrated
by using the lower level modules as back-off. Results are promising but leave much room
for improvement. Part of the improvement can be achieved by using better classifiers.
This thesis showed how performance of the relation finder can be increased by changing
parameter settings and feature representations. However it still needs to be investigated
what the best choice is given the tight speed and memory constraints for online applications.

Other possible improvements of Shapaqa fall outside the scope of this thesis. For example
some question types are still missing. “How many/how much” questions should be rela-
tively easy to incorporate as the answer is usually a number within a chunk. “Which/What
X” questions call for using a resource such as WordNet to check whether a potential answer
is of semantic category X. “How far/long/hot/...” questions also need semantic knowl-
edge to relate adjectives and measure phrases (3 km, 5 days, 35 degrees). Questions with
the verb “to be” might profit from a special “is-relation” recognizer, as these relations
are often expressed by other means than a verb (e.g. “Pierre Vinken, director of Elsevier,
...7). Morphological and diathesis knowledge is needed for pairs such as “invented the
telephone/invention of the telephone”. The latter implies finding grammatical relations of
nouns, for which we lack adequate training material at the moment.

Our vision for the future is a system that is completely trainable. It would have to learn
the mapping from a natural language question to a search engine query, the linguistic
annotation for questions and potential answer sentences, and the decision about whether
and where an annotated sentence contains an answer to an annotated question.

Ynttp: //www?.languagecomputer . com/demos/question_answering/index.html
p guag p q g
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Chapter 8

Conclusions

In this thesis we used machine learning as a tool to gain insight into the linguistic phe-
nomenon of grammatical relations. In an extensive literature study we first identified
diverse sources of information that are relevant for the recognition of GRs. In system-
atic learning experiments we then assessed the importance of these sources quantitatively.
Through detailed error analyses we investigated their function qualitatively. In the fol-
lowing two sections we discuss the answers to the two research questions formulated in
Section 1.3:

e What information is useful for performing the task?

e How can this information best be used by a Memory-Based Learner?

8.1 Information for the task

In Chapter 2 we reviewed work that relates to GRs and especially focussed on what infor-
mation it uses. The following list is based on that overview and summarizes for each type
of information whether we also used it in the experiments reported in Chapters 4 to 6 and
if so, whether it was useful.

Semantic heads Most current parsers use lexical heads. However most do not distin-
guish between syntactic and semantic heads so that the lexical head of some constituents
is its semantic head (e.g. NPs, ADJPs) and the head of others is the syntactic head (e.g.
PPs). Only Black et al. (1992) always use two heads. Both heads are known to be useful
for at least PP attachment. Charniak (1995) and Blaheta and Charniak (2000) therefore
make special provisions to include both in this case. HPSG uses only one head but it also
has a mechanism (viz. unification) to ensure that relevant information from the alternative
head is passed on to the parent. In our instances the word features contain mostly seman-
tic heads (exceptions are punctuation, SBAR chunks, and PP chunks that have not been
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joined into PNPs). These features proved to be very useful, e.g. ignoring the head of the
focus chunk causes the second largest drop in performance (Figure 5.1, p. 104) among the
15 initial features. The verb chunk head and several left context words also contain useful
information (Sections 5.9.1.2, 5.9.1.1, and 5.9.3.1).

Syntactic heads We use a separate feature for the syntactic head of PNPs (i.e. the
preposition). The prepositional feature of the focus has the second highest Gain Ratio
weight (Figure 4.5, p. 94) of the 15 initial features and performance decreases when it
is ignored. The prepositional features of the context, however, seem to be irrelevant. In
later experiments we added the VP type to the prepositional feature. This information
corresponds to the syntactic head of a verbal chunk (Zo or inflection) and also proved very
useful (Section 5.9.4).

Non-heads Obviously the notion of non-head depends on the definition of head. If e.g.
the semantic head is taken as the lexical head then the syntactic head would also count as
a non-head. In the experiments in which we added the “rest of the verb/focus chunk” we
showed that most of the improvement was caused by information about the syntactic head
of verb chunks. In the DP analysis, the determiner is the syntactic head of an NP. Black
et al. (1992) also use the determiner as the secondary head of an NP. Ferro, Vilain, and
Yeh (1999) allow conditions on non-heads for only a limited number of words, including
some determiners. In our experiments we noted a minor improvement for fixed expressions
(NP-CLR) through information about the absence of a determiner (and other non-heads),
see Section 5.9.3.3. In summary we note that there is information in non-(semantic)-heads.
However it mostly stems from words that are syntactic heads. As the syntactically relevant
information about a word should be encoded in its PoS tag, it is sufficient to represent
non-heads by their PoS.! Using words instead decreased performance in our experiments
(Table 5.12). The exception to this rule are prepositions, which also carry semantic in-
formation or for which a specific word form can be required by subcategorization. A last
point on non-heads concerns constructions for which it is unclear what the head is. A
well-known example are multi-word prepositions such as “such as”. In these cases it seems
more appropriate to represent all participating words than to arbitrarily choose one as
head. This is why some parsers include a preprocessing/tokenization step that joins these
words into one token (e.g. Briscoe and Carroll (1997)). In our experiments the effect of
joining multi-word prepositions was not significant.

The above analyses have interesting implications for other parsers. Lexicalized probabilistic
parsers along the lines of Charniak (2000), Collins (1997) and others might consider using
two heads instead of one (similar to Black et al. (1992)). To avoid too sparse data the
syntactic head can often be replaced by its PoS. It remains to be explored what the overall
effect on performance is in the face of the trade-off between more useful information and

!However this presupposes that all syntactically relevant information is encoded in the tag. As we saw
in the discussion of the Penn Treebank tag set (Section 2.3.1) this is not always the case.
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sparser data. It should be noted that the approach will still fail to account for multi-word
prepositions or determiners in PPs.

DOP parsers might consider restricting the lexicalization of larger subtrees to those words
that can be the syntactic or semantic head of higher constituents. The precise conditions
still need to be determined. They can probably be derived from linguistic work on feature
propagation but they could also be found empirically by deleting all words in certain
conditions (e.g. adjectives in NP in XP) and testing whether performance changes. Again
this general approach will fail for multi-word prepositions and other idioms.

Context All other parsers discussed in Chapter 2 use information from the context in a
symmetrical way. The chunkers and bottom-up parsers typically use two or three left and
right context elements. The generative parsers either generate all children in one step or
condition on a fixed number of previously generated children, regardless of the direction.
To the best of our knowledge none of the authors gives any motivation for this symmetry.

In our experiments it proved best to use more information from the left context than from
the right (Tables 5.1, 5.6 and 5.7).

PoS and PoS hierarchies Practically all parsers use PoS at some or all stages of the
parsing process. In the previous sections we already discussed the use of PoS of non-heads.
The parsers of Charniak (2000) and Collins (1997) use only the PoS of heads at higher
levels. Our own results (Table 5.1) and those of Van den Bosch and Buchholz (2002)
suggest that PoS information is not that important in itself. Charniak (2000) also notes
that half of its function is as a back-off for unknown words. However, attenuation provides
an alternative for this (Eisner, 1996a; Van den Bosch and Buchholz, 2002). Eisner (1996a)
uses manually reduced versions of the PoS for back-off. Jackendoff (1977) describes how
syntactic categories can be decomposed into syntactic features. Some rules can then apply
to all categories with a certain feature value. We reach similar effects automatically through
MVDM (see Section 4.3.7.2).

Chunks and chunk types Many parsers use chunking as an intermediate step to pars-
ing. Chunks serve three purposes for our relation finder. Firstly, they reduce the workload:
there is one instance per pair of chunks instead of one per pair of words. Secondly, they
provide a level of abstraction: for example, we count distance in chunks instead of in
words. Buchholz, Veenstra, and Daelemans (1999) show how much various types of chunks
decrease the number of instances and the average distance between the verb and the focus
and thereby increase performance. Thirdly, chunk types are used as additional information.
The chunk type of the focus has the highest Gain Ratio weight of the 15 initial features
and its omission decreases performance (not dramatically though).
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Higher level constituents Most of the full parsers decribed in Section 2.4.2 use previ-
ously generated /built higher level constituents to guide subsequent parse decisions. As we
do not build these structures, we cannot use this information source. It might be approxi-
mated by the sequence of intervening chunks: for example a sequence of “NP, NP ADJP,”
represents, with a certain probability, an NP or, with some other probability, some other
constituent.

Linear order (direction, distance, adjacency) Linear order is such a basic concept
that one might overlook its importance as an information source. Many parsers encode it
directly in the rules or (sub)trees that form their basic building blocks. In parsers based
on Markov grammars the direction is encoded as an extra conditional feature (Collins,
1996) or two separate left and right probabilities are used (Collins, 1997; Charniak, 2000).
In our experiments, the combination of direction and distance was the only feature that
achieved any serious performance when used in isolation (see Table 3.2). It also had the
largest negative influence when ignored. The linear order of the intervening chunks is
captured only in their symbolic representation, not in the numeric one. An approximation
of distance is encoded in both representations.

Semantic types Ratnaparkhi, Reynar, and Roukos (1994) use the bit string encoding
of the clustering of words as additional features for PP attachment. Black et al. (1992)
manually assign semantic categories to words and use their bit strings as features in their
parser. Charniak (1997) uses word classes that are acquired by clustering as back-off for the
word itself. Buchholz, Veenstra, and Daelemans (1999) use separately assigned adverbial
functions, and Ferro, Vilain, and Yeh (1999) use Named Entity types and WordNet classes
as additional information sources. Also many QA systems use Named Entity types and
WordNet classes. Ushioda et al. (1993) use lists of temporal nouns. All these approaches
are ways to encode semantic type information. In our experiments, semantic types are
implicitly encoded through the Modified Value Difference Metric (see Section 4.3.7.2). Its
use for the focus and context words proved very useful (Table 4.6).

Subcategorization Abney (1991), Model 2 and 3 of Collins (1997), Carroll, Minnen,
and Briscoe (1998), and Ferro, Vilain, and Yeh (1999) use explicit subcategorization in-
formation for parsing. The lexicalized, probabilistic parsers of Section 2.4.2 mostly use
implicit subcategorization, as does our relation finder (see Section 5.9.1.2). As we rep-
resent the verb in a separate feature we are able to measure the effect of ignoring this
information source. We showed what influence the verb has on the performance of the
most frequent relations. However, in order to exclude that other lexical properties of the
verb such as tense influence the outcome, we would need lemmatization.

Verb chunk properties Grefenstette (1996) first finds verb chunks and then determines
their finiteness and voice. Ferro, Vilain, and Yeh (1999) also use this additional informa-
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tion. In Kiibler and Hinrichs (2001a) the chunker finds generic VP chunks for English
but distinguishes between finite and non-finite verbal chunks for German. The SPARKLE
project (Carroll et al., 1997) also uses four types of verbal chunks. Our VP types in addi-
tion encode agreement and distinguish not only infinitival from participial chunks but also
base infinitives from to-infinitives. This information proved useful (see Section 5.9.3.3). In
Section 6.1.1 we added information on passivity. However this information does not seem
to be necessary for surface grammatical relations. Tense is a separate feature in grammar
theories like HPSG or LFG. It is not consistently represented in our system. We saw one
example for which tense was probably useful (Section 5.9.1.2).

Lemmas Briscoe and Carroll (1997) lemmatize text prior to parsing. Ferro, Vilain,
and Yeh (1999) use word stems as additional features. In our system, a task-specific
lemmatization is implicitly achieved through the Modified Value Difference Metric for
words (see Section 4.3.7.2) but we did not quantify its effect.

Attenuation FEisner (1996a) replaces low frequency words by special symbols encoding
capitalization, hyphenation, suffixes, etc. Brent (1991a) also uses capitalization and typ-
ical suffixes for subcategorization acquisition from raw text. Collins (1999) replaces low
frequency words with one special symbol. The latter approach is the one we followed too
and it increased performance slightly.

Punctuation In the Penn Treebank, punctuation is treated like words: it is assigned
a PoS and is attached to the tree. Therefore most parsers that are trained on the Penn
Treebank do not need to make special provisions for punctuation. However, some use
certain punctuation signs for additional features, e.g. Collins (1996) uses commas in the
“distance” and Ratnaparkhi (1997) has features for parentheses, commas, and periods.
In our experiments, some numeric features for the intervening material explicitly count
commas, quotation marks and colons. Of these, commas are most important. Information
on parentheses did not prove useful. Punctuation also shows up in the context features
but we did not quantify its importance there.

Information on typical tagger and chunker errors Our experiments showed that
performance on automatically tagged and chunked text improves if the relation finder is
also trained on this kind of text (Section 6.1.4). In contrast to treebank material this
text implicitly contains information about typical errors of the tagger and chunker. The
Ramshaw and Marcus (1995) data set for NP chunking is tagged with the Brill tagger,
so chunkers trained on this set automatically use the “typical error” information source.
Probabilistic parsers often integrate the tagger into the system by multiplying the proba-
bility of the tree with the probability of the tag sequence. This is another way to use this
information source.
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8.2 The information and Memory-Based Learning

The previous section showed what information sources we used in our experiments and
which of them proved useful. The current section is based on the same experiments but
summarizes them under a different aspect: how can this information best be represented
for MBL?

MVDM We saw the effect of MVDM for many of the information sources above, not
only for words and PoS but also for the distance (see Section 4.3.7.2). Conceptually it
enables the algorithm to treat feature values as collections of properties instead of as
atomic unrelated symbols. Sections 4.3.7.3, 4.3.7.4, and 5.9.5 suggested that some of the
potential disadvantages of the MVDM metric can be compensated for by using a larger
value of k£ and Inverse Distance or Exponential Decay distance weighted class voting and
by replacing all low frequency values by one unique value. The latter technique especially
increased speed which can be a problem when using MVDM.

Numeric features for sequences Sequence-valued features constitute a particularly
interesting application of MVDM. We will discuss sequences in more detail in Section 8.4.1.
Here we only note that we presented two alternatives for the sequence-as-symbolic-value
representation: a set of numeric features and a set of symbolic feature values. These
representations are much faster than the sequence-valued one. The numeric representation
even illustrates the surprising fact that in this implementation of MBL the addition of
features may speed up classification. Other examples for this effect are the PoS and chunk
type features (see Table 5.1).

Redundancy PoS and chunk type features mainly contain redundant information in
the sense that their value can often be inferred from the value of the corresponding word
feature. This is confirmed by the fact that their omission does not decrease performance.
On the other hand their omission does not increase performance either. This shows that
IB1-1G is robust against this kind of redundancy. Other cases of redundancy come from
the representation of the verb chunk and its context in addition to the focus context, as
these might overlap, and from the representation of the preposition of a PNP chunk by a
separate feature (Sections 5.9.3.1 and 5.2, respectively). A related phenomenon concerns
non-target relation classes. Section 6.1.2 showed that performance on a subset of relations
can drop if relations not belonging to this set are not represented in the data.

Distributed information TiMBL’s current feature weighting schemes assume feature
independence. Redundant and distributed information violate this assumption. In this
light, it is interesting to see that the algorithm can make use of distributed information.
Examples are the verb/focus PoS and the rest of the verb/focus chunk, which together
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encode the VP type (Section 5.9.3.3), or the numeric comma, CC and NP features, which
together encode cases of coordinated NPs (Section 5.9.3.2).

8.3 Practical results

Based on the above insights we developed a memory-based grammatical relation finder
that operates in the context of the Memory-Based Shallow Parser. It finds grammatical
relations to verbs, including

e different kinds of complements as well as the most prominent semantic types of
adjuncts,

e local and non-local relations, including control,
e dependents of all syntactic categories,
e dependents at an unrestricted distance,

e relations to multiple heads in cases of coordination.

On this set the relation finder achieves a performance of F = 81.36 when using treebank
tags and chunks, and Fz = 72.59 with automatically tagged and chunked material (tenfold
cross validation on 500,000 tokens of WSJ). With 1,600,000 tokens of WSJ and Brown
training material it achieves Fy = 73.47 on Brown test data.?

This result is comparable to that of GR extraction methods that are based on full parsers. It
should be noted that the task is a difficult one. Trained lexicographers are known to achieve
about 91% pairwise agreement on the simpler task of identifying just the complements in
a sentence, without determining their type (see Section 2.5.1 and Meyers, Macleod, and
Grishman (1996)). We showed that even a lower performing but faster version of this
relation finder (using IGTree and fewer features) can be used to enhance the precision of
web-based question answering. MBSP’s ability to perform local, independent classification
made it possible to parse text snippets instead of complete documents and to perform
parsing on demand.

8.4 Future Research

There are many directions for future research. An obvious one is to extend the current
method to include grammatical relations to non-verbs. However, as discussed in Sec-
tion 1.1.1, this would require the availability of appropriate training material. Another
research direction concerns the best treatment of unknown words through the promising

2without the -CLR tag
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technique of attenuation. Potentially attenuation can not only simulate PoS tags but also
Named Entity-like semantic information; e.g. -man, -son and -er are typical suffixes for
persons whereas words ending in -shire or -burg often describe locations. Two further
research directions are discussed below.

8.4.1 Automatic feature construction for the representation of
sequences and trees

Our discussion on the best representation for the sequence of intervening chunks and of non-
heads showed that although using the whole sequence as one symbolic value together with
MVDM gives good results, other representations yield equally good results and are more
efficient (faster, less memory). In our case we found the better representations manually.
In general one would want to be able to also find them automatically. This is the topic
of automatic feature construction. However the search space is huge and it looks quite
challenging to automatically construct complex features like:

e the first PoS from the left that is TO or MD or starts with VB (the rule for our VP
type feature)

e a form of be, get or become, possibly followed by words that are not verbs (e.g.
adverbs), followed by the head of the chunk which is tagged VBN or VBD (our rule
for passive; VBD is for mistagged participles)

e a constituent with two or more VP children, one or more of the constituents comma,

CC, CONJP,? and nothing else (the rule for coordinated VPs by Charniak (1999))

An alternative to using MVDM for sequences would be to implement a specific metric for
sequence-valued features, just as we have a specific metric for numeric features. An ob-
vious candidate is the edit distance, also called Levenshtein distance (Levenshtein, 1966),
which defines similarity between two sequences as the minimum number of insertions,
deletions, substitutions and possibly swaps that are necessary to convert one sequence
into the other. There are efficient ways to compute the similarity of a test sequence to
a whole collection of training sequences (Sankoff and Kruskal, 1983). It is even possible
to associate weights with specific operations, e.g. we could give a low weight to the in-
sertion/deletion of an adverb. Clark (2002) describes an approach to supervised learning
of morphology using the Expectation Maximization algorithm (Dempster, Laird, and Ru-
bin, 1977) to train stochastic transducers. He notes that this method is a generalization
of edit distance and shows how it can be used as a kernel function for a Memory-Based
Learning algorithm. Other kernel functions can compute the similarity between two se-
quences or trees efficiently, while still implicitly taking into account all subsequences or

3multi-word conjunctions like “as well as”
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subtrees. They have been used in machine learning algorithms such as the Voted Per-
ceptron (Freund and Schapire, 1999) or Support Vector Machines (SVM), see Cortes and
Vapnik (1995), to (re)rank full parses and tag NEs (Collins and Duffy, 2002) and to extract
person-affiliation and organization-location relations from texts annotated with
NEs and NPs (Zelenko, Aone, and Richardella, 2002). The latter application suggests that
extraction of grammatical relations should be possible, too. Zelenko, Aone, and Richardella
(2002) claim that, in contrast to kernel methods, “feature-based representations produce
inherently local representations of objects, for it is computationally infeasible to generate
features involving long-range dependencies”. Our experiments on the representation of the
intervening material show that this is not true in general.

8.4.2 Separation of work between the modules

We mentioned in Section 2.3.1 that the tag set of the Penn Treebank, which we have
used in MBSP, conflated several tags of other sets. We also saw that some researchers
have (re)introduced some lost or new distinctions, especially for auxiliaries (Eisner, 1996a;
Charniak, 1999). Similarly the syntactic categories (on which our chunk types are based)
conflate some distinctions that are known to be important, and again Collins (1999) for
example found it useful to split the S category. Kiibler and Hinrichs (2001b) and Carroll
and Rooth (1998a) let the chunker already distinguish several types of VPs whereas we
encode this information in a separate feature later. When converting the treebank trees
to chunks we made certain decisions that followed previous work on chunking, e.g. with
respect to possessives, WHXPs and intra-chunk coordination (Section 3.1.2.4). In summary
it remains to be seen whether the current set of PoS tags and chunk types used in MBSP is
the optimal one. We saw in Section 6.1.4 that the PNP finder can be replaced by a simple
regular expression. It might also be possible to integrate PNP chunking into the normal
chunker (Grefenstette, 1996; Ait-Mokhtar and Chanod, 1997a; Abney, 1991; Carroll et
al., 1997). All these considerations pertain to the question of the best separation of work
between the modules. In principle, the more information the lower modules determine
and the more they reduce the search space the better for the relation finder. In practice,
however, some decisions might be too difficult for the lower modules. It might then be
better to postpone these decisions than to introduce too many errors.

8.5 Summary

We use machine learning to investigate what information sources can be used to find
grammatical relations to verb chunks in English sentences, and how this information can
best be exploited by a Memory-Based Learner. We showed that the distinction into heads
and non-heads that is often used in the probabilistic parsing literature obscures the fact
that there are syntactic and semantic heads and that both carry valuable information.
We also explored information contained in sequences of PoS or chunks. This information
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can be used implicitly, by representing the whole sequence, or explicitly, by extracting
the most important pieces of information into separate features. With respect to MBL, we
showed how the Modified Value Difference Metric implicitly encodes syntactic and semantic
knowledge. We also demonstrated how the relation finder enhances precision of an online
QA system.
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Appendix A

Tags, labels, classes, and heads

A.1 Penn Treebank II part-of-speech tags

A.1.1 Punctuation and currency tags

PoS Tag Examples

[43 (313

”

?

( ({

) ) }

’ |7

4 %

$ $ HK$ NZ$ US$

The # is the treebank’s transcription for the £ sign.

A.1.2 Word tags

PoS Tag Description Examples
CC coordinating conjunction and

CD cardinal number 1, third
DT determiner the

EX existential there there is
FwW foreign word d’oeuvre
IN preposition/subordinating conjunction in, of, like
JJ adjective green

JJIR adjective, comparative greener
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PoS Tag Description Examples
JJS adjective, superlative greenest
LS list marker 1)

MD modal could, will
NN noun, singular or mass table

NNS noun plural tables

NNP proper noun, singular John

NNPS proper noun, plural Vikings
PDT predeterminer both the boys
POS possessive ending friend’s

PRP personal pronoun I, he, it
PRP$ possessive pronoun my, his

RB adverb however, usually, naturally, here, good
RBR adverb, comparative better

RBS adverb, superlative best

RP particle give up

TO to to go, to him
UH interjection uhhuhhuhh
VB verb, base form take

VBD verb, past tense took

VBG verb, gerund/present participle taking

VBN verb, past participle taken

VBP verb, sing. present, non-3rd take

VBZ verb, 3rd person sing. present  takes

WDT wh-determiner which

WP wh-pronoun who, what
WP$ possessive wh-pronoun whose

WRB wh-abverb where, when

A.2 Penn Treebank II syntactic categories

A.2.1 Clause level

SBAR
SBARQ

Simple declarative clause, i.e. one that is not introduced by a (possibly empty)
subordinating conjunction or wh-word and that does not exhibit subject-verb

inversion.

Clause introduced by a (possibly empty) subordinating conjunction.
Direct question introduced by a wh-word or wh-phrase. Indirect questions
and relative clauses should be bracketed as SBAR, not SBARQ.



A.2. PENN TREEBANK II SYNTACTIC CATEGORIES 211

SINV

SQ

Inverted declarative sentence, i.e. one in which the subject follows the tensed
verb or modal.

Inverted yes/no question, or main clause of a wh-question, following the wh-
phrase in SBARQ.

A.2.2 Phrase level

ADJP

ADVP

CONJP

FRAG
INTJ
LST
NAC

NP
NX

PP
PRN
PRT

QP

RRC
UCP

VP
WHADJP

WHADVP

WHNP

WHPP

Adjective Phrase. Phrasal category headed by an adjective (including com-
parative and superlative adjectives). Example: outrageously expensive.
Adverb Phrase. Phrasal category headed by an adverb (including compar-
ative and superlative adverbs). Examples: rather timidly, very well indeed,
rapidly.

Conjunction Phrase. Used to mark certain "multi-word” conjunctions, such
as as well as, instead of .

Fragment.

Interjection. Corresponds approximately to the part-of-speech tag UH.

List marker. Includes surrounding punctuation.

Not A Constituent; used to show the scope of certain prenominal modifiers
within a noun phrase.

Noun Phrase. Phrasal category that includes all constituents that depend on
a head noun.

Used within certain complex noun phrases to mark the head of the noun
phrase. Corresponds very roughly to N-bar level but used quite differently.
Prepositional Phrase. Phrasal category headed by a preposition.
Parenthetical.

Particle.

Quantifier Phrase (i.e., complex measure/amount phrase); used within NP.
Reduced Relative Clause.

Unlike Coordinated Phrase.

Verb Phrase. Phrasal category headed by a verb.

Wh-adjective Phrase. Adjectival phrase containing a wh-adverb, as in how
hot.

Wh-adverb Phrase. Introduces a clause with an ADVP gap. May be null
(containing the 0 complementizer) or lexical, containing a wh-adverb such as
how or why.

Wh-noun Phrase. Introduces a clause with an NP gap. May be null (con-
taining the 0 complementizer) or lexical, containing some wh-word, e.g. who,
which book, whose daughter, none of which, or how many leopards.
Wh-prepositional Phrase. Prepositional phrase containing a wh-noun phrase
(such as of which or by whose authority) that either introduces a PP gap or
is contained by a WHNP.

Unknown, uncertain, or unbracketable. X is often used for bracketing typos
and in bracketing the...the constructions.
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A.3

A.3.1

ADV

NOM

A.3.2

DTV

LGS
PRD
pPUT
SBJ

TPC

VOC

A.3.3

BNF

DIR

APPENDIX A. TAGS, LABELS, CLASSES, AND HEADS

Penn Treebank II function tags

Form /function discrepancies

adverbial marks a constituent other than ADVP or PP when it is used adverbially
(e.g., NPs or free (“headless”) relatives). However, constituents that
themselves are modifying an ADVP generally do not get —ADV.

nominal marks free (“headless”) relatives and gerunds when they act nominally.

Grammatical role

dative  marks the dative object in the unshifted form of the double object con-
struction. If the preposition introducing the “dative” object is for, it is
considered benefactive (BNF).

logical is used to mark the logical subject in passives. It attaches to the NP

subject object of by and not to the PP node itself.

predicate marks any predicate that is not VP.
marks the locative complement of put.

surface marks the structural surface subject of both matrix and embedded

subject clauses, including those with null subjects.

topic-  marks elements that appear before the subject in a declarative sentence,

alized  but in two cases only: (i) if the fronted element is associated with a *T*
in the position of the gap. (ii) if the fronted element is left-dislocated (i.e,
it is associated with a resumptive pronoun in the position of the gap).

vocative marks nouns of address, regardless of their position in the sentence. It is
not coindexed to the subject and does not get ~TPC when it is sentence-

initial.
Adverbials
bene-  marks the beneficiary of an action (attaches to NP or PP). This tag is used

factive  only when (1) the verb can undergo dative shift and (2) the prepositional
variant (with the same meaning) uses for. The prepositional objects of
dative-shifting verbs with other prepositions than for (such as to or of)
are annotated -DTV.

direction marks adverbials that answer the questions “from where?” and “to
where?”. It implies motion, which can be metaphorical as in “...rose
5 pts. to 57 1/2” or “increased 70% to 5.8 billion yen”. -DIR is most

often used with verbs of motion/transit and financial verbs.
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EXT

LOC

MNR
PRP

TMP

extent

locative

manner
purpose
or rea-
son

marks adverbial phrases that describe the spatial extent of an activity.
-EXT was incorporated primarily for cases of movement in financial space,
but is also used in analogous situations elsewhere.

marks adverbials that indicate place/setting of the event. -LOC may
also indicate metaphorical location, e.g. amongst yourselves; a drop in
domestic truck sales. There is likely to be some variation in the use
of -LOC due to differing annotator interpretations. In cases where the
annotator is faced with choosing between -LOC or -TMP, the default is
-L0C.

marks adverbials that indicate manner, including instrument phrases.
marks purpose or reason clauses and PPs.

temporal marks temporal or aspectual adverbials that answer the questions when,

how often, or how long. It has some uses that are not strictly adverbial,
such as with dates that modify other NPs.

A.3.4 Miscellaneous

CLR

CLF

HLN

TTL

closely
related

cleft

headline

title

marks constituents that occupy some middle ground between argument
and adjunct of the verb phrase. These roughly correspond to “predi-
cation adjuncts”, prepositional ditransitives, and some “phrasal verbs”,
as defined in Quirk et al. (1985). The precise meaning of ~CLR depends
somewhat on the category of its phrase: on S or SBAR — These cate-
gories are usually arguments, so the —CLR tag indicates that the clause is
more adverbial than normal clausal arguments. The most common case
is the infinitival semicomplement of use, but there are a variety of other
cases. On PP, ADVP, SBAR-PRP, etc. — On categories that are ordinar-
ily interpreted as (adjunct) adverbials, ~CLR indicates a somewhat closer
relationship to the verb.

marks it-clefts (“true” clefts) and may be added to the labels S, SINV,
or SQ.

marks headlines and datelines. Note that headlines and datelines al-
ways constitute a unit of text that is structurally independent from the
following sentence.

is attached to the top node of a title when this title appears inside running
text. -TTL implies -NOM. The internal structure of the title is bracketed
as usual.
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A.4 Classes and their frequency in the unrestricted
tenfold cross validation material

13
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57
3472
16
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=N O W

ADJP

ADJP-ADV

ADJP-CLR

ADJP-MNR

ADJP-OBJ

ADJP-PRD
ADJP-PRD-TPC;T-ADJP-PRD
ADJP-PRD/S
ADJP-PRD/S-ADV
ADJP-PRD/S-CLR
ADJP-PRD/S-LOC
ADJP-PRD/S-MNR
ADJP-PRD/S-OBJ
ADJP-PRD/S/SBAR-CLR
ADJP-PRD/UCP-PRD
ADJP-PRD;T-ADJP-PRD
ADJP-TPC;T-ADJP-PRD
ADJP-TPC;T-ADJP-PRD/S/SBAR-OBJ
ADJP/UCP
ADJP/UCP-ADV
ADJP/UCP-CLR
ADJP/UCP-MNR
ADJP/UCP-PRD
ADJP/UCP-PRD/S-ADV
ADJP;T-ADJP-PRD
ADVP

ADVP-CLR
ADVP-CLR-MNR
ADVP-CLR-TPC;T-ADVP-CLR
ADVP-DIR
ADVP-DIR-CLR
ADVP-EXT

ADVP-LOC
ADVP-LOC-CLR
ADVP-LOC-PRD

ADVP-LOC-PRD-TPC;T-ADVP-LOC-PRD
ADVP-LOC-TPC-PRD;T-ADVP-LOC-PRD

ADVP-LOC-TPC;T-ADVP-LOC-TPC
ADVP-MNR

ADVP-MNR-CLR

ADVP-MNR/UCP

ADVP-PRD

ADVP-PRD-LOC
ADVP-PRD-TPC;T-ADVP-PRD
ADVP-PRD/S-ADV
ADVP-PRD/S-CLR
ADVP-PRD/S-OBJ
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ADVP-PRP

ADVP-PUT

ADVP-TMP
ADVP-TMP-CLR
ADVP-TMP-PRD
ADVP-TMP-PRD/S-PRD
ADVP-TMP-TPC
ADVP-TMP/UCP
ADVP-TPC-PRD;T-ADVP-PRD
ADVP-TPC;T-ADVP
ADVP/UCP
ADVP/UCP-ADV
ADVP/UCP-LOC
ADVP/UCP-MNR
ADVP/UCP-PRD
ADVP/UCP-TMP
CONJP

INTJ

INTJ-CLR

INTJ/FRAG
INTJ/FRAG-PRD
INTJ/FRAG-TPC;T-FRAG
LST

NP

NP-ADV
NP-ADV/ADVP
NP-ADV/ADVP-PRD
NP-BNF

NP-CLR

NP-DIR

NP-EXT

NP-LOC

NP-LOC-CLR
NP-LOC-PRD

NP-MNR

NP-OBJ

NP-PRD
NP-PRD-TPC/S/PRN
NP-PRD-TPC;T-NP-PRD
NP-PRD/S
NP-PRD/S-ADV
NP-PRD/S-OBJ
NP-PRD;T-NP-PRD
NP-SBJ

NP-SBJ-TTL
NP-SBJ;T-NP-OBJ
NP-SBJ;T-NP-OBJ;T-NP-SBJ
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NP-SBJ;T-NP-PRD
NP-SBJ;T-NP-SBJ
NP-TMP

NP-TMP-CLR
NP-TMP-PRD

NP-TPC
NP-TPC;T-NP-OBJ
NP-TPC;T-NP-PRD
NP-TTL

NP-TTL-PRD
NP-TTL-PRD/S-OBJ
NP-TTL-SBJ
NP-TTL-SBJ;T-NP-OBJ
NP-TTL-SBJ;T-NP-TTL
NP-TTL-TPC

NP-VOC

NP/UCP

NP/UCP-CLR
NP/UCP-LOC

NP /UCP-PRD
NP/UCP-PRD/S-ADV
NP /UCP-TMP
NP/WHNP/SBAR-NOM
NP/WHNP /SBAR-OBJ
NP;T-NP-OBJ

PP

PP-BNF

PP-CLR

PP-CLR-LOC
PP-CLR-TPC;T-PP-CLR
PP-CLR/UCP
PP-CLR;T-PP-CLR
PP-DIR

PP-DIR-CLR
PP-DIR-PRD
PP-DIR/UCP

PP-DTV

PP-EXT

PP-LGS

PP-LOC

PP-LOC-CLR
PP-LOC-CLR-TPC;T-PP-LOC-CLR
PP-LOC-MNR
PP-LOC-PRD
PP-LOC-PRD-TPC;T-PP-LOC-PRD
PP-LOC-PRD/S
PP-LOC-PRD/S-ADV
PP-LOC-PRD/S-CLR
PP-LOC-PRD/S-OBJ
PP-LOC-PRD/UCP-PRD
PP-LOC-PRD;T-PP-PRD-LOC
PP-LOC-TPC-PRD;T-PP-LOC-PRD
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PP-LOC/UCP
PP-LOC/UCP-ADV
PP-LOC/UCP-PRD
PP-LOC;T-PP-LOC
PP-MNR
PP-MNR-PRD
PP-MNR/UCP-CLR
PP-NOM
PP-NOM/NP-OBJ
PP-PRD
PP-PRD-LOC
PP-PRD-LOC/S-OBJ
PP-PRD-TPC;T-PP-PRD
PP-PRD/S
PP-PRD/S-ADV
PP-PRD/S-ADV/PRN
PP-PRD/S-OBJ
PP-PRD/UCP-PRD
PP-PRD;T-PP-PRD
PP-PRP
PP-PRP-CLR
PP-PRP-PRD
PP-PRP/UCP
PP-PUT

PP-SBJ

PP-TMP
PP-TMP-CLR
PP-TMP-PRD
PP-TMP-TPC
PP-TMP-TPC;T-PP-TMP
PP-TMP/UCP
PP-TPC
PP-TPC-CLR;T-PP-CLR
PP-TPC-LOC-PRD;T-PP-LOC-PRD
PP-TPC-PRD;T-PP-PRD
PP-TPC;T-PP
PP-TPC;T-PP-PRD
PP-TTL-PRD
PP/UCP
PP/UCP-LOC
PP/UCP-MNR
PP/UCP-PRD
PP/UCP-PRD/S-ADV
PP/UCP-PRP
PP/UCP-TMP
PP;T-PP
PP;T-PP-PUT

PRT

SBAR

SBAR-ADV
SBAR-ADV-TPC
SBAR-ADV/FRAG
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SBAR-ADV/PRN

SBAR-ADV/SQ-TPC;T-SQ-OBJ

SBAR-CLR
SBAR-MNR
SBAR-MNR/PRN
SBAR-MNR/UCP
SBAR-NOM
SBAR-NOM-SBJ
SBAR-OBJ
SBAR-OBJ;T-SBAR
SBAR-PRD
SBAR-PRD/UCP
SBAR-PRP
SBAR-PRP-PRD
SBAR-SBJ
SBAR-TMP
SBAR-TMP-PRD
SBAR-TMP/FRAG
SBAR-TMP/UCP-ADV
SBAR/PRN
SBAR/SQ
SBAR/UCP
SBAR/UCP-PRD
SBAR/UCP-PRP
SBAR;T-SBAR-OBJ
T-ADJP-OBJ
T-ADJP-PRD
T-ADVP
T-ADVP-DIR
T-ADVP-EXT
T-ADVP-LOC
T-ADVP-LOC-CLR
T-ADVP-LOC-PRD
T-ADVP-MNR
T-ADVP-PRD
T-ADVP-PRP
T-ADVP-PUT
T-ADVP-TMP
T-ADVP-TMP-CLR
T-ADVP-TMP-PRD
T-FRAG
T-NP-EXT
T-NP-OBJ
T-NP-OBJ;T-NP-SBJ
T-NP-PRD
T-NP-SBJ
T-NP-SBJ;T-NP-OBJ
T-NP-TMP

T-PP

T-PP-CLR
T-PP-DIR
T-PP-EXT
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T-PP-LOC
T-PP-LOC-CLR
T-PP-MNR
T-PP-PRP
T-PP-TMP
T-S-ADV

T-S-OBJ

T-S-PRP
T-S/SBAR-OBJ
T-S/SBAR-PRD
T-SBAR-ADV
T-SBAR-OBJ
T-SBARQ-OBJ
T-SINV/SBAR-OBJ
T-SQ-OBJ

VP

VP-OBJ
VP-OBJ;T-VP/S-OBJ
VP-TPC/SINV
VP-TPC/SINV-TPC;T-SINV/SBAR-OBJ
VP/PRN

VP/S

VP/S-ADV
VP/S-ADV/PRN
VP/S-ADV/SBAR-PRD
VP/S-ADV/UCP
VP/S-CLF

VP /S-CLF-TPC;T-S-CLF
VP/S-CLR
VP/S-CLR/UCP
VP/S-MNR
VP/S-MNR-CLR
VP/S-NOM
VP/S-NOM-PRD
VP/S-NOM-SBJ
VP/S-NOM/FRAG
VP/S-NOM/NP-OBJ
VP/S-NOM/NP-SBJ
VP/S-OBJ
VP/S-PRD
VP/S-PRP
VP/S-PRP-CLR
VP/S-PRP-PRD
VP/S-PRP-TPC
VP/S-PRP/PRN
VP/S-PRP/UCP
VP/S-PRP/UCP-CLR
VP/S-SBJ
VP/S-TMP
VP/S-TMP/PRN
VP/S-TPC
VP/S-TPC;T-S-OBJ
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873 VP/S-TPC;T-S/SBAR-OBJ
1 VP/S-TTL-PRD a7
1 VP/S/INTJ
371 VP/S/PRN
1 VP/S/SBAR
22 VP/S/SBAR-ADV
1 VP/S/SBAR-CLR
2 VP/S/SBAR-MNR
1 VP/S/SBAR-NOM-SBJ
3100 VP/S/SBAR-OBJ
VP/S/SBAR-PRD
VP/S/SBAR-PRP
VP/S/SBAR-PRP-PRD
VP/S/SBAR-TMP
VP/S/SQ-OBJ
VP/S/UCP
VP/S/UCP-PRD
VP/S/UCP-PRP
VP/S;T-S-OBJ
VP/S;T-S/SBAR-OBJ 17
VP/SINV 55
VP /SINV-OBJ 1
VP /SINV-TPC;T-SINV-OBJ 2
VP /SINV-TPC;T-SINV/SBAR-OBJ 8
VP/SINV/PRN 2
VP/SINV/SBAR-ADV 1
VP /SINV/SBAR-OBJ 140
VP/SQ 10
VP/SQ-OBJ 2
VP/SQ-TPC;T-SQ-OBJ 1
VP/UCP-PRD 1
WHADJP/SBAR-ADV 1
WHADJP/SBAR-NOM 2
WHADJP/SBAR-OBJ 3
WHADJP/SBAR-PRD 1
1
1
2
7
1
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WHADJP/SBAR-TPC;T-SBAR-OBJ
WHADVP

WHADVP/SBAR
WHADVP/SBAR-ADV

WHADVP /SBAR-DIR-TPC;T-SBAR-DIR
WHADVP/SBAR-LOC
WHADVP/SBAR-LOC-CLR
WHADVP/SBAR-LOC-PRD
WHADVP/SBAR-MNR

WHADVP /SBAR-NOM

WHADVP /SBAR-NOM-PRD
WHADVP /SBAR-NOM-SBJ
WHADVP /SBAR-NOM/NP-OBJ
WHADVP/SBAR-OBJ
WHADVP/SBAR-PRD

WHADVP /SBAR-PRP-PRD
WHADVP/SBAR-PUT
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WHADVP/SBAR-SBJ
WHADVP/SBAR-TMP
WHADVP/SBAR-TMP-CLR
WHADVP/SBAR-TMP-PRD
WHADVP/SBAR-TMP/FRAG
WHADVP/SBAR-TPC
WHADVP/SBAR-TTL
WHADVP/SBAR/UCP
WHADVP/SBAR/UCP-PRD
WHADVP/SBARQ
WHADVP/SBARQ-OBJ
WHADVP/SBARQ-PRD

WHADVP /SBARQ-TPC;T-SBARQ-OBJ
WHADVP/SBARQ;T-SBARQ-OBJ
WHADVP/UCP;T-ADVP-TMP
WHNP/SBAR

WHNP/SBAR-ADV
WHNP/SBAR-ADV/PRN
WHNP/SBAR-NOM
WHNP/SBAR-NOM-PRD
WHNP/SBAR-NOM-SBJ
WHNP/SBAR-NOM-TPC;T-NP-OBJ
WHNP /SBAR-NOM-TPC;T-SBAR-NOM
WHNP/SBAR-NOM/NP-OBJ
WHNP/SBAR-NOM/NP-PRD
WHNP/SBAR-NOM/NP-SBJ
WHNP/SBAR-OBJ
WHNP/SBAR-PRD
WHNP/SBAR-SBJ
WHNP/SBAR/FRAG-TPC;T-FRAG
WHNP/SBAR/PRN
WHNP/SBAR;T-SBAR-OBJ
WHNP/SBARQ
WHNP/SBARQ-OBJ
WHNP/SBARQ-PRD
WHNP/SBARQ/UCP
WHNP/SBARQ/UCP-TPC;T-UCP
WHPP/SBAR-ADV
WHPP/SBAR-OBJ

WHPP /SBAR-TMP
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A.5 The head table

$head{’ADJP’}=>JJ|RB|VB|IN|UH|FW|RP|\$|#|DT|NN’;
$head{’ADVP’}="RB|IN|TO|DT|PDT|JJ|RP|FW|LS|UH|NN|CD|VB’;
$head{’CONJP’}="CC|IN|RB’;
$head{’INTJ’}="UH|RB|NN|VB|FW|JJ’;
$head{’LST’}="LS|JJ|:’;

$head{’NAC’}="NN’;

$head{’NOLABEL’}="[A-Z]’;
$head{’NP’}=’NN|CD|PRP|JJ|DT|EX|IN|RB|VB|FW|SYM|UH|WP|WDT’;
$head{’NX’}=’NN|CD|PRP|JJ|DT|EX|FW|SYM|UH|WP |WDT’;
$head{’PP’}="IN|TO|RB|VBG|VBN|JJ|RP|FW’;
$head{’PRT’}="RP|IN|RB|JJ’;

$head{’QP’}="CD|DT|NN|JJ’;

$head{’SBAR’}="IN|DT|WDT’;

$head{’UCP’}=>JJ|NN|VBI|CD’;
$head{’VP’}="VB|MD|TO|JJ|NN|POS|FW|SYM’;
$head{’WHADJP’}="JJ’;

$head{’WHADVP’ }="WRB|IN|RB|WDT’;

$head{’WHNP’}="WDT |WP|CD|DT|IN|NN|JJ|RB’;
$head{’WHPP’}="IN|T0’;

$headcat{’ADJP’}=’ADJP’;
$headcat{’ADVP’}=’>ADVP|.*-ADV’;
$headcat{’CONJP’}="CONJP’;
$headcat{’FRAG’}="FRAG|INTJ|S|VP’;
$headcat{’INTJ’}=’S|VP|INTJ’;
$headcat{’LST’}="LST’;
$headcat{’NOLABEL’}=’[A-Z]’;
$headcat{’NP’}="NP|NX| .*-NOM’ ;
$headcat{’NX’}="NX"’;
$headcat{’PP’}="PP’;
$headcat{’PRN’}="S|VP’;
$headcat{’PRT’}="PRT’;
$headcat{’RRC’}=’S|VP’;
$headcat{’S’}=’S$|VP|.*-PRD’;
$headcat{’SBAR’}="SBAR|S|WH’;
$headcat{’SBARQ’}="SBARQ|SQ|WH’;
$headcat{’SINV’}=>SINV|VP|SBAR’;
$headcat{’SQ’}="SQ|VP|S|WH’;
$headcat{’UCP’}=’[A-Z]+P(-[-A-Z]+)?$IS’;
$headcat{’VP’}="VP’;
$headcat{’WHADJP’}=’WHADJP|ADJP’;
$headcat{’WHADVP’}=>WHADVP’;
$headcat{’WHNP’}=">WHNP NP’ ;
$headcat{’WHPP’}="WHPP’;
$headcat{’X’}="S| [A-Z]+P(-[-A-Z]+)7$’;



Appendix B

Summary

This thesis is about automatically finding grammatical relations (GR), such as subject,
direct object, temporal or locative adjunct in English sentences. The grammatical relations
to be found are based on the annotations in the Wall Street Journal Corpus of the Penn
Treebank II and are restricted to relations to verbs. The relation finder uses a supervised
machine learning algorithm called Memory-Based Learning (MBL). It operates on the
output of a Memory-Based part-of-speech tagger and chunker. Together these modules
form the Memory-Based Shallow Parser (MBSP).

Input to a Memory-Based Learner must be in the form of a fixed number of feature-value
pairs whereas the output of the tagger and chunker has no fixed maximum length but an
internal structure (chunks have types and consist of sequences of words, which have PoS
tags). The challenge thus consists of finding a suitable selection and representation of this
information in the required format. Research questions are: “What information is useful
for performing the task?” and “How can this information best be used by a Memory-
Based Learner?”. We answer these questions both quantitatively, by performing learning
experiments and comparing performance, learning speed and memory requirements with
different features and algorithmic settings, and qualitatively, by extensive error analysis.

The thesis is structured as follows. Chapter 1 contains the introduction. Chapter 2 sketches
the theoretical background of grammatical relations: how they are defined, what phenom-
ena are described by them and how they are annotated in treebanks. It also reviews work
that is related to determining GRs. The review shows that diverse types of information
are relevant to the task and that this information can be represented in different ways.

Chapter 3 describes the original Penn Treebank data and how we extracted chunks, heads
and GRs from it. This conversion is complex because this information is not explicitly
contained in the treebank. The second part of the chapter explains the general set-up for
the experiments in the following two chapters, which form the core of this thesis.

Chapter 4 introduces the MBL algorithms that are used in this thesis and explains the
various parameters. The second part of the chapter applies these algorithms with different
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parameter settings to the GR data. The most interesting improvement over the default
setting is achieved through the Modified Value Difference Metric (MVDM) which models
task specific similarity between feature values. Our analyses show that this allows the
algorithm to implicitly learn hierarchies of PoS, syntactic and semantic similarity between
words and a non-linear measure of “distance” in a sentence. With the best parameter
setting, the best MBL algorithm (IB1-IG) achieves an Fj of 80.09.

Chapter 5 systematically tries to improve performance and/or speed and memory require-
ments by deleting superfluous features and adding useful new ones and by trying different
representations of the same information. The most interesting new information involves
sequences of PoS or chunks. Representing information from sequences is especially chal-
lenging in a propositional format. We present two possibilities: using MVDM on sequences
regarded as atomic values and using numeric features. We also show how information from
words that are not semantic but syntactic heads can help the learner. Even knowledge
about the absence of such words in a chunk can be relevant. With the best feature selec-
tion and representation, the algorithm achieves an Fj of 83.10.

Chapter 6 treats several practical issues. We show that training the learner with a more
fine-grained class definition than is actually needed does not harm results on a coarser-
grained evaluation. Training on material that is slightly different from test material, how-
ever, decreases performance. This is shown by experiments with two different corpora and
with manually annotated versus automatically tagged and chunked text. With the latter,
Fp is 72.59. In the last section of Chapter 6, MBSP is compared to two related systems.
It performs better than Memory-Based Sequence Learning on finding unlabeled dependen-
cies, but worse than the relation finder of Carroll, Minnen, and Briscoe (1998) on finding
GRs according to their definition. However, many errors are due to the difficult mapping
from our GRs to theirs and to the fact that MBSP finds relations to verbs only.

In Chapter 7, MBSP is integrated into a Question Answering prototype called Shapaqa.
We describe the version with which we achieved a Mean Reciprocal Rank of 0.21 in the
Question Answering track of TREC-10 and the version that is accessible via the internet.
This application demonstrates that the performance that can be achieved by a fast version
of the parser is sufficient for Question Answering when large numbers of documents are
available. This is typically the case on the World Wide Web.

Chapter 8 summarizes the answers to our research questions and suggests future research.
Information that is relevant for the task of finding GRs includes: syntactic and semantic
heads of chunks, their part-of-speech, chunk types, the context of the focus and the verb,
linear order, semantic types, subcategorization and lemmas, punctuation, verb chunk prop-
erties (such as passivity), and information on typical tagger/chunker errors. Much of this
information can best be used by MBL with the MVDM metric. For sequences, numeric fea-
tures are an alternative. Distributing information over several features or representing the
same information redundantly in several features does not necessarily harm performance.
Future research directions include unknown words, relations to non-verbs, automatic fea-
ture construction, and optimal work separation between the MBSP modules.



Appendix C

Samenvatting

Dit proefschrift beschrijft hoe een computer grammaticale relaties (GR), zoals onderwerp,
lijdend voorwerp, tijd- of plaatsbepaling in Engelse zinnen kan vinden. De GRs zijn afgeleid
van de annotaties in het Wall Street Journal corpus uit de Penn Treebank II, maar beperkt
tot relaties tot werkwoorden. De relatievinder is een toepassing van een algemeen gesu-
perviseerd automatisch leeralgoritme: Memory-Based Learning (MBL). De module werkt
op de uitvoer van een Memory-Based tagger en chunker. Samen vormen deze modules de
Memory-Based Shallow Parser (MBSP).

MBL vraagt invoer in de vorm van een vast aantal feature-waarde-paren. Daarentegen heeft
de uitvoer van de tagger en chunker een interne structuur en een variabele lengte zonder
vast maximum. Belangrijke onderzoeksvragen zijn daarom: “Welke informatie is nuttig
voor de taak?” en “Hoe kan deze informatie het beste door MBL gebruikt worden?”.
Deze vragen beantwoorden wij zowel kwantitatief, door een vergelijking van het succes,
de snelheid en het geheugengebruik van leerexperimenten met verschillende features en
algoritmeparameters, als kwalitatief, door uitgebreide foutenanalyses.

Hoofdstuk 1 bevat de inleiding. Hoofdstuk 2 beschrijft de theoretische achtergrond van
GRs: hoe deze gedefinieerd worden, welke fenomenen zij beschrijven en hoe zij in boom-
banken geannoteerd zijn. Verder geven wij een overzicht van ander werk over het bepalen
van GRs waaruit blijkt dat veel verschillende typen informatie hierbij een rol spelen en dat
deze informatie op verschillende manieren gerepresenteerd wordt.

Hoofdstuk 3 beschrijft de Penn Treebank data en hoe wij hieruit chunks, hoofden en GRs
afleiden. Deze omzetting is vrij complex omdat de informatie niet expliciet in de boombank
aanwezig is. De tweede helft van het hoofdstuk legt de opzet uit van de leerexperimenten die
in de daaropvolgende twee hoofdstukken beschreven worden. Deze hoofdstukken vormen
de kern van het proefschrift.

Hoofdstuk 4 introduceert de MBL algoritmes en hun parameters en test deze op de GR
data. De meest interessante verbetering wordt bereikt met de Modified Value Difference
Metric (MVDM). Deze metriek berekent hoeveel twee featurewaarden op elkaar lijken met
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betrekking tot een specifieke taak. Hierdoor leert het algoritme impliciet woordsoorthiérar-
chieén, syntactische en semantische gelijkenis van woorden en een niet-lineaire maat voor
de afstand tussen woorden in een zin. Met de beste parameterinstelling bereikt het beste
MBL algoritme (te weten IB1-IG) een Fjz-waarde van 80.09.

In Hoofdstuk 5 verbeteren wij de performantie en/of snelheid en geheugengebruik van de
relatievinder door overbodige features weg te laten, nuttige nieuwe toe te voegen en ver-
schillende representaties van dezelfde informatie te testen. De meest interessante nieuwe
informatie bestaat uit sequenties van woordsoorten of chunks. Wij laten twee mogelijkhe-
den zien hoe deze sequentiéle informatie in het vereiste propositionele formaat gerepresen-
teerd kan worden: als atomaire featurewaarden met gebruik van MVDM of door middel
van een aantal numerieke features. We tonen ook hoe woorden die geen semantische maar
syntactische hoofden zijn, het leerproces verbeteren. Zelfs kennis over de afwezigheid van
deze woorden in een chunk kan nuttig zijn. Met de beste featureselectie en -representatie
bereikt het algoritme een Fj-waarde van 83.10.

In Hoofdstuk 6 laten we zien dat de nauwkeurigheid van de voorspelling niet verslechtert als
het algoritme getraind wordt met klassen die gedetaileerder zijn dan die waarop we uitein-
delijk evalueren. Alleen als het trainingsmateriaal afwijkt van het testmateriaal gaat de
performantie achteruit. Voorbeelden hiervan zijn verschillende corpora en handmatig ver-
sus automatisch getagde en gechunkte tekst. In het laatste geval is de F-waarde 72.59. In
de laatste paragraaf van hoofdstuk 6 vergelijken wij de MBSP met twee andere relatievind-
systemen. MBSP scoort beter dan Memory-Based Sequence Learning op ongelabelde de-
pendenties maar minder goed dan het systeem van Carroll, Minnen, and Briscoe (1998) op
GRs volgens hun definitie. De meeste fouten ontstaan doordat ons systeem alleen relaties
tot werkwoorden vindt en door de moeilijke overzetting van onze relaties naar de hunne.

In Hoofdstuk 7 beschrijven wij het prototype van een vraag-beantwoord-systeem dat op
MBSP gebaseerd is. We beschrijven de versie die via internet toegankelijk is en de versie
die in de Question Answering track van de tiende TREC conferentie een score van 0.21
behaalde. Deze toepassing bewijst dat de performantie van een snelle versie van de parser
goed genoeg is om antwoorden te vinden mits er genoeg documenten ter beschikking staan.
Dit laatste is bij uitstek het geval op het World Wide Web.

Hoofdstuk 8 vat de antwoorden op onze onderzoeksvragen samen en suggereert mogelijk
verder onderzoek. Relevante informatie voor het vinden van GRs is: syntactische en seman-
tische hoofden van chunks, hun woordsoort, chunktypen, de context van de focus en van
het werkwoord, de lineaire volgorde, semantische typen, subcategorisatie en lemmata, in-
terpunctie, eigenschappen van werkwoordschunks (zoals passiviteit) en informatie over ty-
pische tagger- en chunkerfouten. De meeste informatie kan het beste met MVDM gebruikt
worden. Voor sequenties vormen numerieke features een alternatief. Het distribueren van
informatie over meerdere features of het redundant representeren van informatie hoeft de
performantie niet te schaden. Als onderwerpen voor verder onderzoek zien wij onbekende
woorden, relaties tot niet-werkwoorden, automatische featureconstructie en een optimale
werkverdeling tussen de MBSP modules.



