
Hierarchical Recognition of Propositional Arguments with Perceptrons

Xavier Carreras and Lluı́s Màrquez
TALP Research Centre

Technical University of Catalonia (UPC)
{carreras,lluism}@lsi.upc.es

Grzegorz Chrupała
GRIAL Research Group

University of Barcelona (UB)
grzegorz@pithekos.net

1 Introduction

We describe a system for the CoNLL-2004 Shared Task
on Semantic Role Labeling (Carreras and Màrquez,
2004a). The system implements a two-layer learning ar-
chitecture to recognize arguments in a sentence and pre-
dict the role they play in the propositions. The explo-
ration strategy visits possible arguments bottom-up, navi-
gating through the clause hierarchy. The learning compo-
nents in the architecture are implemented as Perceptrons,
and are trained simultaneously online, adapting their be-
havior to the global target of the system. The learn-
ing algorithm follows the global strategy introduced in
(Collins, 2002) and adapted in (Carreras and Màrquez,
2004b) for partial parsing tasks.

2 Semantic Role Labeling Strategy

The strategy for recognizing propositional arguments in
sentences is based on two main observations about argu-
ment structure in the data. The first observation is the
relation of the arguments of a proposition with the chunk
and clause hierarchy: a proposition places its arguments
in the clause directly containing the verb (local clause),
or in one of the ancestor clauses. Given a clause, we de-
fine the sequence of top-most syntactic elements as the
words, chunks or clauses which are directly rooted at the
clause. Then, arguments are formed as subsequences of
top-most elements of a clause. Finally, for local clauses
arguments are found strictly to the left or to the right of
the target verb, whereas for ancestor clauses arguments
are usually to the left of the verb. This observation holds
for most of the arguments in the data. A general excep-
tion are arguments of type V, which are found only in the
local clause, starting at the position of the target verb.

The second observation is that the arguments of all
propositions of a sentence do not cross their boundaries,
and that arguments of a particular proposition are usually
found strictly within an argument of a higher level propo-
sition. Thus, the problem can be thought of as finding a

hierarchy of arguments in which arguments are embed-
ded inside others, and each argument is related to a num-
ber of propositions of a sentence in a particular role. If an
argument is related to a certain verb, no other argument
linking to the same verb can be found within it.

The system presented in this paper translates these ob-
servations into constraints which are enforced to hold in
a solution, and guide the recognition strategy. A limita-
tion of the system is that it makes no attempt to recognize
arguments which are split in many phrases.

In what follows, x is a sentence, and xi is the i-th word
of the sentence. We assume a mechanism to access the
input information of x (PoS tags, chunks and clauses),
as well as the set of target verbs V , represented by their
position. A solution y ∈ Y for a sentence x is a set of
arguments of the form (s, e)k

v , where (s, e) represents an
argument spanning from word xs to word xe, playing a
semantic role k ∈ K with a verb v ∈ V . Finally, [S,E]
denotes a clause spanning from word xS to word sE .

The SRL(x) function, predicting semantic roles of a
sentence x, implements the following strategy:

1. Initialize set of arguments, A, to empty.

2. Define the level of each clause as its distance to the
root clause.

3. Explore clauses bottom-up, i.e. from deeper levels
to the root clause. For a clause [S,E]:

A := A ∪ arg search(x, [S,E])

4. Return A

2.1 Building Argument Hierarchies

Here we describe the function arg search, which builds a
set of arguments organized hierarchically, within a clause
[S,E] of a sentence x. The function makes use of two
learning-based components, defined here and described
below. First, a filtering function F, which, given a can-
didate argument, determines its plausible categories, or
rejects it when no evidence for it being an argument
is found. Second, a set of k-score functions, for each

k ∈ K, which, given an argument, predict a score of plau-
sibility for it being of role type k of a certain proposition.

The function arg search searches for the argument hi-
erarchy which optimizes a global score on the hierarchy.
As in earlier works, we define the global score (Γ) as the
summation of scores of each argument in the hierarchy.
The function explores all possible arguments in the clause
formed by contiguous top-most elements, and selects the
subset which optimizes the global score function, forcing
a hierarchy in which the arguments linked to the same
verb do not embed.

Using dynamic programming, the function can be
computed in cubic time. It considers fragments of top-
most elements, which are visited bottom-up, incremen-
tally in length, until the whole clause is explored. While
exploring, it maintains a two-dimensional matrix A of
partial solutions: each position [s, e] contains the optimal
argument hierarchy for the fragment from s to e. Finally,
the solution is found at A[S,E]. For a fragment from s to
e the algorithm is as follows:

1. A := A[s, r] ∪ A[r+1, e] where
r := arg maxs≤r<e Γ

(

A[s, r]
)

+ Γ
(

A[r+1, e]
)

2. For each prop v ∈ V :

(a) K := F((s, e), v)

(b) Compute k′ such that
k′ := arg maxk∈K k-score((s, e), v, x)

Set γ to the score of category k′.

(c) Set Av as the arguments in A linked to v.

(d) If
(

Γ(Av) < γ
)

then A := A\Av ∪{(s, e)k′

v }

3. A[s, e] := A

Note that an argument is visited once, and that its score
can be stored to efficiently compute the Γ global score.

2.2 Start-End Filtering

The function F determines which categories in K are
plausible for an argument (s, e) to relate to a verb v.

This is done via start-end filters (Fk
S and Fk

E), one for
each type in K1. They operate on words, independently
of verbs, deciding whether a word is likely to start or end
some argument of role type k.

The selection of categories is conditional to the relative
level of the verb and the clause, and to the relative posi-
tion of the verb and the argument. The conditions are:

• v is local to the clause, and (v=s) and FV
E(xe):

K := {V}

• v is local, and (e<v ∨ v<s):
K := {k ∈ K | Fk

S(xs) ∧ Fk
E(xe)}

1Actually, we share start-end filters for A0-A5 arguments.

• v is at deeper level, and (e<v):
K := {k ∈ K | k 6∈K(v) ∧ Fk

S(xs) ∧ Fk
E(xe)}

where K(v) is the set of categories already assigned
to the verb in deeper clauses.

• Otherwise, K is set to empty.

Note that setting K to empty has the effect of filter-
ing out the argument for the proposition. Note also that
Start-End classifications do not depend on the verb, thus
they can be performed once per candidate word, before
entering the exploration of clauses. Then, when visiting
a clause, the Start-End filtering can be performed with
stored predictions.

3 Learning with Perceptrons

In this section we describe the learning components of
the system, namely start, end and score functions, and the
Perceptron-based algorithm to train them together online.

Each function is implemented using a linear separator,
hw : Rn → R, operating in a feature space defined by
a feature extraction function, φ : X → Rn, for some
instance space X . The start-end functions (Fk

S and Fk
E)

are formed by a prediction vector for each type, noted as
wk

S or wk
E, and a shared representation function φw which

maps a word in context to a feature vector. A prediction
is computed as Fk

S(x) = wk
S ·φw(x), and similarly for the

Fk
E, and the sign is taken as the binary classification.
The score functions compute real-valued scores for

arguments (s, e)v . We implement these functions with
a prediction vector wk for each type k ∈ K, and
a shared representation function φa which maps an
argument-verb pair to a feature vector. The score pre-
diction for a type k is then given by the expression:
k-score((s, e), v, x) = wk · φa((s, e), v, x).

3.1 Perceptron Learning Algorithm

We describe a mistake-driven online algorithm to train
prediction vectors together. The algorithm is essentially
the same as the one introduced in (Collins, 2002). Let W

be the set of prediction vectors:

• Initialize: ∀w∈W w := 0
• For each epoch t := 1 . . . T ,

for each sentence-solution pair (x, y) in training:
1. ŷ = SRLW (x)
2. learning feedback(W,x, y, ŷ)

• Return W

3.2 Learning Feedback for Filtering-Ranking

We now describe the learning feedback rule, introduced
in earlier works (Carreras and Màrquez, 2004b). We dif-
ferentiate two kinds of global errors in order to give feed-
back to the functions being learned: missed arguments
and over-predicted arguments. In each case, we identify

the prediction vectors responsible for producing the in-
correct argument and update them additively: vectors are
moved towards instances predicted too low, and moved
away from instances predicted too high.

Let y∗ be the gold set of arguments for a sentence
x, and ŷ those predicted by the SRL function. Let
goldS(xi, k) and goldE(xi, k) be, respectively, the per-
fect indicator functions for start and end boundaries of
arguments of type k. That is, they return 1 if word xi

starts/ends some k-argument in y∗ and -1 otherwise. The
feedback is as follows:

• Missed arguments: ∀(s, e)k
v ∈ y∗\ŷ:

1. Update misclassified boundary words:
if (wk

S · φw(xs) ≤ 0) then wk
S = wk

S + φw(xs)
if (wk

E ·φw(xe) ≤ 0) then wk
E = wk

E +φw(xe)

2. Update score function, if applied:
if (k ∈ F ((s, e), v) then

wk = wk + φa((s, e), v, x)

• Over-predicted arguments: ∀(s, e)k
p ∈ ŷ\y∗:

1. Update score function:
wk = wk − φa((s, e), v, x)

2. Update words misclassified as S or E:
if (goldS(xs, k)=−1) then wk

S = wk
S−φw(xs)

if (goldE(xe, k)=−1) then wk
E =wk

E−φw(xe)

3.3 Kernel Perceptrons with Averaged Predictions

Our final architecture makes use of Voted Perceptrons
(Freund and Schapire, 1999), which compute a predic-
tion as an average of all vectors generated during train-
ing. Roughly, each vector contributes to the average pro-
portionally to the number of correct positive training pre-
dictions the vector has made. Furthermore, a prediction
vector can be expressed in dual form as a combination of
training instances, which allows the use of kernel func-
tions. We use standard polynomial kernels of degree 2.

4 Features

The features of the system are extracted from three types
of elements: words, target verbs, and arguments. They
are formed making use of PoS tags, chunks and clauses
of the sentence. The functions φw and φa are defined
in terms of a collection of feature extraction patterns,
which are binarized in the functions: each extracted pat-
tern forms a binary dimension indicating the existence of
the pattern in a learning instance.

Extraction on Words. The list of features extracted
from a word xi is the following:

• PoS tag.

• Form, if the PoS tag does not match with the Perl
regexp /ˆ(CD|FW|J|LS|N|POS|SYM|V)/.

• Chunk type, of the chunk containing the word.

• Binary-valued flags: (a) Its chunk is one-word or
multi-word; (b) Starts and/or ends, or is strictly
within a chunk (3 flags); (c) Starts and/or ends
clauses (2 flags); (d) Aligned with a target verb; and
(e) First and/or last word of the sentence (2 flags).

Given a word xi, the φw function implements a ±3
window, that is, it returns the features of the words xi+r,
with −3≤r≤+3, each with its relative position r.

Extraction on Target Verbs. Given a target verb v, we
extract the following features from the word xv:

• Form, PoS tag, and target verb infinitive form.

• Voice : passive, if xv has PoS tag VBN, and either its
chunk is not VP or xv is preceded by a form of “to
be” or “to get” within its chunk; otherwise active.

• Chunk type.

• Binary-valued flags: (a) Its chunk is multi-word or
not; and (b) Starts and/or ends clauses (2 flags).

Extraction on Arguments. The φa function performs
the following feature extraction for an argument (s, e)
linked to a verb v:

• Target verb features, of verb v.

• Word features, of words s−1, s, e, and e+1, each
anchored with its relative position.

• Distance of v to s and to e: for both pairs, a flag
indicating if distance is {0, 1,−1, >1, <1}.

• PoS Sequence, of PoS tags from s to e: (a) n-grams
of size 2, 3 and 4; and (b) the complete PoS pattern,
if it is less than 5 tags long.

• TOP sequence: tags of the top-most elements found
strictly from s to e. The tag of a word is its PoS. The
tag of a chunk is its type. The tag of a clause is its
type (S) enriched as follows: if the PoS tag of the
first word matches /ˆ(IN|W|TO)/ the tag is en-
riched with the form of that word (e.g. S-to); if
that word is a verb, the tag is enriched with its PoS
(e.g. S-VBG); otherwise, it is just S. The follow-
ing features are extracted: (a) n-grams of sizes 2, 3
and 4; (b) The complete pattern, if it is less than 5
tags long; and (c) Anchored tags of the first, second,
penultimate and last elements.

• PATH sequence: tags of elements found between
the argument and the verb. It is formed by a con-
catenation of horizontal tags and vertical tags. The
horizontal tags correspond to the TOP sequence of
elements at the same level of the argument, from it to
the phrase containing the verb, both excluded. The
vertical part is the list of tags of the phrases which
contain the verb, from the phrase at the level of the

argument to the verb. The tags of the PATH se-
quence are extracted as in the TOP sequence, with
an additional mark indicating whether an element is
horizontal to the left or to the right of the argument,
or vertical. The following features are extracted: (a)
n-grams of sizes 4 and 5; and (b) The complete pat-
tern, if it is less than 5 tags long.

• Bag of Words: we consider the top-most elements
of the argument which are not clauses, and extract
all nouns, adjectives and adverbs. We then form a
separate bag for each category.

• Lexicalization: we extract the form of the head of
the first top-most element of the argument, via com-
mon head word rules; if the first element is a PP
chunk, we also extract the head of the first NP found.

5 Experiments and Results

We have build a system which implements the presented
architecture for recognizing arguments and their semantic
roles. The configuration of learning functions, related to
the roles in the CoNLL-2004 data, is set as follows :

• Five score functions for the A0–A4 types, and two
shared filtering functions FAN

S and FAN
E .

• For each of the 13 adjunct types (AM-*), a score
function and a pair of filtering functions.

• Three score functions for the R0–R2 types, and two
filtering functions FR

S and FR
E shared among them.

• For verbs, a score function and an end filter.

We ran the learning algorithm on the training set (with
predicted input syntax) with a polynomial kernel of de-
gree 2, for up to 8 epochs. Table 1 presents the ob-
tained results on the development set, either artificial or
real. The second and third rows provide, respectively, the
loss suffered because of errors in the filtering and scor-
ing layer. The filtering layer performs reasonably well,
since 89.44% recall can be achieved on the top of it.
However, the scoring functions clearly moderate the per-
formance, since working with perfect start-end functions
only achieve an F1 at 75.60. Finally, table 2 presents final
detailed results on the test set.

Precision Recall Fβ=1

g–FS, g–FE, g-score 99.92% 94.73% 97.26
FS, FE, g–score 99.90% 89.44% 94.38
g–FS, g–FE, score 85.12% 67.99% 75.60
FS, FE, score 73.40% 63.70% 68.21

Table 1: Overall results on the development set. Func-
tions with prefix g are gold functions, providing bounds
of our performance. The top row is the upper bound per-
formance of our architecture. The bottom row is the real
performance.

Precision Recall Fβ=1

Overall 71.81% 61.11% 66.03
A0 81.83% 76.46% 79.05
A1 68.73% 65.27% 66.96
A2 59.41% 34.03% 43.28
A3 58.18% 21.33% 31.22
A4 72.97% 54.00% 62.07
A5 0.00% 0.00% 0.00
AM-ADV 54.50% 35.50% 43.00
AM-CAU 58.33% 28.57% 38.36
AM-DIR 64.71% 22.00% 32.84
AM-DIS 64.06% 57.75% 60.74
AM-EXT 100.00% 50.00% 66.67
AM-LOC 35.62% 22.81% 27.81
AM-MNR 50.89% 22.35% 31.06
AM-MOD 97.57% 95.25% 96.40
AM-NEG 90.23% 94.49% 92.31
AM-PNC 36.11% 15.29% 21.49
AM-PRD 0.00% 0.00% 0.00
AM-TMP 61.86% 48.86% 54.60
R-A0 78.85% 77.36% 78.10
R-A1 64.29% 51.43% 57.14
R-A2 100.00% 22.22% 36.36
R-A3 0.00% 0.00% 0.00
R-AM-LOC 0.00% 0.00% 0.00
R-AM-MNR 0.00% 0.00% 0.00
R-AM-PNC 0.00% 0.00% 0.00
R-AM-TMP 0.00% 0.00% 0.00

V 98.32% 98.24% 98.28

Table 2: Results on the test set

Acknowledgements
This research is supported by the European Commission

(Meaning, IST-2001-34460) and the Spanish Research Depart-
ment (Aliado, TIC2002-04447-C02). Xavier Carreras is sup-
ported by a grant from the Catalan Research Department.

References
Xavier Carreras and Lluís Màrquez. 2004a. Introduc-

tion to the CoNLL-2004 Shared Task: Semantic Role
Labeling. In Proceedings of CoNLL-2004.

Xavier Carreras and Lluís Màrquez. 2004b. Online
learning via global feedback for phrase recognition.
In Advances in Neural Information Processing Systems
16. MIT Press.

M. Collins. 2002. Discriminative Training Methods
for Hidden Markov Models: Theory and Experiments
with Perceptron Algorithms. In Proceedings of the
EMNLP’02.

Y. Freund and R. E. Schapire. 1999. Large Margin Clas-
sification Using the Perceptron Algorithm. Machine
Learning, 37(3):277–296.

