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Abstract

We cluster verbs into lexical semantic classes,
using a general set of noisy features that cap-
ture syntactic and semantic properties of the
verbs. The feature set was previously shown to
work well in a supervised learning setting, us-
ing known English verb classes. In moving to a
scenario of verb class discovery, using cluster-
ing, we face the problem of having a large num-
ber of irrelevant features for a particular cluster-
ing task. We investigate various approaches to
feature selection, using both unsupervised and
semi-supervised methods, comparing the results
to subsets of features manually chosen accord-
ing to linguistic properties. We find that the un-
supervised method we tried cannot be consis-
tently applied to our data. However, the semi-
supervised approach (using a seed set of sam-
ple verbs) overall outperforms not only the full
set of features, but the hand-selected features as
well.

1 Introduction

Computational linguists face a lexical acquisition bot-
tleneck, as vast amounts of knowledge about individual
words are required for language technologies. Learn-
ing the argument structure properties of verbs—the se-
mantic roles they assign and their mapping to syntac-
tic positions—is both particularly important and difficult.
A number of supervised learning approaches have ex-
tracted such informationabout verbs from corpora, includ-
ing their argument roles (Gildea and Jurafsky, 2002), se-
lectional preferences (Resnik, 1996), and lexical semantic
classification (i.e., grouping verbs according to their argu-
ment structure properties) (Dorr and Jones, 1996; Lapata
and Brew, 1999; Merlo and Stevenson, 2001; Joanis and
Stevenson, 2003). Unsupervised or semi-supervised ap-
proaches have been successful as well, but have tended to
be more restrictive, in relying on human filtering of the
results (Riloff and Schmelzenbach, 1998), on the hand-
selection of features (Stevenson and Merlo, 1999), or on
the use of an extensive grammar (Schulte im Walde and
Brew, 2002).

We focus here on extending the applicability of un-
supervised methods, as in (Schulte im Walde and Brew,
2002; Stevenson and Merlo, 1999), to the lexical seman-
tic classification of verbs. Such classes group together
verbs that share both a common semantics (such as trans-
fer of possession or change of state), and a set of syntactic
frames for expressing the arguments of the verb (Levin,
1993; FrameNet, 2003). As such, they serve as a means
for organizing complex knowledge about verbs in a com-
putational lexicon (Kipper et al., 2000). However, cre-
ating a verb classification is highly resource intensive, in
terms of both required time and linguistic expertise. De-
velopment of minimally supervised methods is of particu-
lar importance if we are to automatically classify verbs for
languages other than English, where substantial amounts
of labelled data are not available for training classifiers. It
is also necessary to consider the probable lack of sophisti-
cated grammars or text processing tools for extracting ac-
curate features.

We have previously shown that a broad set of 220
noisy features performs well in supervised verb classifi-
cation (Joanis and Stevenson, 2003). In contrast to Merlo
and Stevenson (2001), we confirmed that a set of gen-
eral features can be successfully used, without the need
for manually determining the relevant features for dis-
tinguishing particular classes (cf. Dorr and Jones, 1996;
Schulte im Walde and Brew, 2002). On the other hand, in
contrast to Schulte im Walde and Brew (2002), we demon-
strated that accurate subcategorizationstatistics are unnec-
essary (see also Sarkar and Tripasai, 2002).

By avoiding the dependence on precise feature extrac-
tion, our approach should be more portable to new lan-
guages. However, a general feature space means that most
features will be irrelevant to any given verb discrimination
task. In an unsupervised (clustering) scenario of verb class
discovery, can we maintain the benefit of only needing
noisy features, without the generality of the feature space
leading to “the curse of dimensionality”? In supervised
experiments, the learner uses class labels during the train-
ing stage to determine which features are relevant to the
task at hand. In the unsupervised setting, the large number
of potentially irrelevant features becomes a serious prob-
lem, since those features may mislead the learner.

Thus, the problem of dimensionality reduction is a key



issue to be addressed in verb class discovery. In this paper,
we report results on several feature selection approaches to
the problem: manual selection (based on linguistic knowl-
edge), unsupervised selection (based on an entropy mea-
sure among the features, Dash et al., 1997), and a semi-
supervised approach (in which seed verbs are used to train
a supervised learner, from which we extract the useful fea-
tures). Although our motivation is verb class discovery,
we perform our experiments on English, for which we
have an accepted classification to serve as a gold standard
(Levin, 1993). To preview our results, we find that, over-
all, the semi-supervised method not only outperforms the
entire feature space, but also the manually selected subset
of features. The unsupervised feature selection method,
on the other hand, was not usable for our data.

In the remainder of the paper, we first briefly review
our feature space and present our experimental classes and
verbs. We then describe our clustering methodology, the
measures we use to evaluate a clustering, and our experi-
mental results. We conclude with a discussion of related
work, our contributions, and future directions.

2 The Feature Space

Like others, we have assumed lexical semantic classes of
verbs as defined in Levin (1993) (hereafter Levin), which
have served as a gold standard in computational linguis-
tics research (Dorr and Jones, 1996; Kipper et al., 2000;
Merlo and Stevenson, 2001; Schulte im Walde and Brew,
2002). Levin’s classes form a hierarchy of verb groupings
with shared meaning and syntax. Our feature space was
designed to reflect these classes by capturing properties
of the semantic arguments of verbs and their mapping to
syntactic positions. It is important to emphasize, however,
that our features are extracted from part-of-speech (POS)
tagged and chunked text only: there are no semantic tags
of any kind. Thus, the features serve as approximations to
the underlying distinctions among classes.

Here we briefly describe the features that comprise our
feature space, and refer the interested reader to Joanis and
Stevenson (2003) for details.

Features over Syntactic Slots (120 features)
One set of features encodes the frequency of the syntac-
tic slots occurring with a verb (subject, direct and indirect
object, and prepositional phrases (PPs) indexed by prepo-
sition), which collectively serve as rough approximations
to the allowable syntactic frames for a verb. We also count
fixed elements in certain slots (it and there, as in It rains
or There appeared a ship), since these are part of the syn-
tactic frame specifications for a verb.

In addition to approximating the syntactic frames them-
selves, we also want to capture regularities in the mapping
of arguments to particular slots. For example, the location
argument, the truck, is direct object in I loaded the truck

with hay, and object of a preposition in I loaded hay onto
the truck. These allowable alternations in the expressions
of arguments vary according to the class of a verb. We
measure this behaviour using features that encode the de-
gree to which two slots contain the same entities—that is,
we calculate the overlap in noun (lemma) usage between
pairs of syntactic slots.

Tense, Voice, and Aspect Features (24 features)
Verb meaning, and therefore class membership, inter-
acts in interesting ways with voice, tense, and aspect
(Levin, 1993; Merlo and Stevenson, 2001). In addition
to verb POS (which often indicates tense) and voice (pas-
sive/active), we also include counts of modals, auxiliaries,
and adverbs, which are partial indicators of these factors.

The Animacy Features (76 features)
Semantic properties of the arguments that fill certain roles,
such as animacy or motion, are more challenging to de-
tect automatically. Currently, our only such feature is an
extension of the animacy feature of Merlo and Stevenson
(2001). We approximate the animacy of each of the 76
syntactic slots by counting both pronouns and proper noun
phrases (NPs) labelled as “person” by our chunker (Ab-
ney, 1991).

3 Experimental Classes and Verbs

We use the same classes and example verbs as in the su-
pervised experiments of Joanis and Stevenson (2003) to
enable a comparison between the performance of the un-
supervised and supervised methods. Here we describe the
selection of the experimental classes and verbs, and the es-
timation of the feature values.

3.1 The Verb Classes

Pairs or triples of verb classes from Levin were selected to
form the test pairs/triples for each of a number of separate
classification tasks. These sets exhibit different contrasts
between verb classes in terms of their semantic argument
assignments, allowing us to evaluate our approach under
a range of conditions. For example, some classes differ
in both their semantic roles and frames, while others have
the same roles in different frames, or different roles in the
same frames.1 Here we summarize the argument structure
distinctions between the classes; Table 1 below lists the
classes with their Levin class numbers.

Benefactive versus Recipient verbs.
Mary baked... a cake for Joan/Joan a cake.
Mary gave... a cake to Joan/Joan a cake.
These dative alternation verbs differ in the preposition and
the semantic role of its object.

1For practical reasons, as well as for enabling us to draw more
general conclusions from the results, the classes also could nei-
ther be too small nor contain mostly infrequent verbs.



Admire versus Amuse verbs.
I admire Jane. Jane amuses me.
These psychological state verbs differ in that the Experi-
encer argument is the subject of Admire verbs, and the ob-
ject of Amuse verbs.

Run versus Sound Emission verbs.
The kids ran in the room./*The room ran with kids.
The birds sang in the trees./The trees sang with birds.
These activity verbs both have an Agent subject in the in-
transitive, but differ in the prepositional alternations they
allow.

Cheat versus Steal and Remove verbs.
I cheated... Jane of her money/*the money from Jane.
I stole... *Jane of her money/the money from Jane.
These classes also assign the same semantic arguments,
but differ in their prepositional alternants.

Wipe versus Steal and Remove verbs.
Wipe... the dust/the dust from the table/the table.
Steal... the money/the money from the bank/*the bank.
These classes generally allow the same syntactic frames,
but differ in the possible semantic role assignment. (Loca-
tion can be the direct object of Wipe verbs but not of Steal
and Remove verbs, as shown.)

Spray/Load versus Fill versus Other Verbs of
Putting (several related Levin classes).
I loaded... hay on the wagon/the wagon with hay.
I filled... *hay on the wagon/the wagon with hay.
I put... hay on the wagon/*the wagon with hay.
These three classes also assign the same semantic roles
but differ in prepositional alternants. Note, however, that
the options for Spray/Load verbs overlap with those of the
other two types of verbs.

Optionally Intransitive: Run versus Change
of State versus “Object Drop”.
The horse raced./The jockey raced the horse.
The butter melted./The cook melted the butter.
The boy played./The boy played soccer.
These three classes are all optionally intransitive but as-
sign different semantic roles to their arguments (Merlo and
Stevenson, 2001). (Note that the Object Drop verbs are a
superset of the Benefactives above.)

For many tasks, knowing exactly what PP arguments
each verb takes may be sufficient to perform the classifica-
tion (cf. Dorr and Jones, 1996). However, our features do
not give us such perfect knowledge, since PP arguments
and adjuncts cannot be distinguished with high accuracy.
Using our simple extraction tools, for example, the PP �����
argument in I admired Jane for her honesty is not distin-
guished from the PP����� adjunct in I amused Jane for the
money. Furthermore, PP arguments differ in frequency, so
that a highly distinguishing but rarely used alternant will

likely not be useful. Indicators of PP usage are thus useful
but not definitive.

Verb Class Class Number # Verbs

Benefactive 26.1, 26.3 35
Recipient 13.1, 13.3 27
Admire 31.2 35
Amuse 31.1 134
Run 51.3.2 79
Sound Emission 43.2 56
Cheat 10.6 29
Steal and Remove 10.5, 10.1 45
Wipe 10.4.1, 10.4.2 35
Spray/Load 9.7 36
Fill 9.8 63
Other V. of Putting 9.1–6 48
Change of State 45.1–4 169
Object Drop 26.1, 26.3, 26.7 50

Table 1: Verb classes (see Section 3.1), their Levin class
numbers, and the number of experimental verbs in each
(see Section 3.2).

3.2 Verb Selection

Our experimental verbs were selected as follows. We
started with a list of all the verbs in the given classes from
Levin, removing any verb that did not occur at least 100
times in our corpus (the BNC, described below). Because
we make the simplifying assumption of a single correct
classification for each verb, we also removed any verb:
that was deemed excessively polysemous; that belonged
to another class under consideration in our study; or for
which the class did not correspond to the main sense.

Table 1 above shows the number of verbs in each class
at the end of this process. Of these verbs, 20 from each
class were randomly selected to use as trainingdata for our
supervised experiments in Joanis and Stevenson (2003).
We began with this same set of 20 verbs per class for
our current work. We then replaced 10 of the 260 verbs
(4%) to enable us to have representative seed verbs for
certain classes in our semi-supervised experiments (e.g.,
so that we could include wipe as a seed verb for the Wipe
verbs, and fill for the Fill verbs). All experiments reported
here were run on this same final set of 20 verbs per class
(including a replication of our earlier supervised experi-
ments).

3.3 Feature Extraction

All features were estimated from counts over the British
National Corpus (BNC), a 100M word corpus of text sam-
ples of recent British English ranging over a wide spec-
trum of domains. Since it is a general corpus, we do not
expect any strong overall domain bias in verb usage.



We used the chunker (partial parser) of Abney (1991)
to preprocess the corpus, which (noisily) determines the
NP subject and direct object of a verb, as well as the PPs
potentially associated with it. Indirect objects are identi-
fied by a less sophisticated (and even noisier) method, sim-
ply assuming that two consecutive NPs after the verb con-
stitute a double object frame. From these extracted slots,
we calculate the features described in Section 2, yielding
a vector of 220 normalized counts for each verb, which
forms the input to our machine learning experiments.

4 Clustering and Evaluation Methods

4.1 Clustering Parameters

We used the hierarchical clustering command in Matlab,
which implements bottom-up agglomerative clustering,
for all our unsupervised experiments. In performing hi-
erarchical clustering, both a vector distance measure and
a cluster distance (“linkage”) measure are specified. We
used the simple Euclidean distance for the former, and
Ward linkage for the latter. Ward linkage essentially mini-
mizes the distances of all cluster points to the centroid, and
thus is less sensitive to outliers than some other methods.

We chose hierarchical clustering because it may be pos-
sible to find coherent subclusters of verbs even when there
are not exactly � good clusters, where � is the number
of classes. To explore this, we can induce any number
of clusters � by making a cut at a particular level in the
clustering hierarchy. In the experiments here, however,
we report only results for ����� , since we found no
principled way of automatically determining a good cut-
off. However, we did experiment with ������� (as in
Strehl et al., 2000), and found that performance was gen-
erally better (even on our 	�
��� measure, described below,
that discounts oversplitting). This supports our intuition
that the approach may enable us to find more consistent
clusters at a finer grain, without too much fragmentation.

4.2 Evaluation Measures

We use three separate evaluation measures, that tap into
very different properties of the clusterings.

4.2.1 Accuracy
We can assign each cluster the class label of the ma-

jority of its members. Then for all verbs � , consider � to
be classified correctly if Class( � )=ClusterLabel( � ), where
Class( � ) is the actual class of � and ClusterLabel( � ) is the
label assigned to the cluster in which � is placed. Then ac-
curacy has the standard definition:2

2 ����� is equivalent to the weighted mean precision of the clus-
ters, weighted according to cluster size.

As we have defined it, ����� necessarily generally increases as
the number of clusters increases, with the extreme being at the
number of clusters equal to the number of verbs. However, since
we fix our number of clusters to the number of classes, the mea-
sure remains informative.

���� � #verbs correctly classified
#verbs total�����

thus provides a measure of the usefulness in prac-
tice of a clustering—that is, if one were to use the clus-
tering as a classification, this measure tells how accurate
overall the class assignments would be. The theoretical
maximum is, of course, 1. To calculate a random baseline,
we evaluated 10,000 random clusterings with the same
number of verbs and classes as in each of our experimen-
tal tasks. Because the

����
achieved depends on the pre-

cise size of clusters, we calculated mean
����

over the best
scenario (with equal-sized clusters), yielding a conserva-
tive estimate (i.e., an upper bound) of the baseline. These
figures are reported with our results in Table 2 below.

4.2.2 Adjusted Rand Measure
Accuracy can be relatively high for a clustering when

a few clusters are very good, and others are not good.
Our second measure, the adjusted Rand measure used by
Schulte im Walde (2003), instead gives a measure of how
consistent the given clustering is overall with respect to
the gold standard classification. The formula is as follows
(Hubert and Arabie, 1985):

	 
��� �
����� �! �"$# %&('*) �+�  �"$#-,&�' � �� �"$, %&.'0/  1" &�'2&$3 �4�  1"5#6,&�'87 � �( 1"5, %&.'9:) ���  �"$#-,&�' � �( 1"5, %&.'0/  1" &'

where ; � � is the entry in the contingency table between
the classification and the clustering, counting the size of
the intersection of class < and cluster = . Intuitively, 	 
���
measures the similarity of two partitions of data by con-
sidering agreements and disagreements between them—
there is agreement, for example, if � � and � � from the same
class are in the same cluster, and disagreement if they are
not. It is scaled so that perfect agreement yields a value
of 1, whereas random groupings (with the same number of
groups in each) get a value around 0. It is therefore consid-
ered “corrected for chance,” given a fixed number of clus-
ters.3

In tests of the 	>
��� measure on some contrived cluster-
ings, we found it quite conservative, and on our experi-
mental clusterings it did not often attain values higher than
.25. However, it is useful as a relative measure of good-
ness, in comparing clusterings arising from different fea-
ture sets.

4.2.3 Mean Silhouette�����
gives an average of the individual goodness of the

clusters, and 	>
��� a measure of the overall goodness, both
with respect to the gold standard classes. Our final mea-
sure gives an indicationof the overall goodness of the clus-
ters purely in terms of their separation of the data, without

3In our experiments for estimating the ����� baseline, we in-
deed found a mean ?�@�A-B value of 0.00 for all random clusterings.
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Figure 1: The dendrograms and ����� ; � <�� values for the
2-way Wipe/Steal–Remove task, using the Ling and Seed
sets. The higher ����� ; � <�� (.89 vs. .33) reflects the better
separation of the data.

regard to the target classes. We use ����� ; � <�� , the mean of
the silhouette measure from Matlab, which measures how
distant a data point is from other clusters. Silhouette val-
ues vary from +1 to -1, with +1 indicating that the point
is near the centroid of its own cluster, and -1 indicating
that the point is very close to another cluster (and therefore
likely in the wrong cluster). A value of 0 suggests that a
point is not clearly in a particular cluster.

We calculate the mean silhouette of all points in a clus-
tering to obtain an overall measure of how well the clus-
ters are separated. Essentially, the measure numerically
captures what we can intuitivelygrasp in the visual differ-
ences between the dendrograms of “better” and “worse”
clusterings. (A dendrogram is a tree diagram whose leaves
are the data points, and whose branch lengths indicate sim-
ilarity of subclusters; roughly, shorter vertical lines indi-
cate closer clusters.)

For example, Figure 1 shows two dendrograms using
different feature sets (Ling and Seed, described in Sec-
tion 5) for the same set of verbs from two classes. The
Seed set has slightly lower values for

����
and 	 
���� , but

a much higher value (.89) for �	�
� ; � <�� , indicating a bet-
ter separation of the data. This captures what is reflected in
the dendrogram, in that very short lines connect verbs low
in the tree, and longer lines connect the two main clusters.

The ����� ; � <�� measure is independent of the true classi-
fication, and could be high when the other dependent mea-
sures are low, or vice versa. However, it gives important
information about the quality of a clustering: The other
measures being equal, a clustering with a higher ����� ; � <��
value indicates tighter and more separated clusters, sug-
gesting stronger inherent patterns in the data.

5 Experimental Results

We report here the results of a number of clustering ex-
periments, using feature sets as follows: (1) the full feature
space; (2) a manually selected subset of features; (3) un-
supervised selection of features; and (4) semi-supervised
selection, using a supervised learner applied to seed verbs
to select the features.

For each type of feature set, we performed the same
ten clustering tasks, shown in the first column of Table 2.
These are the same tasks performed in the supervised set-
ting of Joanis and Stevenson (2003). The 2- and 3-way
tasks, and their motivation, were described in Section 3.1.
Three multiway tasks explore performance over a larger
number of classes: The 6-way task involves the Cheat,
Steal–Remove, Wipe, Spray/Load, Fill, and “Other Verbs
of Putting” classes, all of which undergo similar locative
alternations. To these 6, the 8-way task adds the Run and
Sound Emission verbs, which also undergo locative alter-
nations. The 13-way task includes all of our classes.

The second column of Table 2 includes the accuracy
of our supervised learner (the decision tree induction sys-
tem, C5.0), on the same verb sets as in our clustering
experiments. These are the results of a 10-fold cross-
validation (with boosting) repeated 50 times.4 In our ear-
lier work, we found that cross-validation performance av-
eraged about .02, .04, and .11 higher than test performance
on the 2-way, 3-way, and multiway tasks, respectively,
and so should be taken as an upper bound on what can be
achieved.

The third column of Table 2 gives the baseline
�����

we
calculated from random clusterings. Recall that this is an
upper bound on random performance. We use this base-
line in calculating reductions in error rate of

����
.

The remaining columns of the table give the
����

, 	 
��� ,
and ����� ; � <�� measures as described in Section 4.2, for
each of the feature sets we explored in clustering, which
we discuss in turn below.

5.1 Full Feature Set

The first subcolumn (Full) under each of the three cluster-
ing evaluation measures in Table 2 shows the results using
the full set of features (i.e., no feature selection). Although
generally higher than the baseline,

����
is well below that

of the supervised learner, and 	 
� � and ����� ; � <�� are gen-
erally low.

5.2 Manual Feature Selection

One approach to dimensionality reduction is to hand-
select features that one believes to be relevant to a given
task. Following Joanis and Stevenson (2003), for each
class, we systematically identified the subset of features

4These results differ slightly from those reported in Joanis
and Stevenson(2003), because of our slight changes in verb sets,
discussed in Section 3.2.



Task C5.0
Base

����� 	�
� � �	�
� ; � <������
Full Ling Seed Full Ling Seed Full Ling Seed

Benefactive/Recipient .74 .56 .60 .68 .58 .02 .10 .02 .22 .40 .81
Admire/Amuse .83 .56 .83 .80 .78 .41 .34 .29 .18 .49 .71
Run/Sound Emission .83 .56 .58 .50 .78 -.00 -.02 .29 .17 .44 .66
Cheat/Steal–Remove .89 .56 .55 .53 .80 -.01 -.02 .34 .30 .29 .74
Wipe/Steal–Remove .78 .56 .65 .73 .70 .07 .18 .15 .24 .33 .89
Mean of 2-way .81 .56 .64 .65 .73 .10 .12 .22 .22 .39 .76

Spray/Fill/Putting .80 .42 .53 .60 .47 .10 .16 .01 .12 .31 .48
Optionally Intrans. .66 .42 .38 .38 .58 -.02 -.02 .25 .16 .27 .39
Mean of 3-way .73 .42 .46 .49 .53 .04 .07 .13 .14 .29 .44

6 Locative Classes .70 .28 .31 .39 .42 .04 .11 .13 .05 .22 .31
8 Locative Classes .72 .24 .31 .38 .42 .10 .12 .12 .13 .23 .23
All 13 Classes .58 .19 .29 .31 .29 .07 .08 .09 .05 .12 .16
Mean of multiway .67 .23 .30 .36 .38 .07 .10 .11 .08 .19 .23

Table 2: Experimental Results. C5.0 is supervised accuracy; Base
����

is
����

on random clusters. Full is full feature
set; Ling is manually selected subset; Seed is seed-verb-selected set. See text for further description.

indicated by the class description given in Levin. For each
task, then, the linguistically-relevant subset is defined as
the union of these subsets for all the classes in the task.

The results for these feature sets in clustering are given
in the second subcolumn (Ling) under each of the

����
,	 
���� , and ����� ; � <�� measures in Table 2. On the 2-way

tasks, the performance on average is very close to that of
the full feature set for the

����
and 	 
��� measures. On the

3-way and multiway tasks, there is a larger performance
gain using the subset of features, with an increase in the
reduction of the error rate (over Base

�����
) of 6-7% over

the full feature set.
Overall, there is a small performance gain using the

Ling subset of features (with an increase in error rate re-
duction from 13% to 17%). Moreover, the ����� ; � <�� value
for the manually selected features is almost always very
much higher than that of the full feature set, indicating that
the subset of features is more focused on the properties that
lead to a better separation of the data.

This performance comparison tentatively suggests that
good feature selection can be helpful in our task. How-
ever, it is important to find a method that does not depend
on having an existing classification, since we are inter-
ested in applying the approach when such a classification
does not exist. In the next two sections, we present un-
supervised and minimally supervised approaches to this
problem.

5.3 Unsupervised Feature Selection

In order to deal with excessive dimensionality, Dash et al.
(1997) propose an unsupervised method to rank a set of
features according to their ability to organize the data in
space, based on an entropy measure they devise. Unfortu-
nately, this promising method did not prove practical for

our data. We performed a number of experiments in which
we tested the performance of each feature set from cardi-
nality 1 to the total number of features, where each set of
size < differs from the set of size < )�� in the addition of the
feature with next highest rank (according to the proposed
entropy measure). Many feature sets performed very well,
and some far outperformed our best results using other
feature selection methods. However, across our 10 ex-
perimental tasks, there was no consistent range of feature
ranks or feature set sizes that was correlated with good per-
formance. While we could have selected a threshold that
might work reasonably well with our data, we would have
little confidence that it would work well in general, con-
sidering the inconsistent pattern of results.

5.4 Semi-Supervised Feature Selection

Unsupervised methods such as Dash et al.’s (1997) are
appealing because they require no knowledge external to
the data. However, in many aspects of computational lin-
guistics, it has been found that a small amount of labelled
data contains sufficient information to allow us to go be-
yond the limits of completely unsupervised approaches. In
our domain in particular, verb class discovery “in a vac-
uum” is not necessary. A plausible scenario is that re-
searchers would have examples of verbs which they be-
lieve fall into different classes of interest, and they want
to separate other verbs along the same lines. To model this
kind of approach, we selected a sample of five seed verbs
from each class. Each set of verbs was judged (by the au-
thors’ intuition alone) to be “representative” of the class.
We purposely did not carry out any linguistic analysis, al-
though we did check that each verb was reasonably fre-
quent (with log frequencies ranging from 2.6 to 5.1).

For each experimental task, we ran our supervised



Task Ling Seed
Benefactive/Recipient 28 5
Admire/Amuse 24 4
Run/Sound Emission 21 4
Cheat/Steal–Remove 18 4
Wipe/Steal–Remove 20 3
Spray/Fill/Putting 33 8
Optionally Intrans. 50 10
6 Locative Classes 39 19
8 Locative Classes 46 26
All 13 Classes 72 43

Table 3: Feature counts for Ling and Seed feature sets.

learner (C5.0) on the seed verbs for those classes, in a
5-fold cross-validation (without boosting). We extracted
from the resulting decision trees the union of all features
used, which formed the reduced feature set for that task.
Each clustering experiment used the full set of 20 verbs per
class; i.e., seed verbs were included, following our pro-
posed model of guided verb class discovery.5

The results using these feature sets are shown in the
third subcolumn (Seed) under our three evaluation mea-
sures in Table 2. This feature selection method is highly
successful, outperforming the full feature set (Full) on

����
and 	 
���� on most tasks, and performing the same or very
close on the remainder. Moreover, the seed set of features
outperforms the manually selected set (Ling) on over half
the tasks. More importantly, the Seed set shows a mean
overall reduction in error rate (over Base

����
) of 28%,

compared to 17% for the Ling set. The increased reduction
in error rate is particularly striking for the 2-way tasks, of
37% for the Seed set compared to 20% for the Ling set.

Another striking result is the difference in �	�
� ; � <��
values, which are very much higher than those for Ling
(which are in turn much higher than for Full). Thus, not
only do we see a sizeable increase in performance, we also
obtain tighter and better separated clusters with our pro-
posed feature selection approach.

5.5 Further Discussion

In our clustering experiments, we find that smaller sub-
sets of features generally perform better than the full set
of features. (See Table 3 for the number of features in the
Ling and Seed sets.) However, not just any small set of
features is adequate. We ran 50 experiments using ran-
domly selected sets of features of cardinality � � , where �

5We also tried directly applying the mutual information (MI)
measure used in decision-tree induction (Quinlan, 1986). We
calculated the MI of each feature with respect to the classification
of the seed verbs, and computed clusterings using the features
above a certain MI threshold. This method did not work as well
as running C5.0, which presumably captures important feature
interactions that are ignored in the individual MI calculations.

is the number of classes (a simple linear function roughly
approximating the number of features in the Seed sets).
Mean

����
over these clusterings was much lower than

for the Seed sets, and 	>
� � was extremely low (below .08
in all cases). Interestingly, ����� ; � <�� was generally very
high, indicating that there is structure in the data, but not
what matches our classification. This confirms that appro-
priate feature selection, and not just a small number of fea-
tures, is important for the task of verb class discovery.

We also find that our semi-supervised method (Seed)
is linguistically plausible, and performs as well as or bet-
ter than features manually determined based on linguistic
knowledge (Ling). We might also ask, would any sub-
set of verbs do as well? To answer this, we ran experi-
ments using 50 different randomly selected seed verb sets
for each class. We found that the mean

����
and ����� ; � <��

values are the same as that of the Seed set reported above,
but mean 	>
��� is a little lower. We tentatively conclude
that, yes, any subset of verbs of the appropriate class may
be sufficient as a seed set, although some sets are better
than others. This is promising for our method, as it shows
that the precise selection of a seed set of verbs is not cru-
cial to the success of the semi-supervised approach.

6 Other Verb Clustering Work

Using the same
�����

measure as ours, Stevenson and Merlo
(1999) achieved performance in clustering very close to
that of their supervised classification. However, their
study used a small set of five features manually devised
for a set of three particular classes. Our feature set is es-
sentially a generalization of theirs, but in scaling up the
feature space to be useful across English verb classes in
general, we necessarily face a dimensionalityproblem that
did not arise in their research.

Schulte im Walde and Brew (2002) and Schulte im
Walde (2003), on the other hand, use a larger set of fea-
tures intended to be useful for a broad number of classes,
as in our work. The 	 
��� scores of Schulte im Walde
(2003) range from .09 to .18, while ours range from .02 to
.34, with a mean of .17 across all tasks. However, Schulte
im Walde’s features rely on accurate subcategorization
statistics, and her experiments include a much larger set
of classes (around 40), each with a much smaller number
of verbs (average around 4). Performance differences may
be due to the types of features (ours are noisier, but capture
information beyond subcat), or due to the number or size
of classes. While our 	>
��� results generally decrease with
an increase in the number of classes, indicating that our
tasks in general may be “easier” than her 40-way distinc-
tion, our classes also have many more members (20 versus
an average of 4) that need to be grouped together. It is a
question for future research to explore the effect of these
variables in clustering performance.



7 Conclusions and Future Work

We have explored manual, unsupervised, and semi-
supervised methods for feature selection in a clustering
approach for verb class discovery. We find that manual
selection of a subset of features based on the known
classification performs better than using a full set of
noisy features, demonstrating the potential benefit of
feature selection in our task. An unsupervised method
we tried (Dash et al., 1997) did not prove useful, because
of the problem of having no consistent threshold for
feature inclusion. We instead proposed a semi-supervised
method in which a seed set of verbs is chosen for training
a supervised classifier, from which the useful features
are extracted for use in clustering. We showed that this
feature set outperformed both the full and the manually
selected sets of features on all three of our clustering
evaluation metrics. Furthermore, the method is relatively
insensitive to the precise make-up of the selected seed
set.

As successful as our seed set of features is, it still does
not achieve the accuracy of a supervised learner. More re-
search is needed on the definition of the general feature
space, as well as on the methods for selecting a more use-
ful set of features for clustering. Furthermore, we might
question the clustering approach itself, in the context of
verb class discovery. Rather than trying to separate a set
of new verbs into coherent clusters, we suggest that it may
be useful to perform a nearest-neighbour type of classifi-
cation using a seed set, asking for each new verb “is it like
these or not?” In some ways our current clustering task is
too easy, because all of the verbs are from one of the tar-
get classes. In other ways, however, it is too difficult: the
learner has to distinguish multiple classes, rather than fo-
cus on the important properties of a single class. Our next
step is to explore these issues, and investigate other meth-
ods appropriate to the practical problem of grouping verbs
in a new language.
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