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Abstract

Unsupervisedgrammarinductionsystems
commonlyjudgepotentialconstituentson
thebasisof their effectson thelikelihood
of the data. Linguistic justificationsof
constituency, on the other hand, rely on
notionssuchassubstitutabilityandvary-
ing external contexts. We describetwo
systemsfor distributionalgrammarinduc-
tion whichoperateonsuchprinciples,us-
ing part-of-speechtagsas the contextual
features. The advantagesand disadvan-
tagesof thesesystemsareexamined,in-
cluding precision/recalltrade-offs, error
analysis,andextensibility.

1 Overview
While early work showed that small, artificial
context-free grammarscould be inducedwith the
EM algorithm (Lari and Young, 1990) or with
chunk-merge systems(Stolcke and Omohundro,
1994), studieswith large natural languagegram-
marshave shown that thesemethodsof completely
unsupervisedacquisitionare generallyineffective.
For instance, Charniak (1993) describesexperi-
mentsrunningtheEM algorithmfrom randomstart-
ing points, which producedwidely varying gram-
marsof extremelypoor quality. Becauseof these
kindsof results,thevastmajority of statisticalpars-
ing work has focusedon parsingas a supervised
learningproblem(Collins, 1997; Charniak,2000).
It remainsanopenproblemwhetheranentirelyun-
supervisedmethodcaneitherproducelinguistically
sensiblegrammarsor accuratelyparsefreetext.

However, there are compelling motivations for
unsupervisedgrammarinduction. Building super-
visedtrainingdatarequiresconsiderableresources,
including time and linguistic expertise. Further-
more,investigatingunsupervisedmethodscanshed

light on linguistic phenomenawhich are implic-
itly capturedwithin a supervisedparser’s supervi-
soryinformation,and,therefore,oftennotexplicitly
modeledin suchsystems.For example,our system
and othershave difficulty correctly attachingsub-
jectsto verbsabove objects.For a supervisedCFG
parser, thisorderingis implicit in thegivenstructure
of VP and S constituents,however, it seemslikely
that to learnattachmentorderreliably, an unsuper-
visedsystemwill have to modelit explicitly.

Our goal in this work is the induction of high-
quality, linguistically sensiblegrammars,not pars-
ing accuracy. We presenttwo systems,onewhich
doesnot do disambiguationwell and one which
doesnot do it at all. Both take taggedbut unparsed
Penntreebanksentencesasinput.1 To whatever de-
greeour systemsparsewell, it canbetaken asevi-
dencethattheirgrammarsaresensible,but noeffort
wastakento improve parsingaccuracy directly.

Thereis no claim that humanlanguageacquisi-
tion is in any waymodeledby thesystemsdescribed
here.However, any successof thesemethodsis evi-
denceof substantialcuespresentin thedata,which
could potentially be exploited by humansas well.
Furthermore,mistakesmadeby thesesystemscould
indicate points wherehumanacquisitionis likely
notbeingdrivenby thesekindsof statistics.

2 Approach

At theheartof any iterative grammarinductionsys-
tem is a method,implicit or explicit, for deciding
how to updatethegrammar. Two linguistic criteria
for constituency in naturallanguagegrammarsform
thebasisof thiswork (Radford,1988):

1. External distribution: A constituentis a se-
quenceof words which appearsin various
structuralpositionswithin largerconstituents.

1The Penntag andcategory setsusedin examplesin this
paperaredocumentedin ManningandScḧutze(1999,413).



2. Substitutability:A constituentis asequenceof
wordswith (simple)variantswhichcanbesub-
stitutedfor thatsequence.

To makeuseof theseintuitions,weuseadistribu-
tional notionof context. Let � be a part-of-speech
tagsequence.Everyoccurenceof � will bein some
context ����� , where� and � aretheadjacenttagsor
sentenceboundaries.Thedistribution overcontexts
in which � occursis calledits signature, which we
denoteby �	�
��� .

Criterion1 regardsconstituency itself. Consider
thetagsequencesIN DT NN andIN DT. Theformer
is a canonicalexampleof a constituent(of category
PP), while the later, thoughstrictly morecommon,
is, in general,not a constituent. Frequency alone
doesnotdistinguishthesetwo sequences,but Crite-
rion 1 pointsto a distributional factwhich does.In
particular, IN DT NN occursin many environments.
It can follow a verb, begin a sentence,enda sen-
tence,andsoon. On theotherhand,IN DT is gener-
ally followedby somekind of anounor adjective.

This example suggeststhat a sequence’s con-
stituency mightberoughlyindicatedby theentropy
of its signature, ����	�
����� . This turns out to be
somewhattrue,givena few qualifications.Figure1
shows the actualmost frequentconstituentsalong
with their rankingsby severalothermeasures.Tag
entropy by itself givesa list that is not particularly
impressive. Therearetwo primary causesfor this.
One is that uncommonbut possiblecontexts have
little impact on the tag entropy value. Given the
skewed distribution of short sentencesin the tree-
bank,this is somewhatof a problem.To correctfor
this, let �����
��� be theuniform distribution over the
observed contexts for � . Using ��������
����� would
have the obvious effect of boostingrare contexts,
and the moresubtleeffect of biasingthe rankings
slightly towardsmore commonsequences.How-
ever, while ����	�
����� presumablyconvergesto some
sensiblelimit given infinite data, ��������
����� will
not, as noiseeventually makes all or most counts
non-zero.Let � betheuniform distribution over all
contexts. Thescaledentropy

������	�
������������	�
������� ������ �
������!"��#�$�&%
turnedout to beausefulquantityin practice.Multi-
plying entropiesis not theoreticallymeaningful,but
this quantitydoesconverge to ����	�
����� given infi-
nite (noisy) data. The list for scaledentropy still
hasnotableflaws, mainly relatively low ranksfor
commonNPs, which doesnot hurt systemperfor-

Sequence Actual Freq Entropy Scaled Boundary GREEDY-RE
DT NN 1 2 4 2 1 1
NNP NNP 2 1 - - 4 2
CD CD 3 9 - - - 6
JJNNS 4 7 3 3 2 4
DT JJNN 5 - - - 10 8
DT NNS 6 - - - 9 10
JJNN 7 3 - 7 6 3
CD NN 8 - - - - -
IN NN 9 - - 9 10 -
IN DT NN 10 - - - - -
NN NNS - - 5 6 3 7
NN NN - 8 - 10 7 5
TO VB - - 1 1 - -
DT JJ - 6 - - - -
MD VB - - 10 - - -
IN DT - 4 - - - -
PRPVBZ - - - - 8 9
PRPVBD - - - - 5 -
NNS VBP - - 2 4 - -
NN VBZ - 10 7 5 - -
RB IN - - 8 - - -
NN IN - 5 - - - -
NNS VBD - - 9 8 - -
NNS IN - - 6 - - -

Figure 1: Top non-trivial sequencesby actual constituent
counts,raw frequency, raw entropy, scaledentropy, boundary
scaledentropy, andaccordingto GREEDY-RE(seesection4.2).

mance,andoverly high ranksfor shortsubject-verb
sequences,whichdoes.

The other fundamental problem with these
entropy-basedrankingsstemsfrom thecontext fea-
turesthemselves. The entropy valueswill change
dramaticallyif, for example,all nountagsarecol-
lapsed,or if functional tagsaresplit. This depen-
denceon the tagsetfor constituentidentificationis
veryundesirable.Oneappealingwayto removethis
dependenceis to distinguishonly two tags:onefor
the sentenceboundary(#) and anotherfor words.
Scalingentropiesby theentropy of thisreducedsig-
natureproducesthe improved list labeled“Bound-
ary.” Thisquantitywasnotusedin practicebecause,
althoughit is an excellent indicatorof NP, PP, and
intransitive S constituents,it givestoo stronga bias
againstotherconstituents.However, neithersystem
is driven exclusively by the entropy measureused,
andduplicatingtheabove rankingsmoreaccurately
did notalwaysleadto betterendresults.

Criterion 2 regardsthe similarity of sequences.
Assumethe data were truly generatedby a cate-
gorically unambiguousPCFG(i.e., whenever a to-
kenof a sequenceis a constituent,its labelis deter-
mined)andthat we weregiven infinite data. If so,
thentwo sequences,restrictedto thoseoccurrences
wherethey are constituents,would have the same
signatures.In practice,thedatais finite, notstatisti-
cally context-free,andevenshortsequencescanbe
categorically ambiguous.However, it remainstrue
thatsimilar raw signaturesindicatesimilarsyntactic



behavior. For example,DT JJ NN andDT NN have
extremelysimilar signatures,andbotharecommon
NPs. Also, NN IN andNN NN IN have very similar
signatures,andbothareprimarily non-constituents.

For our experiments,themetricof similarity be-
tween sequenceswas the Jensen-Shannondiver-
genceof thesequences’signatures:'

JS ���)(�*+��,��	� (, � ' KL ���$("-#."/10 .32, �"4 ' KL ����,5-#."/60 .32, �&%
Where

'
KL is the Kullback-Leiblerdivergencebe-

tweenprobability distributions. Of course,just as
variousnotionsof context arepossible,soarevari-
ousmetricsbetweensignatures.Theissuesof tagset
dependenceanddataskew did not seemto matter
for the similarity measure,and unalteredJensen-
Shannondivergencewasused.

Given theseideas,section4.1 discussesa sys-
tem whosegrammarinductionstepsareguidedby
sequenceentropy and interchangeability, and sec-
tion 4.2 discussesa maximum likelihood system
wheretheobjective beingmaximizedis thequality
of theconstituent/non-constituent distinction,rather
thanthelikelihoodof thesentences.

2.1 Problems with ML/MDL

Viewing grammarinduction as a searchproblem,
therearethreeprincipalwaysin which onecanin-
ducea “bad” grammar:7 Optimizethewrongobjective function.7 Choosebadinitial conditions.7 Be toosensitive to initial conditions.

Our currentsystemsprimarily attemptto address
the first two points. Commonobjective functions
include maximum likelihood (ML) which asserts
that a good grammaris one which best encodes
or compressesthe given data. This is potentially
undesirablefor two reasons. First, it is strongly
data-dependent.Thegrammar8 which maximizes9 � ' -:8;� dependson thecorpus

'
, which, in some

sense,the coreof a given language’s phrasestruc-
ture shouldnot. Second,andmoreimportantly, in
an ML approach,thereis pressurefor the symbols
andrulesin a PCFGto align in wayswhich maxi-
mize the truth of the conditionalindependenceas-
sumptionsembodiedby that PCFG.The symbols
and rules of a natural languagegrammar, on the
otherhand,representsyntacticallyandsemantically
coherentunits, for which a host of linguistic ar-
gumentshave beenmade(Radford,1988). None
of theseargumentshave anything to do with con-
ditional independence;traditional linguistic con-

stituency reflectsonly grammaticalpossibiltyof ex-
pansion. Indeed,there are expectedto be strong
connectionsacrossphrases(suchasarecapturedby
argumentdependencies).For example,in the tree-
bankdataused,CD CD isacommonobjectof averb,
but a very raresubject. However, a linguist would
take this as a selectionalcharacteristicof the data
set,not an indicationthat CD CD is not an NP. Of
course,it couldbethat theML andlinguistic crite-
ria align,but in practicethey donotalwaysseemto,
andoneshouldnot expectthat,by maximizingthe
former, onewill alsomaximizethelatter.

Anothercommonobjective functionis minimum
descriptionlength(MDL), whichassertsthatagood
analysisis a shortone,in that thejoint encodingof
the grammarand the datais compact. The “com-
pactgrammar”aspectof MDL is perhapscloserto
sometraditional linguistic argumentationwhich at
timeshasarguedfor minimalgrammarsongrounds
of analytical(Harris,1951)or cognitive (Chomsky
andHalle, 1968)economy. However, someCFGs
whichmightpossiblybeseenastheacquisitiongoal
are anything but compact;take the Penntreebank
coveringgrammarfor anextremeexample.Another
seriousissuewith MDL is that the target grammar
is presumablyboundedin size,while addingmore
andmoredatawill onaveragecauseMDL methods
to chooseever largergrammars.

In addition to optimizing questionableobjective
functions, many systemsbegin their searchpro-
cedurefrom an extremely unfavorable region of
the grammarspace. For example, the randomly
weightedgrammarsin Carroll andCharniak(1992)
rarelyconvergedto remotelysensiblegrammars.As
they point out, andquite independentlyof whether
ML is a goodobjective function,theEM algorithm
is only locally optimal,andit seemsthat thespace
of PCFGsis riddled with numerouslocal maxima.
Of course,the issueof initialization is somewhat
tricky in termsof the biasgiven to the system;for
example,Brill (1994)beginswith auniformly right-
branchingstructure. For English, right-branching
structurehappensto be astonishinglygoodboth as
an initial point for grammarlearningandevenasa
baselineparsingmodel. However, it would be un-
likely to performnearlyaswell for aVOSlanguage
like Malagasyor VSO languageslike Hebrew.

3 Search vs. Clustering

Whethergrammarinduction is viewed asa search
problemor a clusteringproblemis a matterof per-



spective, andthetwo views arecertainlynot mutu-
ally exclusive. The searchview focuseson the re-
cursive relationshipsbetweenthe non-terminalsin
the grammar. The clusteringview, which is per-
hapsmoreapplicableto the presentwork, focuses
on membershipof (terminal) sequencesto classes
representedby thenon-terminals.For example,the
non-terminalsymbolNP canbethoughtof asaclus-
ter of (terminal)sequenceswhich canbegenerated
startingfrom NP. This clusteringis theninherently
soft clustering,sincesequencescanbeambiguous.

Unlike standardclusteringtasks, though, a se-
quencetokenin agivensentenceneednotbeacon-
stituentat all. For example,DT NN is anextremely
commonNP, andwhenit occurs,it is a constituent
around82%of thetime in thedata.However, when
it occursasasubsequenceof DT NN NN it is usually
notaconstituent.In fact,thedifficult decisionsfor a
supervisedparser, suchasattachmentlevel or coor-
dinationscope,aredecisionsasto whichsequences
areconstituents,notwhattheir tagswouldbeif they
were.For example,DT NN IN DT NN is virtually al-
waysan NP whenit is a constituent,but it is only a
constituent66%of thetime,mostlybecausethePP,
IN DT NN, is attachedelsewhere.

Oneway to dealwith this issueis to have anex-
plicit classfor “not a constituent”(seesection4.2).
There are difficulties in modeling such a class,
mainly stemmingfrom thedifferencesbetweenthis
classandtheconstituentclasses.In particular, this
classwill notbedistributionally cohesive. Also, for
example,DT NN and DT JJ NN beinggenerallyof
category NP seemsto beahighly distributionalfact,
while DT NN not beinga constituentin thecontext
DT NN NN seemsmore properly modeledby the
competingproductionsof thegrammar.

Another approach is to model the non-
constituents either implicitly or independently
of theclusteringmodel(seesection4.1).Thedraw-
backto insufficiently modelingnon-constituency is
that for acquisitionsystemswhich essentiallywork
bottom-up,non-constituentchunkssuchas NN IN

or IN DT arehardto ruleout locally.

4 Systems

We present two systems. The first, GREEDY-
MERGE, learnssymbolicCFGsfor partial parsing.
The rules it learnsareof high quality (seefigures
3 and4), but parsingcoverageis relatively shallow.
The second,CONSTITUENCY-PARSER, learnsdis-
tributionsoversequencesrepresentingtheprobabil-

TOP

# z1

DT NN

VBZ RB #

Figure2: Thepossiblecontexts of asequence.

ity thataconstituentis realizedasthatsequence(see
figure1). It producesfull binaryparses.

4.1 GREEDY-MERGE

GREEDY-MERGE is a precision-orientedsystem
which, to a first approximation,canbe seenasan
agglomerative clustering processover sequences.
For eachpairof sequences,anormalizeddivergence
is calculatedasfollows:< �
��*�=��>� ?�@BADC . CFE5G
H . CFIJGKGLNM C . CFE5GKG 0 LOM C . CPIQGRG
The pair with the least divergence is merged.2

Merging two sequencesinvolves the creationof a
singlenew non-terminalcategory which rewritesas
eithersequence.Oncetherearenon-terminalcate-
gories,thedefinitionsof sequencesandcontextsbe-
comeslightly morecomplex. The input sentences
areparsedwith the previous grammarstate,using
a shallow parserwhich tiesall parentlessnodesto-
getherundera TOP root node. Sequencesarethen
theorderedsetsof adjacentsistersin thisparse,and
the context of a sequencecan either be the pre-
cedingand following tagsor a higher nodein the
tree.To illustrate,in figure2, thesequenceVBZ RB

couldeitherbeconsideredto bein context [Z1. . . #]
or [NN. . . #]. Taking the highestpotentialcontext
([Z1. . . #] in this case)performedslightly better.3

Mergingasequenceandasinglenon-terminalre-
sultsin arulewhichrewritesthenon-terminalasthe
sequence(i.e., that sequenceis addedto that non-
terminal’sclass),andmergingtwonon-terminalsin-
volvescollapsingthe two symbolsin the grammar
(i.e., thoseclassesare merged). After the merge,
re-analysisof thegrammarruleRHSsis necessary.

An important point about GREEDY-MERGE is
thatstoppingthesystemat thecorrectpoint is crit-
ical. Sinceour greedycriterion is not a measure
over entiregrammarstates,we have no way to de-
tect the optimal point beyond heuristics(the same

2We requiredthat the candidatesbe amongthe 250 most
frequentsequences.The exact thresholdwas not important,
but withoutsomethreshold,longsingletonsequenceswith zero
divergenceare always chosen. This suggeststhat we needa
greaterbiastowardsquantityof evidencein our basicmethod.

3An optionwhichwasnot triedwouldbeto consideranon-
terminalasa distribution over the tagsof the right or left cor-
nersof thesequencesbelongingto thatnon-terminal.



category appearsin severalmergesin a row, for ex-
ample)or by usinga smallsupervisionsetto detect
a parseperformancedrop. The figuresshown are
from stoppingthe systemmanuallyjust beforethe
first significantdropin parsingaccuracy.

Thegrammarrulesproducedby thesystemarea
strict subsetof generalCFG rulesin several ways.
First,nounaryrewriting is learned.Second,nonon-
terminalswhich have only a singlerewrite areever
proposed,thoughthissituationcanoccurasaresult
of later merges. The effect of theserestrictionsis
discussedbelow.

4.2 CONSTITUENCY-PARSER

The secondsystem,CONSTITUENCY-PARSER, is
recall-oriented.Unlike GREEDY-MERGE, this sys-
temalwaysproducesa full, binaryparseof eachin-
put sentence.However, its parsingbehavior is sec-
ondary. It is primarily a clusteringsystemwhich
views the dataas the entiresetof (sequence,con-
text) pairs �
�	*��$� that occurredin the sentences.
Eachpair tokencomesfrom somespecificsentence
andisclassifiedwith abinaryjudgementS of thatto-
ken’s constituency in thatsentence.Weassumethat
thesepairsaregeneratedby thefollowing model:

9 �
�	*��$���UTWVYXQZ1[ H \^]
9 �
�_- S3� 9 �#�`- S3� 9 ��S3�

We use EM to maximize the likelihood of these
pairsgiven thehiddenjudgementsS , subjectto the
constraintsthat the judgementsfor thepairsfrom a
givensentencemustform avalid binaryparse.

Initialization was either done by giving initial
seedsfor theprobabilitiesaboveor by forcingacer-
tain setof parseson the first round. To do the re-
estimation,we musthave somemethodof deciding
which binarybracketing to prefer. Thechanceof a
pair �
�	*��$� beingaconstituentis

9 ��S5- �	*��$��� 9 ��SQ- ��� 9 ��S5- � ��! 9 ��Sa�
andwe scorea tree b by the likelihoodproductof
its judgementsSQ�
��*Ybc� . Thebesttreeis then

dJegf�h�d"ikj �ml CnEoH p�G X �
9 ��SQ�
��*Ybc�a- ��*�� �

As weareconsideringeachpair independentlyfrom
therestof theparse,thismodeldoesnotcorrespond
to a generative modelof thekind standardlyassoci-
atedwith PCFGs,but canbeseenasa randomfield
over thepossibleparses,with thefeaturesbeingthe
sequencesandcontexts (see(Abney, 1997)). How-
ever, note that we wereprimarily interestedin the
clusteringbehavior, not the parsingbehavior, and

that the randomfield parametershave not beenfit
to any distribution over trees.Theparsingmodelis
verycrude,primarily servingto eliminatesystemat-
ically mutuallyincompatibleanalyses.

4.2.1 Sparsity
Since this system does not postulate any non-
terminalsymbols,but worksdirectly with terminal
sequences,sparsitywill beextremelyseverefor any
reasonablylong sequences.Substantialsmoothing
wasdoneto all terms;for the

9 ��SQ- ��� estimateswe
interpolatedthepreviouscountsequallywith a uni-
form

9 ��S3� , otherwisemostsequenceswouldremain
lockedin their initial behaviors. Thisheavy smooth-
ing maderaresequencesbehave primarily accord-
ing to their contexts, removed the initial invariance
problem,and,after a few roundsof re-estimation,
hadlittle effect onparserperformance.

4.2.2 Parameters
CONSTITUENCY-PARSER’s behavior is determined
by the initialization it is given,eitherby initial pa-
rameterestimates,or fixed first-roundparses.We
usedfour methods:RANDOM, ENTROPY, RIGHT-
BRANCH, andGREEDY.

For RANDOM, we initially parsedrandomly. For
ENTROPY, we weighted

9 ��S5- ��� proportionally to
��3���	�
����� . For RIGHTBRANCH, we forced right-
branchingstructures(therebyintroducinga biasto-
wardsEnglishstructure).Finally, GREEDY usedthe
output from GREEDY-MERGE (usingthe grammar
statein figure3) to parseinitially.

5 Results

Two kinds of results are presented. First,
we discuss the grammarslearned by GREEDY-
MERGE andtheconstituentdistributionslearnedby
CONSTITUENCY-PARSER. Thenweapplybothsys-
temsto parsingfreetext from theWSJsectionof the
Penntreebank.

5.1 Grammars learned by GREEDY-MERGE

Figure3 shows a grammarlearnedat onestageof
a run of GREEDY-MERGE on the sentencesin the
WSJsectionof up to 10 wordsaftertheremoval of
punctuation( q 7500sentences).Thenon-terminal
categories proposedby the systemsare internally
given arbitrarydesignations,but we have relabeled
themto indicatethebestrecallmatchfor each.

Categoriescorrespondingto NP, VP, PP, andS are
learned,althoughsomearesplit into sub-categories
(transitive andintransitive VPs, properNPs andtwo



N-baror zerodeterminerNP
zNN r NN s NNS
zNN r JJzNN
zNN r zNN zNN

NP with determiner
zNP r DT zNN
zNP r PRP$zNN

ProperNP
zNNP r NNP s NNPS
zNNP r zNNPzNNP

PP
zPP r zIN zNN
zPP r zIN zNP
zPP r zIN zNNP

verbgroups/ intransitive VPs
zV r VBZ s VBD s VBP
zV r MD VB
zV r MD RB VB
zV r zV zRB
zV r zV zVBG

Transitive VPs
(complementation)
zVP r zV JJ
zVP r zV zNP
zVP r zV zNN
zVP r zV zPP

Transitive VPs
(adjunction)
zVP r zRB zVP
ZVP r zVPzPP

Intransitive S
zS r PRPzV
zS r zNPzV
zS r zNNPzV

Transitive S
zSt r zNNPzVP
zSt r zNN zVP
zSt r PRPzVP

Figure3: A learnedgrammar.

kindsof commonNPs,andsoon).4 Providedoneis
willing to accepta verb-groupanalysis,this gram-
mar seemssensible,thoughquite a few construc-
tions,suchasrelative clauses,aremissingentirely.

Figure4 shows a grammarlearnedat onestage
of a run whenverbsweresplit by transitivity. This
grammaris similar, but includesanalysesof sen-
tencialcoordinationandadverbials,andsubordinate
clauses.Theonly rule in thisgrammarwhichseems
overly suspectis ZVP t IN ZS whichanalyzescom-
plementizedsubordinateclausesasVPs.

In general, the major mistakes the GREEDY-
MERGE systemmakesareof threesorts:
7 Mistakesof omission.Eventhoughthegram-

mar shown hascorrect,recursive analysesof
many categories,no rule cannon-trivially in-
corporatea number(CD). There is also no
analysisfor many commonconstructions.7 Alternateanalyses.Thesystemalmostinvari-
ably forms verb groups,merging MD VB se-
quenceswith single main verbsto form verb
group constituents(argued for at times by
somelinguists(Halliday, 1994)).Also, PPs are
sometimesattachedto NPs below determiners
(which is in fact a standardlinguistic analysis
(Abney, 1987)). It is not alwaysclearwhether
theseanalysesshouldbeconsideredmistakes.7 Over-merging. Theseerrorsare the most se-
rious. Sinceat every steptwo sequencesare
merged, the processwill eventually learn the

4Splits often occurbecauseunaryrewrites arenot learned
in thecurrentsystem.

N-baror zero-determinerNP
zNN r NN s NNS
zNN r zNN zNN
zNN r JJzNN

CommonNP with determiner
zNP r DT zNN
zNP r PRP$zNN

ProperNP
zNNP r zNNPzNNP
zNNP r NNP

PP
zPP r zIN zNN
zPP r zIN zNP
zPP r zIN zNNP

Transitive VerbGroup
zVt r VBZt s VBDt s VBPt
zVt r MD zVBt
zVt r zVt RB

Intransitive VerbGroup
zVP r VBZ s VBD s VBP
zVP r MD VB
zVP r zVPzVBN u

VP adjunction
zVP r RB zVP
zVP r zVPRB
zVP r zVPzPP
zVP r zVPzJJ

VP complementation
zVP r zVt zNP
zVP r zVt zNN

S
zS r zNNPzVP
zS r zNN zVP
zS r zNPzVP
zS r DT zVP

zS r CC zS
zS r RB zS

S-bar
zVP r IN zS v

1 - wrongattachmentlevel
2 - wrongresultcategory

Figure4: A learnedgrammar(with verbssplit).

grammarwhereX t X X and X t (any ter-
minal). However, very incorrectmerges are
sometimesmaderelatively early on (suchas
merging VPs with PPs, or merging the se-
quencesIN NNP IN andIN.

5.2 CONSTITUENCY-PARSER’s Distributions

TheCONSTITUENCY-PARSER’s stateis not a sym-
bolic grammar, but estimatesof constituency for ter-
minal sequences.Thesedistributions, while less
compelling a representationfor syntactic knowl-
edgethanCFGs,clearlyhavesignificantfactsabout
languageembeddedin them,andaccuratelylearn-
ing themcanbeseenasakind of acquisiton.

Figure5showsthesequenceswhoseconstituency
countsaremostincorrectfor the GREEDY-RE set-
ting. An interestinganalysisgivenby thesystemis
theconstituency of NNP POS NN sequencesasNNP

(POS NN) which is standardin linguistic analyses
(Radford,1988),asopposedto the treebank’s sys-
tematic(NNP POS) NN. Othercommonerrors,like
the overcountof JJ NN or JJ NNS arepartially due
to parsinginsideNPs which areflat in the treebank
(seesection5.3).

It is informative to seehow re-estimationwith
CONSTITUENCY-PARSER improves and worsens
the GREEDY-MERGE initial parses. Coverageis
improved; for exampleNPs and PPs involving the
CD tagareconsistentlyparsedasconstituentswhile
GREEDY-MERGE did not includethemin parsesat
all. On the otherhand,the GREEDY-MERGE sys-
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Figure6: Unlabeledprecision(left) andrecall(right) valuesfor varioussettings.

Sequence Overcount Estimated True Total
JJNN 736 1099 363 1385
NN NN 504 663 159 805
NNP NNP 434 1419 985 2261
PRPVBZ 420 453 33 488
PRPVBD 392 415 23 452
PRPVBP 388 405 17 440
TO VB 324 443 119 538
MD VB 318 355 37 455
NN NNS 283 579 296 618
JJNNS 283 799 516 836

Sequence Undercount Estimated True Total
NNP POS 127 33 160 224
VBD RB VBN 59 6 65 83
VB DT NN 53 10 63 137
NNP NNPPOS 42 8 50 58
VB VBN 42 3 45 141
VB RB 39 6 45 100
VBD VBN 36 17 53 202
VBZ RB JJ 33 18 51 72
RB CD 30 26 56 117
VB DT JJNN 29 3 32 51

Figure 5: Sequencesmost commonly over- and under-
identified as constituentsby CONSTITUENCY-PARSER using
GREEDY-RE (ENTROPY-RE is similar). “Total” is the fre-
quency of thesequencein theflat data.“True” is thefrequency
as a constituentin the treebank’s parses. “Estimated” is the
frequency asa constituentin thesystem’s parses.

temhadlearnedthestandardsubject-verb-objectat-
tachmentorder, thoughthis hasdisappeared,ascan
beseenin theundercountsof VP sequences.Since
many VPs did not fit the conservative VP grammar
in figure 3, subjectsandverbswereoften grouped
togetherfrequentlyeven on the initial parses,and
theCONSTITUENCY-PARSER hasa furtherbiasto-
wardsover-identifying frequentconstituents.

5.3 Parsing results

Someissuesimpact the way the resultsof parsing
treebanksentencesshouldbeinterpreted.Both sys-
tems,but especiallythe CONSTITUENCY-PARSER,
tendto form verb groupsandoften attachthe sub-
jectbelow theobjectfor transitiveverbs.Becauseof
this,certainVPsaresystematicallyincorrectandVP

accuracy suffers dramatically, substantiallypulling

down theoverall figures.5 Secondly, the treebank’s
grammaris an imperfectstandardfor an unsuper-
vised learner. For example, transitive sentences
are bracketed [subject [verb object]] (“The presi-
dent[executedthelaw]”) while nominalizationsare
bracketed [[possessive noun] complement](“[The
president’s execution]of the law”), anarbitraryin-
consistency whichisunlikely to belearnedautomat-
ically. Thetreebankis also,somewhatpurposefully,
very flat. For example,thereis no analysisof the
insideof many shortnounphrases.The GREEDY-
MERGE grammarsabove, however, give a (correct)
analysisof the insidesof NPs like DT JJ NN NN

for which it will bepenalizedin termsof unlabeled
precision(thoughnotcrossingbrackets)whencom-
paredto thetreebank.

An issuewith GREEDY-MERGE is thatthegram-
marlearnedis symbolic,notprobabilistic.Any dis-
ambiguationis done arbitrarily. Therefore,even
addinga linguistically valid rule can degradenu-
merical performance(sometimesdramatically)by
introducingambiguityto agreaterdegreethanit im-
provescoverage.

In figure 6, we report summary results for
eachsystemon the w 10-word sentencesof the
WSJ section. GREEDY is the above snapshot
of the GREEDY-MERGE system. RANDOM, EN-
TROPY, and RIGHTBRANCH are the behaviors
of the random-parsebaseline,the right-branching
baseline,and the entropy-scoredinitialization for
CONSTITUENCY-PARSER. The -RE settingsare
the result of context-based re-estimation from
the respective baselinesusing CONSTITUENCY-
PARSER.6 NCB precisionis thepercentageof pro-

5The RIGHTBRANCH baselineis in theoppositesituation.
Its highoverall figuresarein a largepartdueto extremelyhigh
VP accuracy, while NP andPP accuracy (which is moreimpor-
tantfor taskssuchasinformationextraction)is very low.

6RIGHTBRANCH was invariant under re-estimation,and
RIGHTBRANCH-RE is thereforeomitted.



posedbracketswhichdonotcrossacorrectbracket.
Recall is alsoshown separatelyfor VPs andNPs to
illustratetheVP effect notedabove.

The generalresultsare encouraging. GREEDY

is, asexpected,higherprecisionthantheotherset-
tings.Re-estimationfrom thatinitial pointimproves
recall at the expenseof precision. In general,re-
estimationimprovesparseaccuracy, despitethe in-
directrelationshipbetweenthecriterionbeingmax-
imized(constituency clusterfit) andparsequality.

6 Limitations of this study

This study presentspreliminary investigationsand
hasseveralsignificantlimitations.

6.1 Tagged Data

A possiblecriticism of this work is that it relieson
part-of-speechtaggeddataas input. In particular,
while there hasbeenwork on acquiringparts-of-
speechdistributionally (Finchet al., 1995;Scḧutze,
1995),it is clearthatmanuallyconstructedtagsets
andtaggingsembodylinguistic factswhich arenot
generallydetectedby a distributional learner. For
example,transitive andintransitive verbsareidenti-
cally taggedyetdistributionally dissimilar.

In principle, an acquisitionsystemcould be de-
signedto exploit non-distributionality in the tags.
For example, verb subcategorization or selection
could be inducedfrom the ways in which a given
lexical verb’s distribution differs from the average,
asin (Resnik,1993).However, ratherthanbeingex-
ploitedby thesystemshere,thedistributional non-
unity of thesetagsappearsto actuallydegradeper-
formance. As an example,the systemsmore reli-
ably groupverbsandtheir objectstogether(rather
than verbsand their subjects)when transitive and
intransitive verbsaregivenseparatetags.

Futureexperimentswill investigatetheimpactof
distributional tagging,but, despitethe degradation
in tagquality thatonewouldexpect,it is alsopossi-
ble thatsomecurrentmistakeswill becorrected.

6.2 Individual system limitations

For GREEDY-MERGE, the primary limitations are
that there is no clear halting condition, there is
no ability to un-merge or to stopmerging existing
classeswhile still increasingcoverage,andthesys-
tem is potentiallyvery sensitive to the tagsetused.
For CONSTITUENCY-PARSER, the primary limita-
tions are that no labelsor recursive grammarsare
learned,and that the behavior is highly dependent
on initialization.

7 Conclusion
We presenttwo unsupervisedgrammarinduction
systems,one of which is capableof producing
declarative, linguistically plausiblegrammarsand
anotherwhich is capableof reliably identifying fre-
quent constituents. Both parsefree text with ac-
curacy rivaling that of weakly supervisedsystems.
Ongoingwork includeslexicalization, incorporat-
ing unaryrules,enrichingthe modelslearned,and
addressingthelimitationsof thesystems.
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Hinrich Scḧutze. 1995. Distributionalpart-of-speechtagging.
In EACL 7, pages141–148.

AndreasStolcke andStephenM. Omohundro. 1994. Induc-
ing probabilisticgrammarsby Bayesianmodelmerging. In
Grammatical Inference and Applications: Proceedings of
the Second International Colloquium on Grammatical In-
ference. SpringerVerlag.


