Motivation

Introduction to the CoNLL-2001 Shared Task: Clause Identification

Erik Tjong Kim Sang, University of Antwerp Hervé Déjean, University of Tübingen We want to evaluate different learning algorithms on a natural language processing task.

Clause boundaries are useful information for a syntactic analysis of sentences.

The CoNLL-2001 shared task consists of identifying clauses in text.

CoNLL-2001 1

Tjong Kim Sang/Déjean 06/07/2001

Task description

(S Coach them in

Tjong Kim Sang/Déjean

(S handling complaints S)

(S so that

(S they can resolve problems immediately S)

S)

S)

- We are interested in all clauses and do not restrict ourselves to base clauses.
- Type and function information have been disregarded.
- The shared task has been split in three parts to allow basic learning algorithms to participate as well.

Data

- We use sections 15-18 of the Wall Street Journal part of the Penn Treebank-2 as training data, section 20 as development data and section 21 as test data.
- Data files consisted of four columns: words, partof-speech (POS) tags, chunk tags and clause tags.
- POS tags and chunk tags have been estimated in order to obtain realistic evaluation rates.
- Only phrases with labels starting with S have been included in as clauses (omitting RRC and FRAG).

CoNLL-2001 2 CoNLL-2001 3

Data example

word	POS	chunk	O_1	O_2	O_3
Coach	NNP	B-NP	S	Χ	(S*
them	PRP	B-NP	Χ	Χ	*
in	IN	B-PP	Χ	Χ	*
handling	NN	0	S	Χ	(S*
complaints	NNS	0	Χ	Ε	*S)
so	RB	B-SBAR	S	Χ	(S*
that	IN	I-SBAR	Χ	Χ	*
they	PRP	B-NP	S	Χ	(S*
can	MD	B-VP	Χ	Χ	*
resolve	VB	I-VP	Χ	Χ	*
problems	NNS	B-NP	Χ	Χ	*
immediately	RB	B-ADVP	Χ	Ε	*S)S)
		0	Χ	Ε	*S)

CoNLL-2001 4

Tjong Kim Sang/Déjean 06/07/200

Participants

Six groups have participated in the CoNLL-2001 shared task. They have used connectionist techniques, memory-based methods, statistical techniques, symbolic methods and tree/graph boosting:

- Patrick and Goyal (graph boosting)
- Hammerton (connectionist techniques)
- Déjean (symbolic methods)
- Tjong Kim Sang (memory-based methods)
- Molina and Pla (statistical techniques)
- Carreras and Marquez (tree boosting)

The authors will present their systems themselves.

Evaluation

We register the number of completely correct clauses and compute precision, recall and $F_{\beta=1}$ rates:

Precision: number of correct clauses divided by the number of clauses found by the algorithm.

Recall: number of correct clauses divided by the number of clauses in the corpus.

 $\mathsf{F}_{\beta=1}$: (β^2+1) *precision*recall divided by β^2 *precision+recall.

Baseline performances have been obtained with an algorithm which puts every sentence in a single clause.

Evaluation software was available to all participants.

CoNLL-2001 5

Tjong Kim Sang/Déjean 06/07/2001

Results bracket estimation

t	est part 1	precision	recall	$F_{\beta=1}$	
(Carreras & Màrquez	93.96%	89.59%	91.72	
-	Гjong Kim Sang	92.91%	85.08%	88.82	*
ľ	Molina & Pla	89.54%	86.01%	87.74	*
[Déjean	93.76%	81.90%	87.43	
F	Patrick & Goyal	89.79%	84.88%	87.27	*
ŀ	paseline	98.44%	36.58%	53.34	

test part 2	precision	recall	$F_{\beta=1}$	
Carreras & Màrquez	90.04%	88.41%	89.22	
Tjong Kim Sang	84.72%	79.96%	82.28	
Patrick & Goyal	80.11%	83.47%	81.76	k
Molina & Pla	79.57%	77.68%	78.61	k
Déjean	99.28%	48.90%	65.47	
baseline	98.44%	48.90%	65.34	1

^{*} results differ from those mentioned in the proceedings

CoNLL-2001 6 CoNLL-2001 7

Results full task

test part 3	precision	recall	$F_{\beta=1}$	1
Carreras & Màrquez	84.82%	73.28%	78.63	
Molina & Pla	70.89%	65.57%	68.12	
Tjong Kim Sang	76.91%	60.61%	67.79	:
Patrick & Goyal	73.75%	60.00%	66.17	:
Déjean	72.56%	54.55%	62.77	
Hammerton	55.81%	45.99%	50.42	
baseline	98.44%	31.48%	47.71	

^{*} results differ from those mentioned in the proceedings

- Four systems perform approximately equally well.
- Hammerton did not use all training data.
- Carreras & Màrquez perform a lot better than the rest (their error rate is 33% lower than second best).

CoNLL-2001 8

Tjong Kim Sang/Déjean 06/07/2001

System combination

	systems used	
development part 1	all	some
majority voting	92.26	93.89
accuracy voting	92.26	93.89
precision voting	92.26	93.89
precision-recall voting	92.26	93.89
pairwise voting	92.45	93.89
stacked classifier	93.78	93.89
$stacked\ classifier + POS$	93.32	94.02
Carreras & Màrquez	93.89	
average	90.43	

- Background info: Van Halteren et al., Coling 1998.
- Apart from a small increase for a stacked classifier with extra information, system combination does not improve the best single result.
- The reason for this is that there is a large difference between the best individual system and the others.

Comparison AdaBoost - TiMBL

The Carreras and Màrquez approach uses more features than the other approaches. Does this account for the large performance differences with the other systems?

development part 1	precision	recall	$F_{\beta=1}$
Carreras & Màrquez	95.77%	92.08%	93.89
C&M with TKS ftrs	94.19%	88.62%	91.32
TKS with C&M ftrs	93.16%	89.33%	91.20
Tjong Kim Sang	92.94%	86.87%	89.80
baseline	96.32%	38.08%	54.58

The performance differences between the Carreras and Màrquez approach and the other approaches are both related to the choice of features and the choice of system (Adaboost).

CoNLL-2001 9

Tjong Kim Sang/Déjean 06/07/2001

Problematic sentences (1)

```
( Refcorp was created
  ( to help fund the thrift bailout ) . )

( "( Improving profitability of U.S. operations )
  is an extremely high priority in the company . " )

( Advancing and declining issues finished
  ( about even ) . )

( "But ( it 's not mediocre ) ,
  ( it 's a real problem ) . " )

( Trouble was ,
  ( nobody thought ( they looked right ) ) . )

( ( He will also remain a director ) ,
  ( US Facilities said ) , but
  ( won't serve on any board committees ) . )
```

Problematic sentences (2)

```
( Then , it rebounded ( to finish down only 18.65 points ) . )
( The stock recovered somewhat to finish 1 1/4 lower at 26 1/4 . )
( The death of CIA Director William Casey and resignation of Oliver North allowed ( anti-Noriega political forces to gain influence ) . )
( Small-business suppliers want ( prisons to stop getting high priority ) , ( especially as ( prison production grows with swelling inmate populations ) ) . )
```

Concluding remarks

- Six systems have participated in the CoNLL-2001 shared task: clause identification.
- The best results have been obtained by Xavier Carreras and Lluís Màrquez from Spain.
- Their excellent results have both been made possible by the choice of the learning algorithm (AdaBoost applied to decision trees) and their choice of features for describing the domain.

CoNLL-2001 12 CoNLL-2001 13